はじめに (線形代数 IIA)

線形代数Ⅱ = 線形代数Ⅰのつづき

教科書 「やさしい線形代数,H. アントン著,山下純一訳」現代数学社

講義の情報 http://mathweb.sc.niigata-u.ac.jp/~hoshi/teaching-j.html

シラバス LINK

- ▶ ノートを取りながら講義を聴くこと. (ノートを回収して確認する可能性があります)
- ▶ 講義 → 小テスト (理解度確認テスト, 学務情報システム内)

定義 (V を張る)

任意の $v \in V$ が $v_1, \ldots, v_r \in V$ の 1 次結合でかけるとき, i.e. $\mathbb{V} = k_1 \mathbb{V}_1 + \cdots + k_r \mathbb{V}_r$, (i.e. \cdots すなわち) v_1, \ldots, v_r は V を張る といい, $V = \mathcal{L}\{v_1, \ldots, v_r\}$, $V = \operatorname{Span}\{v_1, \dots, v_r\}, V = \langle v_1, \dots, v_r \rangle_{\mathbb{R}}$ などとかく. 以降, $V = \operatorname{Span}\{v_1, \ldots, v_r\} \geq h \leq 1$

例

 $\mathbf{i} = (1,0,0), \mathbf{j} = (0,1,0), \mathbf{k} = (0,0,1)$ は \mathbb{R}^3 を張る: $\mathbb{R}^3 = \mathrm{Span}\{\mathbf{i},\mathbf{j},\mathbf{k}\}.$: 任意の $\mathbf{v} = (a, b, c) \in \mathbb{R}^3$ は $\mathbf{v} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ とかける.

例

 $\mathbb{R}[X]_n = \operatorname{Span}\{1, X, \dots, X^n\}.$

: 任意の $f \in \mathbb{R}[X]_n$ は $f = a_0 \cdot 1 + a_1 X + \cdots + a_n X^n$ とかける.

$$\mathbf{v}_1=(1,1,2),\ \mathbf{v}_2=(1,0,1),\ \mathbf{v}_3=(2,1,3)\in\mathbb{R}^3$$
 は \mathbb{R}^3 を張るか? つまり、 $\mathbb{R}^3=\operatorname{Span}\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\}$?

任意の
$$\mathbb{b} = (b_1, b_2, b_3) \in \mathbb{R}^3$$
 は $\mathbb{b} = k_1 \mathbb{v}_1 + k_2 \mathbb{v}_2 + k_3 \mathbb{v}_3$ とかけるか? $\mathbb{b} = (k_1 + k_2 + 2k_3, k_1 + k_3, 2k_1 + k_2 + 3k_3)$. つまり,

$$\begin{cases} k_1+k_2+2k_3=b_1\\ k_1+k_3=b_2 & が解をもつか? これは、 $A=\begin{pmatrix} 1 & 1 & 2\\ 1 & 0 & 1\\ 2k_1+k_2+3k_3=b_3 & & \\ \end{cases}$$$

として,
$$A \begin{pmatrix} k_1 \\ k_2 \\ k_3 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$
とかける. A : 正則行列 \Rightarrow 解あり:

$$\begin{pmatrix} k_1 \\ k_2 \\ k_3 \end{pmatrix} = A^{-1} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}. \quad \forall b \downarrow \lor, \quad |A| = \begin{vmatrix} 1 & 1 & 2 \\ 1 & 0 & 1 \\ 2 & 1 & 3 \end{vmatrix} =$$

0+2+2-0-1-3=0 より、A の階数は2 以下であり、 $\mathbf{f}(k_1,k_2,k_3)$ がないような \mathbf{b} が存在する. よって、 $\mathbf{R}^3 \neq \mathrm{Span}\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\}$.

定義

```
v_1,\ldots,v_r\in V.
```

$$\operatorname{Span}\{\mathbb{V}_1,\ldots,\mathbb{V}_r\} := \{k_1\mathbb{V}_1 + \cdots + k_r\mathbb{V}_r \mid k_i \in \mathbb{R}\} \subset V$$

 $\mathbb{V}_1,\ldots,\mathbb{V}_r$ によって張られる (線形) 空間 という.

定理5

V:線形空間, $\mathbb{V}_1, \ldots, \mathbb{V}_r \in V$.

- (a) $W = \operatorname{Span}\{\mathbb{V}_1, \dots, \mathbb{V}_r\} \subset V$: 部分空間.
- (b) $W = \operatorname{Span}\{\mathbb{V}_1, \dots, \mathbb{V}_r\}$ は $\mathbb{V}_1, \dots, \mathbb{V}_r$ を含む V の最小の部分空間.

(すなわち, $W' \subset V$:部分空間, $v_1, \ldots, v_r \in W' \Rightarrow W \subset W'$)

(証明) (a) 定理 4 から $\mathbf{u}, \mathbf{u}' \in W \Rightarrow \mathbf{u} + \mathbf{u}' \in W, k\mathbf{u} \in W$ を示せばよい. $\mathbf{u}, \mathbf{u}' \in W \Rightarrow \mathbf{u} = \exists c_1 \mathbf{v}_1 + \cdots + \exists c_r \mathbf{v}_r, \mathbf{u}' = \exists c_1' \mathbf{v}_1 + \cdots + \exists c_r' \mathbf{v}_r$

$$\mathbf{u}, \mathbf{u} \in \mathcal{W} \Rightarrow \mathbf{u} = \exists c_1 \mathbf{v}_1 + \dots + \exists c_r \mathbf{v}_r, \mathbf{u} = \exists c_1 \mathbf{v}_1 + \dots + \exists c_r \mathbf{v}_r, \mathbf{u} = \exists c_1 \mathbf{v}_1 + \dots + \exists c_r \mathbf{v}_r, \mathbf{u} = \exists c_1 \mathbf{v}_1 + \dots + \exists c_r \mathbf{v}_r, \mathbf{u} = \exists c_1 \mathbf{v}_1 + \dots + \exists c_r \mathbf{v}_r, \mathbf{u} = \exists c_1 \mathbf{v}_1 + \dots + \exists c_r \mathbf{v}_r, \mathbf{u} = \exists c_1 \mathbf{v}_1 + \dots + \exists c_r \mathbf{v}_r, \mathbf{u} = \exists c_1 \mathbf{v}_1 + \dots + \exists c_r \mathbf{v}_r, \mathbf{u} = \exists c_1 \mathbf{v}_1 + \dots + \exists c_r \mathbf{v}_r, \mathbf{u} = \exists c_1 \mathbf{v}_1 + \dots + \exists c_r \mathbf{v}_r, \mathbf{u} = \exists c_1 \mathbf{v}_1 + \dots + \exists c_r \mathbf{v}_r, \mathbf{u} = \exists c_1 \mathbf{v}_1 + \dots + \exists c_r \mathbf{v}_r, \mathbf{u} = \exists c_1 \mathbf{v}_1 + \dots + \exists c_r \mathbf{v}_r, \mathbf{u} = \exists c_1 \mathbf{v}_1 + \dots + \exists c_r \mathbf{v}_r, \mathbf{u} = \exists c_1 \mathbf{v}_1 + \dots + \exists c_r \mathbf{v}_r, \mathbf{u} = \exists c_1 \mathbf{v}_1 + \dots + \exists c_r \mathbf{v}_r, \mathbf{u} = \exists c_1 \mathbf{v}_1 + \dots + \exists c_r \mathbf{v}_r, \mathbf{u} = \exists c_1 \mathbf{v}_1 + \dots + \exists c_r \mathbf{v}_r, \mathbf{u} = \exists c_1 \mathbf{v}_1 + \dots + \exists c_r \mathbf{v}_r, \mathbf{u} = \exists c_1 \mathbf{v}_1 + \dots + \exists c_r \mathbf{v}_r, \mathbf{u} = \exists c_1 \mathbf{v}_1 + \dots + \exists c_r \mathbf{v}_r, \mathbf{u} = \exists c_1 \mathbf{v}_1 + \dots + \exists c_r \mathbf{v}_r, \mathbf{u} = \exists c_1 \mathbf{v}_1 + \dots + \exists c_r \mathbf{v}_r, \mathbf{u} = \exists c_1 \mathbf{v}_1 + \dots + \exists c_r \mathbf{v}_r, \mathbf{u} = \exists c_1 \mathbf{v}_1 + \dots + \exists c_r \mathbf{v}_r, \mathbf{u} = \exists c_1 \mathbf{v}_1 + \dots + \exists c_r \mathbf{v}_r, \mathbf{u} = \exists c_1 \mathbf{v}_1 + \dots + \exists c_r \mathbf{v}_r, \mathbf{u} = \exists c_1 \mathbf{v}_1 + \dots + \exists c_r \mathbf{v}_r, \mathbf{u} = \exists c_1 \mathbf{v}_1 + \dots + \exists c_r \mathbf{v}_r, \mathbf{u} = \exists c_1 \mathbf{v}_1 + \dots + \exists c_r \mathbf{v}_r, \mathbf{u} = \exists c_1 \mathbf{v}_1 + \dots + \exists c_r \mathbf{v}_r, \mathbf{u} = \exists c_1 \mathbf{v}_1 + \dots + \exists c_r \mathbf{v}_r, \mathbf{u} = \exists c_1 \mathbf{v}_1 + \dots + \exists c_r \mathbf{v}_r, \mathbf{u} = \exists c_1 \mathbf{v}_1 + \dots + \exists c_r \mathbf{v}_r, \mathbf{u} = \exists c_1 \mathbf{v}_1 + \dots + \exists c_r \mathbf{v}_r, \mathbf{u} = \exists c_1 \mathbf{v}_1 + \dots + \exists c_r \mathbf{v}_r, \mathbf{u} = \exists c_1 \mathbf{v}_1 + \dots + \exists c_r \mathbf{v}_r, \mathbf{u} = \exists c_1 \mathbf{v}_1 + \dots + \exists c_r \mathbf{v}_r, \mathbf{u} = \exists c_1 \mathbf{v}_1 + \dots + \exists c_r \mathbf{v}_r, \mathbf{u} = \exists c_1 \mathbf{v}_1 + \dots + \exists c_r \mathbf{v}_r, \mathbf{u} = \exists c_1 \mathbf{v}_1 + \dots + \exists c_r \mathbf{v}_r, \mathbf{u} = \exists c_1 \mathbf{v}_1 + \dots + \exists c_r \mathbf{v}_r, \mathbf{u} = \exists c_1 \mathbf{v}_1 + \dots + \exists c_r \mathbf{v}_r, \mathbf{u} = \exists c_1 \mathbf{v}_1 + \dots + \exists c_r \mathbf{v}_r, \mathbf{u} = \exists c_1 \mathbf{v}_1 + \dots + \exists c_r \mathbf{v}_r, \mathbf{u} = \exists c_1 \mathbf{v}_1 + \dots + \exists c_r \mathbf{v}_r, \mathbf{u} = \exists c_1 \mathbf{v}_1 + \dots + \exists c_r \mathbf{v}_r, \mathbf{u} = \exists c_1 \mathbf{v}_1 + \dots + \exists c_r \mathbf{v}_r, \mathbf{u} = \exists c_1 \mathbf{v}_1 + \dots + \exists c_r \mathbf{v}_r, \mathbf{u} = \exists c_1 \mathbf{v}_1 + \dots + \exists c_r \mathbf{v}_r, \mathbf{u} = \exists c_1 \mathbf{v}_1 + \dots$$

$$\Rightarrow \mathbf{u} + \mathbf{u}' = (c_1 + c_1') \mathbf{v}_1 + \dots + (c_r + c_r') \mathbf{v}_r \in W,$$

 $k\mathbf{u} = (kc_1)\mathbf{v}_1 + \dots + (kc_r)\mathbf{v}_r \in W \ \ \mathsf{L} \ \ \mathsf{OK}.$

- (b) $W \ni v_i$ に注意すると、 $W' \subset V$: 部分空間かつ $v_1, \ldots, v_r \in W'$
- $\Rightarrow c_1 \mathbb{v}_1 + \dots + c_r \mathbb{v}_r \in W' \Rightarrow W = \operatorname{Span}\{\mathbb{v}_1, \dots, \mathbb{v}_r\} \subset W'.$
 - ▶ 教 p.171 例 20, pp.172–173 練習問題 4.3 を各自みておく.

4.4 1次独立性

V:線形空間.

定義(1次独立,1次従属)

 $\mathbb{V}_1, \dots, \mathbb{V}_r \in V$ が $\underline{1$ 次独立</u> であるとは, $k_1, \dots, k_r \in \mathbb{R}$ に対して, $k_1 \mathbb{V}_1 + \dots + k_r \mathbb{V}_r = 0 \Rightarrow k_1 = \dots = k_r = 0$ をみたすこと.そうでないとき, $\underline{1}$ 次従属 という.

注意

注意

1次従属であるとは,

$$\overline{k_1 \mathbb{V}_1 + \cdots + k_r} \mathbb{V}_r = \mathbb{O}$$
 かつ $(k_1, \ldots, k_r) \neq (0, \ldots, 0)$ なる $k_1, \ldots, k_r \in \mathbb{R}$ が存在すること。
すなわち、 $\mathbb{V}_1, \ldots, \mathbb{V}_r$ が "1 次の関係式" をもつこと。

例

$$\mathbb{V}_1 = (2, -1, 0, 3), \mathbb{V}_2 = (1, 2, 5, -1), \mathbb{V}_3 = (7, -1, 5, 8) \in \mathbb{R}^4$$
 は 1 次従属.
 :: $3\mathbb{V}_1 + \mathbb{V}_2 - \mathbb{V}_3 = (0, 0, 0, 0) = 0$.

例

$$\mathbb{P}_1 = 1 - x$$
, $\mathbb{P}_2 = 5 + 3x - 2x^2$, $\mathbb{P}_3 = 1 + 3x - x^2 \in \mathbb{R}[x]$ は 1 次従属.

$$\therefore 3\mathbb{p}_1 - \mathbb{p}_2 + 2\mathbb{p}_3 = 0.$$

例

$$i = (1,0,0)$$
, $j = (0,1,0)$, $k = (0,0,1) \in \mathbb{R}^3$ は 1 次独立.

:
$$k_1 i + k_2 j + k_3 k = 0 \Rightarrow (k_1, k_2, k_3) = 0 \Rightarrow k_1 = k_2 = k_3 = 0.$$

例

$$\mathbf{v}_1 = (1, -2, 3), \ \mathbf{v}_2 = (5, 6, -1), \ \mathbf{v}_3 = (3, 2, 1) \in \mathbb{R}^3 \ l \mathbf{t}$$

1次独立か?1次従属か?

 k_1 \mathbb{V}_1+k_2 \mathbb{V}_2+k_3 $\mathbb{V}_3=0$ とする. つまり, $(k_1+5k_2+3k_3,-2k_1+6k_2+2k_3,3k_1-k_2+k_3)=(0,0,0)$ であり,連立 1 次方程式

$$\begin{cases} k_1 + 5k_2 + 3k_3 = 0 \\ -2k_1 + 6k_2 + 2k_3 = 0 \\ 3k_1 - k_2 + k_3 = 0 \end{cases}$$

を解くと, $(k_1,k_2,k_3)=(-\frac{1}{2}t,-\frac{1}{2}t,t)$ $(t\in\mathbb{R})$. よって, $\mathbb{V}_1,\mathbb{V}_2,\mathbb{V}_3$ は 1 次従属.

注意

 $\mathbb{V}_1,\ldots,\mathbb{V}_r\in V$ が"1 次従属"

$$\iff \exists (k_1,\ldots,k_r) \neq (0,\ldots,0) \text{ s.t. } k_1 \mathbb{V}_1 + \cdots + k_r \mathbb{V}_r = 0.$$

よって、 $k_1 \neq 0$ とすると、これは

$$\mathbb{V}_1 = \left(-\frac{k_2}{k_1}\right) \mathbb{V}_2 + \dots + \left(-\frac{k_r}{k_1}\right) \mathbb{V}_r$$

 v_1 が v_2, \dots, v_r の 1 次結合でかけることをあらわしている.

定理6

 $v_1, \ldots, v_r \in \mathbb{R}^n$. $r > n \Rightarrow v_1, \ldots, v_r$ は 1 次従属.

(証明) $v_i = (v_{i1}, \dots, v_{in})$ $(i = 1, \dots, r)$ として, $k_1 v_1 + \dots + k_r v_r = 0$ を考えると,方程式

$$\begin{pmatrix} v_{11} & \cdots & v_{r1} \\ \vdots & \ddots & \vdots \\ v_{1n} & \cdots & v_{rn} \end{pmatrix} \begin{pmatrix} k_1 \\ \vdots \\ k_r \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

をえるが、未知数の数 = r > n = 方程式の数より、 $(k_1, \ldots, k_r) \neq (0, \ldots, 0)$ なる解をもつ. (教 p.31 定理 1)