在籍番号	氏名	
------	----	--

[1] (定義) V, W を線形空間とする. 写像 $F: V \to W$ が線形写像とは,

(i)
$$F(\mathbf{u} + \mathbf{v}) =$$
 $(\forall \mathbf{u}, \mathbf{v} \in V)$ (1);

を満たすこと. 定義から、線形写像 F は $F(\mathbb{O}) =$ (3) を満たすことが分かる.

特に、V = W のとき線形写像 F を V 上の (4) という.

$$(3) 写像 T: \mathbb{R}^2 \to \mathbb{R}^2, \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x \cos \theta - y \sin \theta \\ x \sin \theta + y \cos \theta \end{pmatrix} は線形写像で$$

[3] (定義) V,W を線形空間, $T:V\to W$ を線形写像とする.

例えば、 $T: V \to W$, $\mathbb{V} \mapsto \mathbb{O}$: ゼロ写像に対して, $\mathrm{Ker}(T) = V$, $\mathrm{Im}(T) = \{\mathbb{O}\}$.

 $**_{0}$ と ${_{0}}$ は違うので注意すること. ${_{0}}$ はゼロ・ベクトルという元, ${_{0}}$ は集合である.