はじめに (線形代数 IIA)

線形代数Ⅱ = 線形代数Ⅰのつづき

教科書 「やさしい線形代数,H. アントン著,山下純一訳」現代数学社

講義の情報 http://mathweb.sc.niigata-u.ac.jp/~hoshi/teaching-j.html

シラバス LINK

- ▶ ノートを取りながら講義を聴くこと. (ノートを回収して確認する可能性があります)
- ▶ 講義 → 小テスト (理解度確認テスト, 学務情報システム内)

例

$$\begin{cases} 2x_1 + 2x_2 - x_3 & + x_5 = 0 \\ -x_1 - x_2 + 2x_3 - 3x_4 + x_5 = 0 \\ x_1 + x_2 - 2x_3 & - x_5 = 0 \\ x_3 + x_4 + x_5 = 0 \end{cases}$$

の解空間 W の次元をもとめる.

$$\begin{cases} 2x_1 + 2x_2 - x_3 & + x_5 = 0 \\ -x_1 - x_2 + 2x_3 - 3x_4 + x_5 = 0 \\ x_1 + x_2 - 2x_3 & - x_5 = 0 \\ x_3 + x_4 + x_5 = 0 \end{cases}$$

の解空間Wの次元をもとめる。解は,

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} -s - t \\ s \\ -t \\ 0 \\ t \end{pmatrix} = s \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} -1 \\ 0 \\ -1 \\ 0 \\ 1 \end{pmatrix} = s v_1 + t v_2.$$

$$\begin{cases} 2x_1 + 2x_2 - x_3 & + x_5 = 0 \\ -x_1 - x_2 + 2x_3 - 3x_4 + x_5 = 0 \\ x_1 + x_2 - 2x_3 & - x_5 = 0 \\ x_3 + x_4 + x_5 = 0 \end{cases}$$

の解空間Wの次元をもとめる。解は,

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} -s - t \\ s \\ -t \\ 0 \\ t \end{pmatrix} = s \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} -1 \\ 0 \\ -1 \\ 0 \\ 1 \end{pmatrix} = s \, \mathbb{v}_1 + t \, \mathbb{v}_2.$$

 $W = \operatorname{Span}\{v_1, v_2\}$ であり,

$$\begin{cases} 2x_1 + 2x_2 - x_3 & + x_5 = 0 \\ -x_1 - x_2 + 2x_3 - 3x_4 + x_5 = 0 \\ x_1 + x_2 - 2x_3 & - x_5 = 0 \\ x_3 + x_4 + x_5 = 0 \end{cases}$$

の解空間 W の次元をもとめる、解は、

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} -s - t \\ s \\ -t \\ 0 \\ t \end{pmatrix} = s \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} -1 \\ 0 \\ -1 \\ 0 \\ 1 \end{pmatrix} = s \, \mathbb{v}_1 + t \, \mathbb{v}_2.$$

 $W = \operatorname{Span}\{v_1, v_2\}$ \mathcal{C} \mathfrak{b} \mathfrak{b} ,

 $k_1 v_1 + k_2 v_2 = 0 \Rightarrow k_1 = k_2 = 0$ より、 v_1, v_2 は1次独立.

$$\begin{cases} 2x_1 + 2x_2 - x_3 & + x_5 = 0 \\ -x_1 - x_2 + 2x_3 - 3x_4 + x_5 = 0 \\ x_1 + x_2 - 2x_3 & - x_5 = 0 \\ x_3 + x_4 + x_5 = 0 \end{cases}$$

の解空間Wの次元をもとめる。解は,

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} -s - t \\ s \\ -t \\ 0 \\ t \end{pmatrix} = s \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} -1 \\ 0 \\ -1 \\ 0 \\ 1 \end{pmatrix} = s \, \mathbb{v}_1 + t \, \mathbb{v}_2.$$

 $W = \operatorname{Span}\{v_1, v_2\}$ \mathcal{T} \mathcal{T} \mathcal{T}

 $k_1 \mathbb{V}_1 + k_2 \mathbb{V}_2 = \mathfrak{o} \Rightarrow k_1 = k_2 = 0$ より、 $\mathbb{V}_1, \mathbb{V}_2$ は1次独立.

 $\therefore v_1, v_2$ は W の基底.

$$\begin{cases} 2x_1 + 2x_2 - x_3 & + x_5 = 0 \\ -x_1 - x_2 + 2x_3 - 3x_4 + x_5 = 0 \\ x_1 + x_2 - 2x_3 & - x_5 = 0 \\ x_3 + x_4 + x_5 = 0 \end{cases}$$

の解空間Wの次元をもとめる.解は,

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} -s - t \\ s \\ -t \\ 0 \\ t \end{pmatrix} = s \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} -1 \\ 0 \\ -1 \\ 0 \\ 1 \end{pmatrix} = s \, \mathbb{v}_1 + t \, \mathbb{v}_2.$$

 $W = \operatorname{Span}\{v_1, v_2\}$ \mathcal{T} \mathcal{T} \mathcal{T}

 $k_1 \mathbb{V}_1 + k_2 \mathbb{V}_2 = 0 \Rightarrow k_1 = k_2 = 0$ より, $\mathbb{V}_1, \mathbb{V}_2$ は1次独立.

- $\therefore V_1, V_2$ は W の基底.
- \therefore dim W=2.

V:線形空間, $\dim V = n$.

(a) $\mathbb{V}_1, \ldots, \mathbb{V}_n \in V$ が 1 次独立 $\Rightarrow \mathbb{V}_1, \ldots, \mathbb{V}_n$ は V の基底;

V:線形空間, dim V = n.

- (a) $v_1, \ldots, v_n \in V$ が 1 次独立 $\Rightarrow v_1, \ldots, v_n$ は V の基底;
- (b) $V = \operatorname{Span}\{\mathbb{V}_1, \dots, \mathbb{V}_n\} \Rightarrow \mathbb{V}_1, \dots, \mathbb{V}_n$ は V の基底;

- V:線形空間, dim V = n.
- (a) $v_1, \ldots, v_n \in V$ が 1 次独立 $\Rightarrow v_1, \ldots, v_n$ は V の基底;
- (b) $V = \operatorname{Span}\{v_1, \dots, v_n\} \Rightarrow v_1, \dots, v_n$ は V の基底;
- (c) v_1, \ldots, v_r が 1 次独立 $(r < n) \Rightarrow ベクトル <math>v_{r+1}, \ldots, v_n$ を追加して、V の基底 $v_1, \ldots, v_r, v_{r+1}, \ldots, v_n$ を構成できる. (基底の延長 という)

星 明考 (新潟大学理学部数学プログラム)

- V:線形空間, $\dim V=n$.
- (a) $\mathbb{V}_1, \ldots, \mathbb{V}_n \in V$ が 1 次独立 $\Rightarrow \mathbb{V}_1, \ldots, \mathbb{V}_n$ は V の基底;
- (b) $V = \text{Span}\{v_1, \dots, v_n\} \Rightarrow v_1, \dots, v_n$ は V の基底;
- (c) v_1, \ldots, v_r が 1 次独立 $(r < n) \Rightarrow ベクトル <math>v_{r+1}, \ldots, v_n$ を追加して, V の基底 $\mathbb{V}_1, \ldots, \mathbb{V}_r, \mathbb{V}_{r+1}, \ldots, \mathbb{V}_n$ を構成できる. (基底の延長 という)

(証明) (a) $V = \text{Span}\{v_1, \ldots, v_n\}$ を示す.

- V:線形空間, $\dim V=n$.
- (a) $v_1, \ldots, v_n \in V$ が 1 次独立 $\Rightarrow v_1, \ldots, v_n$ は V の基底;
- (b) $V = \text{Span}\{v_1, \dots, v_n\} \Rightarrow v_1, \dots, v_n$ は V の基底;
- (c) v_1, \ldots, v_r が 1 次独立 $(r < n) \Rightarrow ベクトル <math>v_{r+1}, \ldots, v_n$ を追加して, V の基底 $\mathbb{V}_1, \ldots, \mathbb{V}_r, \mathbb{V}_{r+1}, \ldots, \mathbb{V}_n$ を構成できる. (基底の延長 という)

(証明) (a) $V = \operatorname{Span}\{v_1, \ldots, v_n\}$ を示す. (\(\to\)) は OK.

- V:線形空間, $\dim V=n$.
- (a) $v_1, \ldots, v_n \in V$ が 1 次独立 $\Rightarrow v_1, \ldots, v_n$ は V の基底;
- (b) $V = \operatorname{Span}\{v_1, \dots, v_n\} \Rightarrow v_1, \dots, v_n$ は V の基底;
- (c) v_1, \ldots, v_r が 1 次独立 $(r < n) \Rightarrow ベクトル <math>v_{r+1}, \ldots, v_n$ を追加して, V の基底 $\mathbb{V}_1, \ldots, \mathbb{V}_r, \mathbb{V}_{r+1}, \ldots, \mathbb{V}_n$ を構成できる. (基底の延長 という)

(証明) (a) $V = \operatorname{Span}\{v_1, \dots, v_n\}$ を示す. (\supset) は OK. (\supseteq) と仮定 (\cup , 矛盾を導く)

- V:線形空間, dim V = n.
- (a) $v_1, \ldots, v_n \in V$ が 1 次独立 $\Rightarrow v_1, \ldots, v_n$ は V の基底;
- (b) $V = \operatorname{Span}\{v_1, \dots, v_n\} \Rightarrow v_1, \dots, v_n$ は V の基底;
- (c) v_1, \ldots, v_r が 1 次独立 $(r < n) \Rightarrow ベクトル <math>v_{r+1}, \ldots, v_n$ を追加して、V の基底 $v_1, \ldots, v_r, v_{r+1}, \ldots, v_n$ を構成できる. (基底の延長 という)

(証明) (a) $V = \operatorname{Span}\{\mathbb{v}_1, \dots, \mathbb{v}_n\}$ を示す. (\supset) は OK. (\supsetneq) と仮定 (\cup , 矛盾を導く) $\Rightarrow \exists \mathbb{v} \in V$ s.t. $\mathbb{v} \not\in \operatorname{Span}\{\mathbb{v}_1, \dots, \mathbb{v}_n\}$

- V:線形空間, $\dim V=n$.
- (a) $v_1, \ldots, v_n \in V$ が 1 次独立 $\Rightarrow v_1, \ldots, v_n$ は V の基底;
- (b) $V = \operatorname{Span}\{v_1, \dots, v_n\} \Rightarrow v_1, \dots, v_n$ は V の基底;
- (c) v_1, \ldots, v_r が 1 次独立 $(r < n) \Rightarrow ベクトル <math>v_{r+1}, \ldots, v_n$ を追加して, V の基底 $\mathbb{V}_1, \ldots, \mathbb{V}_r, \mathbb{V}_{r+1}, \ldots, \mathbb{V}_n$ を構成できる. (基底の延長 という)

(証明) (a) $V = \operatorname{Span}\{v_1, \ldots, v_n\}$ を示す. (\(\to\)) は OK. (\(\to\)) と仮定 (し, 矛盾を導く) $\Rightarrow \exists v \in V$ s.t. $v \notin \operatorname{Span}\{v_1, \ldots, v_n\} \Rightarrow v, v_1, \ldots, v_n$ は 1次独立

- V:線形空間, $\dim V = n$.
- (a) $v_1, \ldots, v_n \in V$ が 1 次独立 $\Rightarrow v_1, \ldots, v_n$ は V の基底;
- (b) $V = \operatorname{Span}\{v_1, \dots, v_n\} \Rightarrow v_1, \dots, v_n$ は V の基底;
- (c) v_1, \ldots, v_r が 1 次独立 $(r < n) \Rightarrow ベクトル <math>v_{r+1}, \ldots, v_n$ を追加して、V の基底 $v_1, \ldots, v_r, v_{r+1}, \ldots, v_n$ を構成できる. (基底の延長 という)

(証明) (a) $V = \operatorname{Span}\{\mathbb{v}_1, \dots, \mathbb{v}_n\}$ を示す. (\supset) は OK. (\supsetneq) と仮定 (\cup , 矛盾を導く) $\Rightarrow \exists \mathbb{v} \in V$ s.t. $\mathbb{v} \not\in \operatorname{Span}\{\mathbb{v}_1, \dots, \mathbb{v}_n\} \Rightarrow \mathbb{v}, \mathbb{v}_1, \dots, \mathbb{v}_n$ は 1 次独立 \Rightarrow 定理 7 (n+1 個以上のベクトルは 1 次従属) に矛盾.

- V:線形空間, $\dim V=n$.
- (a) $v_1, \ldots, v_n \in V$ が 1 次独立 $\Rightarrow v_1, \ldots, v_n$ は V の基底;
- (b) $V = \operatorname{Span}\{v_1, \dots, v_n\} \Rightarrow v_1, \dots, v_n$ は V の基底;
- (c) v_1, \ldots, v_r が 1 次独立 $(r < n) \Rightarrow ベクトル <math>v_{r+1}, \ldots, v_n$ を追加して, V の基底 $\mathbb{V}_1, \ldots, \mathbb{V}_r, \mathbb{V}_{r+1}, \ldots, \mathbb{V}_n$ を構成できる. (基底の延長 という)

(証明) (a) $V = \operatorname{Span}\{v_1, \dots, v_n\}$ を示す. (\supset) は OK. (\supseteq) と仮定 (\cup , 矛盾を導く) $\Rightarrow \exists v \in V$ s.t. $v \notin \operatorname{Span}\{v_1, \ldots, v_n\} \Rightarrow v, v_1, \ldots, v_n$ は 1次独立 ⇒ 定理 7(n+1 個以上のベクトルは 1 次従属) に矛盾. (b) _{V1},..., _{Vn} が 1 次独立を示す.

- V:線形空間, $\dim V=n$.
- (a) $v_1, \ldots, v_n \in V$ が 1 次独立 $\Rightarrow v_1, \ldots, v_n$ は V の基底;
- (b) $V = \operatorname{Span}\{v_1, \dots, v_n\} \Rightarrow v_1, \dots, v_n$ は V の基底;
- (c) v_1, \ldots, v_r が 1 次独立 $(r < n) \Rightarrow ベクトル <math>v_{r+1}, \ldots, v_n$ を追加して, V の基底 $\mathbb{V}_1, \ldots, \mathbb{V}_r, \mathbb{V}_{r+1}, \ldots, \mathbb{V}_n$ を構成できる. (基底の延長 という)
- (証明) (a) $V = \operatorname{Span}\{v_1, \dots, v_n\}$ を示す. (\supset) は OK. (\supseteq) と仮定 (\cup , 矛盾を導く) $\Rightarrow \exists v \in V$ s.t. $v \notin \operatorname{Span}\{v_1, \ldots, v_n\} \Rightarrow v, v_1, \ldots, v_n$ は 1次独立 ⇒ 定理 7(n+1 個以上のベクトルは 1 次従属) に矛盾. (b) v_1, \ldots, v_n が 1 次独立を示す. v_1, \ldots, v_n が 1 次従属と仮定 (し, 矛盾 を導く).

- V:線形空間, $\dim V=n$.
- (a) $v_1, \ldots, v_n \in V$ が 1 次独立 $\Rightarrow v_1, \ldots, v_n$ は V の基底;
- (b) $V = \operatorname{Span}\{v_1, \dots, v_n\} \Rightarrow v_1, \dots, v_n$ は V の基底;
- (c) v_1, \ldots, v_r が 1 次独立 $(r < n) \Rightarrow ベクトル <math>v_{r+1}, \ldots, v_n$ を追加して, V の基底 $\mathbb{V}_1, \ldots, \mathbb{V}_r, \mathbb{V}_{r+1}, \ldots, \mathbb{V}_n$ を構成できる. (基底の延長 という)
- (証明) (a) $V = \operatorname{Span}\{v_1, \dots, v_n\}$ を示す. (\supset) は OK. (\supseteq) と仮定 (\cup , 矛盾を導く) $\Rightarrow \exists v \in V$ s.t. $v \notin \operatorname{Span}\{v_1, \ldots, v_n\} \Rightarrow v, v_1, \ldots, v_n$ は 1 次独立 \Rightarrow 定理 7 (n+1 個以上のベクトルは 1 次従属) に矛盾. (b) $\mathbb{V}_1, \ldots, \mathbb{V}_n$ が 1 次独立を示す、 $\mathbb{V}_1, \ldots, \mathbb{V}_n$ が 1 次従属と仮定 (し、矛盾 を導く). $\mathbb{V}_1, \ldots, \mathbb{V}_n$ の中で、1 次独立な最大個数を r(< n) とし、(必要 ならば入れ替えて) v_1, \ldots, v_r を 1 次独立とする

- V:線形空間, $\dim V=n$.
- (a) $v_1, \ldots, v_n \in V$ が 1 次独立 $\Rightarrow v_1, \ldots, v_n$ は V の基底;
- (b) $V = \operatorname{Span}\{v_1, \dots, v_n\} \Rightarrow v_1, \dots, v_n$ は V の基底;
- (c) v_1, \ldots, v_r が 1 次独立 $(r < n) \Rightarrow ベクトル <math>v_{r+1}, \ldots, v_n$ を追加して, V の基底 $\mathbb{V}_1, \ldots, \mathbb{V}_r, \mathbb{V}_{r+1}, \ldots, \mathbb{V}_n$ を構成できる. (基底の延長 という)
- (証明) (a) $V = \operatorname{Span}\{v_1, \dots, v_n\}$ を示す. (\supset) は OK. (\supseteq) と仮定 (\cup , 矛盾を導く) $\Rightarrow \exists v \in V$ s.t. $v \notin \operatorname{Span}\{v_1, \ldots, v_n\} \Rightarrow v, v_1, \ldots, v_n$ は 1 次独立 \Rightarrow 定理 7 (n+1 個以上のベクトルは 1 次従属) に矛盾. (b) v_1, \ldots, v_n が 1 次独立を示す. v_1, \ldots, v_n が 1 次従属と仮定 (し, 矛盾 を導く). $\mathbb{V}_1, \ldots, \mathbb{V}_n$ の中で、1 次独立な最大個数を r(< n) とし、(必要 ならば入れ替えて) v_1, \ldots, v_r を 1 次独立とする \Rightarrow 残りの v_{r+1}, \ldots, v_n $\in \operatorname{Span}\{v_1,\ldots,v_r\}$

- V:線形空間, $\dim V=n$.
- (a) $v_1, \ldots, v_n \in V$ が 1 次独立 $\Rightarrow v_1, \ldots, v_n$ は V の基底;
- (b) $V = \operatorname{Span}\{v_1, \dots, v_n\} \Rightarrow v_1, \dots, v_n$ は V の基底;
- (c) v_1, \ldots, v_r が 1 次独立 $(r < n) \Rightarrow ベクトル <math>v_{r+1}, \ldots, v_n$ を追加して, V の基底 $v_1, \ldots, v_r, v_{r+1}, \ldots, v_n$ を構成できる. (基底の延長 という)
- (証明) (a) $V = \operatorname{Span}\{v_1, \ldots, v_n\}$ を示す. (\(\to\)) は OK. (\(\to\)) と仮定 (し, 矛盾を導く) $\Rightarrow \exists v \in V$ s.t. $v \notin \operatorname{Span}\{v_1, \ldots, v_n\} \Rightarrow v, v_1, \ldots, v_n$ は 1次独立 ⇒ 定理 7 (n + 1 個以上のベクトルは 1 次従属) に矛盾. (b) v_1, \ldots, v_n が 1 次独立を示す. v_1, \ldots, v_n が 1 次従属と仮定 (し, 矛盾 を導く). $\mathbb{V}_1, \ldots, \mathbb{V}_n$ の中で、1 次独立な最大個数を r(< n) とし、(必要 ならば入れ替えて) $\mathbb{V}_1, \ldots, \mathbb{V}_r$ を 1 次独立とする \Rightarrow 残りの $\mathbb{V}_{r+1}, \ldots, \mathbb{V}_n$ $\in \operatorname{Span}\{v_1,\ldots,v_r\} \Rightarrow V = \operatorname{Span}\{v_1,\ldots,v_n\} = \operatorname{Span}\{v_1,\ldots,v_r\}$

- V:線形空間, $\dim V=n$.
- (a) $v_1, \ldots, v_n \in V$ が 1 次独立 $\Rightarrow v_1, \ldots, v_n$ は V の基底;
- (b) $V = \operatorname{Span}\{v_1, \dots, v_n\} \Rightarrow v_1, \dots, v_n$ は V の基底;
- (c) v_1, \ldots, v_r が 1 次独立 $(r < n) \Rightarrow ベクトル <math>v_{r+1}, \ldots, v_n$ を追加して, V の基底 $v_1, \ldots, v_r, v_{r+1}, \ldots, v_n$ を構成できる. (基底の延長 という)
- (証明) (a) $V = \operatorname{Span}\{v_1, \dots, v_n\}$ を示す. (\supset) は OK. (\supseteq) と仮定 (\cup , 矛盾を導く) $\Rightarrow \exists v \in V$ s.t. $v \notin \operatorname{Span}\{v_1, \ldots, v_n\} \Rightarrow v, v_1, \ldots, v_n$ は 1次独立 ⇒ 定理 7 (n + 1 個以上のベクトルは 1 次従属) に矛盾. (b) v_1, \ldots, v_n が 1 次独立を示す. v_1, \ldots, v_n が 1 次従属と仮定 (し, 矛盾 を導く). $\mathbb{V}_1, \ldots, \mathbb{V}_n$ の中で、1 次独立な最大個数を r(< n) とし、(必要 ならば入れ替えて) $\mathbb{V}_1, \ldots, \mathbb{V}_r$ を 1 次独立とする \Rightarrow 残りの $\mathbb{V}_{r+1}, \ldots, \mathbb{V}_n$ $\in \operatorname{Span}\{v_1,\ldots,v_r\} \Rightarrow V = \operatorname{Span}\{v_1,\ldots,v_n\} = \operatorname{Span}\{v_1,\ldots,v_r\} \Rightarrow$ $\mathbb{V}_1,\ldots,\mathbb{V}_r$ は V の基底

- V:線形空間, $\dim V=n$.
- (a) $v_1, \ldots, v_n \in V$ が 1 次独立 $\Rightarrow v_1, \ldots, v_n$ は V の基底;
- (b) $V = \operatorname{Span}\{v_1, \dots, v_n\} \Rightarrow v_1, \dots, v_n$ は V の基底;
- (c) v_1, \ldots, v_r が 1 次独立 $(r < n) \Rightarrow ベクトル <math>v_{r+1}, \ldots, v_n$ を追加して, V の基底 $v_1, \ldots, v_r, v_{r+1}, \ldots, v_n$ を構成できる. (基底の延長 という)
- (証明) (a) $V = \operatorname{Span}\{v_1, \dots, v_n\}$ を示す. (\supset) は OK. (\supseteq) と仮定 (\cup , 矛盾を導く) $\Rightarrow \exists v \in V$ s.t. $v \notin \operatorname{Span}\{v_1, \ldots, v_n\} \Rightarrow v, v_1, \ldots, v_n$ は 1次独立 ⇒ 定理 7 (n + 1 個以上のベクトルは 1 次従属) に矛盾. (b) v_1, \ldots, v_n が 1 次独立を示す. v_1, \ldots, v_n が 1 次従属と仮定 (し, 矛盾 を導く). $\mathbb{V}_1, \ldots, \mathbb{V}_n$ の中で、1 次独立な最大個数を r(< n) とし、(必要 ならば入れ替えて) $\mathbb{V}_1, \ldots, \mathbb{V}_r$ を 1 次独立とする \Rightarrow 残りの $\mathbb{V}_{r+1}, \ldots, \mathbb{V}_n$ $\in \operatorname{Span}\{v_1,\ldots,v_r\} \Rightarrow V = \operatorname{Span}\{v_1,\ldots,v_n\} = \operatorname{Span}\{v_1,\ldots,v_r\} \Rightarrow$ v_1, \ldots, v_r は V の基底 \Rightarrow 定理 8 (基底の個数は一定) に矛盾.

- V:線形空間, $\dim V=n$.
- (a) $v_1, \ldots, v_n \in V$ が 1 次独立 $\Rightarrow v_1, \ldots, v_n$ は V の基底;
- (b) $V = \operatorname{Span}\{v_1, \dots, v_n\} \Rightarrow v_1, \dots, v_n$ は V の基底;
- (c) v_1, \ldots, v_r が 1 次独立 $(r < n) \Rightarrow ベクトル <math>v_{r+1}, \ldots, v_n$ を追加して, V の基底 $\mathbb{V}_1,\ldots,\mathbb{V}_r,\mathbb{V}_{r+1},\ldots,\mathbb{V}_n$ を構成できる.(基底の延長 という)
- (証明) (a) $V = \operatorname{Span}\{v_1, \dots, v_n\}$ を示す. (\supset) は OK. (\supseteq) と仮定 (\cup , 矛盾を導く) $\Rightarrow \exists v \in V$ s.t. $v \notin \operatorname{Span}\{v_1, \ldots, v_n\} \Rightarrow v, v_1, \ldots, v_n$ は 1次独立 ⇒ 定理 7 (n + 1 個以上のベクトルは 1 次従属) に矛盾. (b) v_1, \ldots, v_n が 1 次独立を示す. v_1, \ldots, v_n が 1 次従属と仮定 (し, 矛盾 を導く). $\mathbb{V}_1, \ldots, \mathbb{V}_n$ の中で、1 次独立な最大個数を r(< n) とし、(必要 ならば入れ替えて) $\mathbb{V}_1, \ldots, \mathbb{V}_r$ を 1 次独立とする \Rightarrow 残りの $\mathbb{V}_{r+1}, \ldots, \mathbb{V}_n$ $\in \operatorname{Span}\{v_1,\ldots,v_r\} \Rightarrow V = \operatorname{Span}\{v_1,\ldots,v_n\} = \operatorname{Span}\{v_1,\ldots,v_r\} \Rightarrow$ v_1, \ldots, v_r は V の基底 \Rightarrow 定理 8 (基底の個数は一定) に矛盾.
- (c) $v_{r+1} \notin \operatorname{Span}\{v_1, \ldots, v_r\}$ & \(\nabla \).

- V:線形空間, $\dim V=n$.
- (a) $v_1, \ldots, v_n \in V$ が 1 次独立 $\Rightarrow v_1, \ldots, v_n$ は V の基底;
- (b) $V = \operatorname{Span}\{v_1, \dots, v_n\} \Rightarrow v_1, \dots, v_n$ は V の基底;
- (c) v_1, \ldots, v_r が 1 次独立 $(r < n) \Rightarrow ベクトル <math>v_{r+1}, \ldots, v_n$ を追加して, V の基底 $\mathbb{V}_1,\ldots,\mathbb{V}_r,\mathbb{V}_{r+1},\ldots,\mathbb{V}_n$ を構成できる.(基底の延長 という)
- (証明) (a) $V = \operatorname{Span}\{v_1, \dots, v_n\}$ を示す. (\supset) は OK. (\supseteq) と仮定 (\cup , 矛盾を導く) $\Rightarrow \exists v \in V \text{ s.t. } v \notin \operatorname{Span}\{v_1, \dots, v_n\} \Rightarrow v, v_1, \dots, v_n$ は 1次独立 ⇒ 定理 7 (n + 1 個以上のベクトルは 1 次従属) に矛盾. (b) v_1, \ldots, v_n が 1 次独立を示す. v_1, \ldots, v_n が 1 次従属と仮定 (し, 矛盾 を導く). $\mathbb{V}_1, \ldots, \mathbb{V}_n$ の中で、1 次独立な最大個数を r(< n) とし、(必要 ならば入れ替えて) $\mathbb{V}_1, \ldots, \mathbb{V}_r$ を 1 次独立とする \Rightarrow 残りの $\mathbb{V}_{r+1}, \ldots, \mathbb{V}_n$ $\in \operatorname{Span}\{v_1,\ldots,v_r\} \Rightarrow V = \operatorname{Span}\{v_1,\ldots,v_n\} = \operatorname{Span}\{v_1,\ldots,v_r\} \Rightarrow V = \operatorname{Span}\{v_1,\ldots,v_r\} \Rightarrow$ v_1, \ldots, v_r は V の基底 \Rightarrow 定理 8 (基底の個数は一定) に矛盾.
- (c) $v_{r+1} \notin \operatorname{Span}\{v_1, \ldots, v_r\}$ をとる. v_1, \ldots, v_{r+1} は 1 次独立.

- V:線形空間, $\dim V=n$.
- (a) $v_1, \ldots, v_n \in V$ が 1 次独立 $\Rightarrow v_1, \ldots, v_n$ は V の基底;
- (b) $V = \operatorname{Span}\{v_1, \dots, v_n\} \Rightarrow v_1, \dots, v_n$ は V の基底;
- (c) v_1, \ldots, v_r が 1 次独立 $(r < n) \Rightarrow ベクトル <math>v_{r+1}, \ldots, v_n$ を追加して, V の基底 $\mathbb{V}_1,\ldots,\mathbb{V}_r,\mathbb{V}_{r+1},\ldots,\mathbb{V}_n$ を構成できる.(基底の延長 という)
- (証明) (a) $V = \operatorname{Span}\{v_1, \dots, v_n\}$ を示す. (\supset) は OK. (\supseteq) と仮定 (\cup , 矛盾を導く) $\Rightarrow \exists v \in V \text{ s.t. } v \notin \operatorname{Span}\{v_1, \dots, v_n\} \Rightarrow v, v_1, \dots, v_n$ は 1次独立 ⇒ 定理 7 (n + 1 個以上のベクトルは 1 次従属) に矛盾. (b) v_1, \ldots, v_n が 1 次独立を示す. v_1, \ldots, v_n が 1 次従属と仮定 (し, 矛盾 を導く). v_1,\ldots,v_n の中で、1 次独立な最大個数を r(< n) とし、(必要 ならば入れ替えて) $\mathbb{V}_1, \ldots, \mathbb{V}_r$ を 1 次独立とする \Rightarrow 残りの $\mathbb{V}_{r+1}, \ldots, \mathbb{V}_n$ $\in \operatorname{Span}\{v_1,\ldots,v_r\} \Rightarrow V = \operatorname{Span}\{v_1,\ldots,v_n\} = \operatorname{Span}\{v_1,\ldots,v_r\} \Rightarrow$ v_1, \ldots, v_r は V の基底 \Rightarrow 定理 8 (基底の個数は一定) に矛盾. (c) $v_{r+1} \notin \operatorname{Span}\{v_1, \dots, v_r\}$ をとる. v_1, \dots, v_{r+1} は 1 次独立.

星 明考 (新潟大学理学部数学プログラム)

 $r+1=n \Rightarrow (a)$ より証明終.

- V:線形空間, $\dim V = n$.
- (a) $v_1, \ldots, v_n \in V$ が 1 次独立 $\Rightarrow v_1, \ldots, v_n$ は V の基底;
- (b) $V = \operatorname{Span}\{v_1, \dots, v_n\} \Rightarrow v_1, \dots, v_n$ は V の基底;
- (c) v_1, \ldots, v_r が 1 次独立 $(r < n) \Rightarrow ベクトル <math>v_{r+1}, \ldots, v_n$ を追加して、V の基底 $v_1, \ldots, v_r, v_{r+1}, \ldots, v_n$ を構成できる. (基底の延長 という)
- (証明) (a) $V = \operatorname{Span}\{v_1, \dots, v_n\}$ を示す。 (\supset) は OK. (\supsetneq) と仮定 (\bigcup , 矛盾を導く) $\Rightarrow \exists v \in V$ s.t. $v \notin \operatorname{Span}\{v_1, \dots, v_n\} \Rightarrow v, v_1, \dots, v_n$ は 1 次独立 \Rightarrow 定理 7 (n+1 個以上のベクトルは 1 次従属)に矛盾。 (b) v_1, \dots, v_n が 1 次独立を示す。 v_1, \dots, v_n が 1 次従属と仮定 (\bigcup , 矛盾を導く)。 v_1, \dots, v_n の中で, 1 次独立な最大個数を r (v_1, \dots, v_n の中で, v_1, \dots, v_n を v_2, \dots, v_n を v_3, \dots, v_n を v_1, \dots, v_n を v_2, \dots, v_n を v_3, \dots, v_n v_1, \dots, v_n v_2, \dots, v_n v_3, \dots, v_n v_4, \dots, v_n v_5, \dots, v_n v_7, \dots, v_n と v_7, \dots, v_n を v_7, \dots, v_n と v_7, \dots, v_n を v_7, \dots, v_n と v_7, \dots, v_n を v_7, \dots, v_n と v_7, \dots, v_n と v_7, \dots, v_n を v_7, \dots, v_7 を $v_7, \dots,$
- $r+1=n \Rightarrow (a)$ より証明終. $r+1 < n \Rightarrow$

- V:線形空間, $\dim V=n$.
- (a) $v_1, \ldots, v_n \in V$ が 1 次独立 $\Rightarrow v_1, \ldots, v_n$ は V の基底;
- (b) $V = \operatorname{Span}\{v_1, \dots, v_n\} \Rightarrow v_1, \dots, v_n$ は V の基底;
- (c) v_1, \ldots, v_r が 1 次独立 $(r < n) \Rightarrow ベクトル <math>v_{r+1}, \ldots, v_n$ を追加して, V の基底 $v_1, \ldots, v_r, v_{r+1}, \ldots, v_n$ を構成できる. (基底の延長 という)
- (証明) (a) $V = \operatorname{Span}\{v_1, \dots, v_n\}$ を示す. (\supset) は OK. (\supseteq) と仮定 (\cup , 矛盾を導く) $\Rightarrow \exists v \in V$ s.t. $v \notin \operatorname{Span}\{v_1, \ldots, v_n\} \Rightarrow v, v_1, \ldots, v_n$ は 1 次独立 ⇒ 定理 7 (n + 1 個以上のベクトルは 1 次従属) に矛盾. (b) v_1, \ldots, v_n が 1 次独立を示す、 v_1, \ldots, v_n が 1 次従属と仮定 (し,矛盾 を導く). $\mathbb{V}_1, \ldots, \mathbb{V}_n$ の中で、1 次独立な最大個数を r(< n) とし、(必要 ならば入れ替えて) v_1, \ldots, v_r を 1 次独立とする \Rightarrow 残りの v_{r+1}, \ldots, v_n $\in \operatorname{Span}\{v_1,\ldots,v_r\} \Rightarrow V = \operatorname{Span}\{v_1,\ldots,v_n\} = \operatorname{Span}\{v_1,\ldots,v_r\} \Rightarrow$ v_1, \ldots, v_r は V の基底 \Rightarrow 定理 8 (基底の個数は一定) に矛盾. (c) $v_{r+1} \notin \operatorname{Span}\{v_1, \ldots, v_r\}$ をとる. v_1, \ldots, v_{r+1} は 1 次独立.

星 明考 (新潟大学理学部数学プログラム)

していけば.

 $r+1=n \Rightarrow (a)$ より証明終. $r+1 < n \Rightarrow v_{r+2}$ を加え、同様に繰り返

- V:線形空間, $\dim V = n$.
- (a) $v_1, \ldots, v_n \in V$ が 1 次独立 $\Rightarrow v_1, \ldots, v_n$ は V の基底;
- (b) $V = \operatorname{Span}\{v_1, \dots, v_n\} \Rightarrow v_1, \dots, v_n$ は V の基底;
- (c) v_1, \ldots, v_r が 1 次独立 $(r < n) \Rightarrow ベクトル <math>v_{r+1}, \ldots, v_n$ を追加して、V の基底 $v_1, \ldots, v_r, v_{r+1}, \ldots, v_n$ を構成できる. (基底の延長 という)

(証明) (a) $V = \operatorname{Span}\{v_1, \ldots, v_n\}$ を示す. (\(\to\)) は OK. (\(\to\)) と仮定 (し, 矛盾を導く) $\Rightarrow \exists v \in V$ s.t. $v \notin \operatorname{Span}\{v_1, \ldots, v_n\} \Rightarrow v, v_1, \ldots, v_n$ は 1 次独立 \Rightarrow 定理 7 (n+1 個以上のベクトルは 1 次従属) に矛盾. (b) v_1,\ldots,v_n が 1 次独立を示す、 v_1,\ldots,v_n が 1 次従属と仮定 (し,矛盾 を導く). $\mathbb{V}_1, \ldots, \mathbb{V}_n$ の中で、1 次独立な最大個数を r(< n) とし、(必要 ならば入れ替えて) v_1, \ldots, v_r を 1 次独立とする \Rightarrow 残りの v_{r+1}, \ldots, v_n $\in \operatorname{Span}\{v_1,\ldots,v_r\} \Rightarrow V = \operatorname{Span}\{v_1,\ldots,v_n\} = \operatorname{Span}\{v_1,\ldots,v_r\} \Rightarrow V = \operatorname{Span}\{v_1,\ldots,v_r\} \Rightarrow$ v_1, \ldots, v_r は V の基底 \Rightarrow 定理 8 (基底の個数は一定) に矛盾. (c) $v_{r+1} \notin \operatorname{Span}\{v_1, \ldots, v_r\}$ をとる. v_1, \ldots, v_{r+1} は 1 次独立. $r+1=n \Rightarrow (a)$ より証明終. $r+1 < n \Rightarrow v_{r+2}$ を加え、同様に繰り返 していけば、 $v_1, \ldots, v_{r+k} = v_n$ は 1 次独立で、(a) より証明終.

4.6 行列の行空間と列空間;階数;基底の構成

4.6 行列の行空間と列空間;階数;基底の構成

$$m \times n$$
 行列 $A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$ に対して、

4.6 行列の行空間と列空間;階数;基底の構成

$$m \times n$$
 行列 $A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$ に対して、 $\mathbf{r}_1 = (a_{11}, \dots, a_{1n}), \dots, \mathbf{r}_m = (a_{m1}, \dots, a_{mn})$ を A の 行ベクトル、

$$m \times n$$
 行列 $A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$ に対して、
$$\mathbf{r}_1 = (a_{11}, \dots, a_{1n}), \dots, \mathbf{r}_m = (a_{m1}, \dots, a_{mn}) \ \δ A \ \mathcal{O} \ \underline{\text{行ベクトル}},$$

$$\mathbf{c}_1 = \begin{pmatrix} a_{11} \\ \vdots \\ a_{m1} \end{pmatrix}, \dots, \mathbf{c}_n = \begin{pmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{pmatrix} \δ A \ \mathcal{O} \ \underline{\text{Mベクトル}} \ \¬hermal \ \text{という}.$$

$$m \times n$$
 行列 $A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$ に対して、 $\mathbf{r}_1 = (a_{11}, \dots, a_{1n}), \dots, \mathbf{r}_m = (a_{m1}, \dots, a_{mn})$ を A の 行ベクトル、 $\mathbf{r}_1 = \begin{pmatrix} a_{11} \\ \vdots \\ a_{m1} \end{pmatrix}, \dots, \mathbf{r}_n = \begin{pmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{pmatrix}$ を A の 列ベクトル という、 $R(A) := \operatorname{Span}\{\mathbf{r}_1, \dots, \mathbf{r}_m\} \subset \mathbb{R}^n : A$ の 行空間 (row space)

定義(行空間,列空間)

$$m \times n$$
 行列 $A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$ に対して、 $\mathbf{r}_1 = (a_{11}, \dots, a_{1n}), \dots, \mathbf{r}_m = (a_{m1}, \dots, a_{mn})$ を A の 行ベクトル、 $\mathbf{r}_1 = \begin{pmatrix} a_{11} \\ \vdots \\ a_{m1} \end{pmatrix}, \dots, \mathbf{r}_n = \begin{pmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{pmatrix}$ を A の 列ベクトル という、 $R(A) := \operatorname{Span}\{\mathbf{r}_1, \dots, \mathbf{r}_m\} \subset \mathbb{R}^n : A$ の 行空間 (row space)

 $C(A) := \operatorname{Span}\{\mathbb{C}_1, \dots, \mathbb{C}_n\} \subset \mathbb{R}^m : A \mathcal{O}$ 列空間 (column space).

定義(行空間,列空間)

$$m \times n$$
 行列 $A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$ に対して、 $\mathbf{r}_1 = (a_{11}, \dots, a_{1n}), \dots, \mathbf{r}_m = (a_{m1}, \dots, a_{mn})$ を A の 行ベクトル、 $\mathbf{r}_1 = \begin{pmatrix} a_{11} \\ \vdots \\ a_{m1} \end{pmatrix}, \dots, \mathbf{r}_n = \begin{pmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{pmatrix}$ を A の 列ベクトル という、 $R(A) := \operatorname{Span}\{\mathbf{r}_1, \dots, \mathbf{r}_m\} \subset \mathbb{R}^n : A$ の 行空間 (row space)

 $C(A) := \operatorname{Span}\{\mathfrak{c}_1, \dots, \mathfrak{c}_n\} \subset \mathbb{R}^m : A \mathcal{O}$ 列空間 (column space).

$$A = \begin{pmatrix} 2 & 1 & 0 \\ 3 & -1 & 4 \end{pmatrix}$$
 に対し,

4.6 行列の行空間と列空間;階数;基底の構成

定義 (行空間,列空間)

$$m \times n$$
 行列 $A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$ に対して、 $\mathbf{r}_1 = (a_{11}, \dots, a_{1n}), \dots, \mathbf{r}_m = (a_{m1}, \dots, a_{mn})$ を A の 行ベクトル、 $\mathbf{r}_1 = \begin{pmatrix} a_{11} \\ \vdots \\ a_{m1} \end{pmatrix}, \dots, \mathbf{r}_n = \begin{pmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{pmatrix}$ を A の 列ベクトル という、 $R(A) := \operatorname{Span}\{\mathbf{r}_1, \dots, \mathbf{r}_m\} \subset \mathbb{R}^n : A$ の 行空間 (row space)

 $C(A) := \operatorname{Span}\{\mathbb{C}_1, \dots, \mathbb{C}_n\} \subset \mathbb{R}^m : A \mathcal{O}$ 列空間 (column space).

例

$$A = \begin{pmatrix} 2 & 1 & 0 \\ 3 & -1 & 4 \end{pmatrix}$$
 に対し、 $R(A) = \operatorname{Span}\{\mathbf{r_1}, \mathbf{r_2}\}, \ C(A) = \operatorname{Span}\{\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3\}.$

行列 A を行基本変形しても、行空間 R(A) は変化しない.

行列 A を行基本変形しても、行空間 R(A) は変化しない.

i.e. $A \to B$: 行基本変形 $\Rightarrow R(A) = R(B)$.

行列 A を行基本変形しても、行空間 R(A) は変化しない.

i.e. $A \to B$: 行基本変形 $\Rightarrow R(A) = R(B)$.

行列 A を行基本変形しても、行空間 R(A) は変化しない.

i.e. $A \to B$: 行基本変形 $\Rightarrow R(A) = R(B)$.

(証明) 行基本変形

1. ある行を $k \ (\neq 0)$ 倍する

行列 A を行基本変形しても、行空間 R(A) は変化しない.

i.e. $A \to B$: 行基本変形 $\Rightarrow R(A) = R(B)$.

- 1. ある行を k (≠ 0) 倍する
- 2. 2つの行を交換

行列 A を行基本変形しても、行空間 R(A) は変化しない.

i.e. $A \to B$: 行基本変形 $\Rightarrow R(A) = R(B)$.

- 1. ある行を $k \neq 0$ 倍する
- 2. 2 つの行を交換
- 3. ある行に別の行のk倍を加えるのうち,

行列 A を行基本変形しても、行空間 R(A) は変化しない.

i.e. $A \to B$: 行基本変形 $\Rightarrow R(A) = R(B)$.

- 1. ある行を k (≠ 0) 倍する
- 2. 2 つの行を交換
- 3. ある行に別の行の *k* 倍を加える
- のうち, 2. はR(A) = R(B)となる.

行列 A を行基本変形しても、行空間 R(A) は変化しない.

i.e. $A \to B$: 行基本変形 $\Rightarrow R(A) = R(B)$.

- 1. ある行を k (≠ 0) 倍する
- 2. 2 つの行を交換
- ある行に別の行の k 倍を加える
- のうち, 2. は R(A) = R(B) となる. 1. または 3. で A の行ベクトル
- $\mathbb{r}_1, \dots, \mathbb{r}_m$ から B の行ベクトル $\mathbb{r}'_1, \dots, \mathbb{r}'_m$ がえられたとすると,

行列 A を行基本変形しても、行空間 R(A) は変化しない.

i.e. $A \to B$: 行基本変形 $\Rightarrow R(A) = R(B)$.

(証明) 行基本変形

- 1. ある行を k (≠ 0) 倍する
- 2. 2 つの行を交換
- 3. ある行に別の行の *k* 倍を加える
- のうち, 2. は R(A) = R(B) となる. 1. または 3. で A の行ベクトル

 $\mathbb{r}_1, \ldots, \mathbb{r}_m$ から B の行ベクトル $\mathbb{r}'_1, \ldots, \mathbb{r}'_m$ がえられたとすると,

 $R(B) = \operatorname{Span}\{\mathfrak{r}'_1, \dots, \mathfrak{r}'_m\} \subset R(A) = \operatorname{Span}\{\mathfrak{r}_1, \dots, \mathfrak{r}_m\}.$

行列 A を行基本変形しても、行空間 R(A) は変化しない.

i.e. $A \to B$: 行基本変形 $\Rightarrow R(A) = R(B)$.

- 1. ある行を k (≠ 0) 倍する
- 2. 2 つの行を交換
- ある行に別の行の k 倍を加える
- のうち, 2. は R(A) = R(B) となる. 1. または 3. で A の行ベクトル
- $\mathbb{F}_1, \dots, \mathbb{F}_m$ から B の行ベクトル $\mathbb{F}'_1, \dots, \mathbb{F}'_m$ がえられたとすると,
- $R(B) = \operatorname{Span}\{\mathfrak{r}'_1, \dots, \mathfrak{r}'_m\} \subset R(A) = \operatorname{Span}\{\mathfrak{r}_1, \dots, \mathfrak{r}_m\}. A \to B$ のとき
- $B \to A$ (逆の基本変形) とできるので,

行列 A を行基本変形しても、行空間 R(A) は変化しない.

i.e. $A \to B$: 行基本変形 $\Rightarrow R(A) = R(B)$.

(証明) 行基本変形

- 1. ある行を k (≠ 0) 倍する
- 2. 2 つの行を交換
- ある行に別の行の k 倍を加える
- のうち, 2. は R(A) = R(B) となる. 1. または 3. で A の行ベクトル
- $\mathbb{r}_1, \dots, \mathbb{r}_m$ から B の行ベクトル $\mathbb{r}'_1, \dots, \mathbb{r}'_m$ がえられたとすると,
- $R(B) = \operatorname{Span}\{\mathfrak{r}'_1, \ldots, \mathfrak{r}'_m\} \subset R(A) = \operatorname{Span}\{\mathfrak{r}_1, \ldots, \mathfrak{r}_m\}. A \to B$ のとき
- $B \to A$ (逆の基本変形) とできるので、 $R(A) \subset R(B)$ も従う.

星 明考 (新潟大学理学部数学プログラム)

行列 A を行基本変形しても、行空間 R(A) は変化しない.

i.e. $A \to B$: 行基本変形 $\Rightarrow R(A) = R(B)$.

(証明) 行基本変形

- 1. ある行を k (≠ 0) 倍する
- 2. 2つの行を交換
- 3. ある行に別の行の k 倍を加える
- のうち、2. は R(A)=R(B) となる.1. または 3. で A の行ベクトル

 $\mathbb{r}_1, \dots, \mathbb{r}_m$ から B の行ベクトル $\mathbb{r}'_1, \dots, \mathbb{r}'_m$ がえられたとすると,

 $R(B) = \operatorname{Span}\{\mathbf{r}_1', \dots, \mathbf{r}_m'\} \subset R(A) = \operatorname{Span}\{\mathbf{r}_1, \dots, \mathbf{r}_m\}. \ A \to B \ \mathcal{O}$ とき $B \to A$ (逆の基本変形) とできるので, $R(A) \subset R(B)$ も従う.

定理 11(定理 10 の系)

行列 A のガウス行列の $\mathfrak o$ でない行ベクトル $\mathfrak r_1,\ldots,\mathfrak r_r$ は R(A) の基底.

行列 A を行基本変形しても、行空間 R(A) は変化しない.

i.e. $A \to B$: 行基本変形 $\Rightarrow R(A) = R(B)$.

(証明) 行基本変形

- 1. ある行を $k \neq 0$ 倍する
- 2. 2つの行を交換
- 3. ある行に別の行のk倍を加える
- のうち, 2. はR(A) = R(B)となる. 1. または 3. でAの行ベクトル
- $\mathbf{r}_1, \dots, \mathbf{r}_m$ から B の行ベクトル $\mathbf{r}'_1, \dots, \mathbf{r}'_m$ がえられたとすると,
- $R(B) = \operatorname{Span}\{\mathbf{r}'_1, \dots, \mathbf{r}'_m\} \subset R(A) = \operatorname{Span}\{\mathbf{r}_1, \dots, \mathbf{r}_m\}. \ A \to B \ \mathcal{O} \ \mathcal{E} \ \mathcal{E}$
- $B \to A$ (逆の基本変形) とできるので、 $R(A) \subset R(B)$ も従う.

定理11(定理10の系)

行列 A のガウス行列の $\mathfrak o$ でない行ベクトル $\mathfrak r_1,\ldots,\mathfrak r_r$ は R(A) の基底.

注意

ガウス行列や先頭の1(初1)を復習しておくこと. (教 p.17)

$$\begin{split} V &= \mathrm{Span}\{\mathbb{v}_1, \mathbb{v}_2, \mathbb{v}_3, \mathbb{v}_4\} \subset \mathbb{R}^5, \\ \mathbb{v}_1 &= (1, -2, 0, 0, 3), \ \mathbb{v}_2 = (2, -5, -3, -2, 6), \\ \mathbb{v}_3 &= (0, 5, 15, 10, 0), \ \mathbb{v}_4 = (2, 6, 18, 8, 6) \in \mathbb{R}^5. \end{split}$$

 $V = \operatorname{Span}\{v_1, v_2, v_3, v_4\} \subset \mathbb{R}^5$, $v_1 = (1, -2, 0, 0, 3), v_2 = (2, -5, -3, -2, 6),$ $v_3 = (0, 5, 15, 10, 0), v_4 = (2, 6, 18, 8, 6) \in \mathbb{R}^5.$ V の基底と次元をもとめよ.

$$V = \operatorname{Span}\{\mathbb{v}_1, \mathbb{v}_2, \mathbb{v}_3, \mathbb{v}_4\} \subset \mathbb{R}^5,$$

 $\mathbb{v}_1 = (1, -2, 0, 0, 3), \mathbb{v}_2 = (2, -5, -3, -2, 6),$
 $\mathbb{v}_3 = (0, 5, 15, 10, 0), \mathbb{v}_4 = (2, 6, 18, 8, 6) \in \mathbb{R}^5.$
 V の基底と次元をもとめよ.

$$\overline{A = \begin{pmatrix} 1 & -2 & 0 & 0 & 3 \\ 2 & -5 & -3 & -2 & 6 \\ 0 & 5 & 15 & 10 & 0 \\ 2 & 6 & 18 & 8 & 6 \end{pmatrix}}$$
とすれば、

$$V = \operatorname{Span}\{\mathbb{v}_1, \mathbb{v}_2, \mathbb{v}_3, \mathbb{v}_4\} \subset \mathbb{R}^5,$$

 $\mathbb{v}_1 = (1, -2, 0, 0, 3), \mathbb{v}_2 = (2, -5, -3, -2, 6),$
 $\mathbb{v}_3 = (0, 5, 15, 10, 0), \mathbb{v}_4 = (2, 6, 18, 8, 6) \in \mathbb{R}^5.$
 V の基底と次元をもとめよ.

$$\overline{A = \begin{pmatrix} 1 & -2 & 0 & 0 & 3 \\ 2 & -5 & -3 & -2 & 6 \\ 0 & 5 & 15 & 10 & 0 \\ 2 & 6 & 18 & 8 & 6 \end{pmatrix}}$$
とすれば、 $R(A) = \operatorname{Span}\{\mathbb{v}_1, \mathbb{v}_2, \mathbb{v}_3, \mathbb{v}_4\}.$

$$V = \operatorname{Span}\{v_1, v_2, v_3, v_4\} \subset \mathbb{R}^5$$
, $v_1 = (1, -2, 0, 0, 3), v_2 = (2, -5, -3, -2, 6)$, $v_3 = (0, 5, 15, 10, 0), v_4 = (2, 6, 18, 8, 6) \in \mathbb{R}^5$. V の基底と次元をもとめよ.

$$A = \begin{pmatrix} 1 & -2 & 0 & 0 & 3 \\ 2 & -5 & -3 & -2 & 6 \\ 0 & 5 & 15 & 10 & 0 \\ 2 & 6 & 18 & 8 & 6 \end{pmatrix}$$
とすれば、 $R(A) = \operatorname{Span}\{\mathbb{v}_1, \mathbb{v}_2, \mathbb{v}_3, \mathbb{v}_4\}.$

行基本変形によってガウス行列をもとめると:

$$V = \operatorname{Span}\{v_1, v_2, v_3, v_4\} \subset \mathbb{R}^5$$
, $v_1 = (1, -2, 0, 0, 3)$, $v_2 = (2, -5, -3, -2, 6)$, $v_3 = (0, 5, 15, 10, 0)$, $v_4 = (2, 6, 18, 8, 6) \in \mathbb{R}^5$. V の基底と次元をもとめよ.

$$A = \begin{pmatrix} 1 & -2 & 0 & 0 & 3 \\ 2 & -5 & -3 & -2 & 6 \\ 0 & 5 & 15 & 10 & 0 \\ 2 & 6 & 18 & 8 & 6 \end{pmatrix} とすれば、 $R(A) = \operatorname{Span}\{\mathbb{v}_1, \mathbb{v}_2, \mathbb{v}_3, \mathbb{v}_4\}.$$$

行基本変形によってガウス行列をもとめると:

$$A \to \cdots \to \left(\begin{array}{cccc} 1 & -2 & 0 & 0 & 3 \\ 0 & 1 & 3 & 2 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right).$$

$$V = \operatorname{Span}\{v_1, v_2, v_3, v_4\} \subset \mathbb{R}^5$$
,
 $v_1 = (1, -2, 0, 0, 3), v_2 = (2, -5, -3, -2, 6)$,
 $v_3 = (0, 5, 15, 10, 0), v_4 = (2, 6, 18, 8, 6) \in \mathbb{R}^5$.
 V の基底と次元をもとめよ.

$$A = \begin{pmatrix} 1 & -2 & 0 & 0 & 3 \\ 2 & -5 & -3 & -2 & 6 \\ 0 & 5 & 15 & 10 & 0 \\ 2 & 6 & 18 & 8 & 6 \end{pmatrix} とすれば、 $R(A) = \operatorname{Span}\{\mathbb{v}_1, \mathbb{v}_2, \mathbb{v}_3, \mathbb{v}_4\}.$$$

行基本変形によってガウス行列をもとめると:

$$A o \cdots o \left(egin{array}{cccc} 1 & -2 & 0 & 0 & 3 \\ 0 & 1 & 3 & 2 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array}
ight)$$
. 定理 11 より、

$$V = \operatorname{Span}\{v_1, v_2, v_3, v_4\} \subset \mathbb{R}^5,$$

 $v_1 = (1, -2, 0, 0, 3), v_2 = (2, -5, -3, -2, 6),$
 $v_3 = (0, 5, 15, 10, 0), v_4 = (2, 6, 18, 8, 6) \in \mathbb{R}^5.$
 V の基底と次元をもとめよ.

$$A = \begin{pmatrix} 1 & -2 & 0 & 0 & 3 \\ 2 & -5 & -3 & -2 & 6 \\ 0 & 5 & 15 & 10 & 0 \\ 2 & 6 & 18 & 8 & 6 \end{pmatrix} とすれば、 $R(A) = \operatorname{Span}\{\mathbb{v}_1, \mathbb{v}_2, \mathbb{v}_3, \mathbb{v}_4\}.$$$

行基本変形によってガウス行列をもとめると:

$$A \to \cdots \to \begin{pmatrix} 1 & -2 & 0 & 0 & 3 \\ 0 & 1 & 3 & 2 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
. 定理 11 より、 $V = R(A)$ の基底は、

 $\mathbf{w}_1 = (1, -2, 0, 0, 3), \ \mathbf{w}_2 = (0, 1, 3, 2, 0), \ \mathbf{w}_3 = (0, 0, 1, 1, 0) \ \mathcal{C} \mathcal{B} \mathcal{G},$

$$V = \operatorname{Span}\{v_1, v_2, v_3, v_4\} \subset \mathbb{R}^5$$
, $v_1 = (1, -2, 0, 0, 3), v_2 = (2, -5, -3, -2, 6)$, $v_3 = (0, 5, 15, 10, 0), v_4 = (2, 6, 18, 8, 6) \in \mathbb{R}^5$. V の基底と次元をもとめよ.

$$\overline{A = \begin{pmatrix} 1 & -2 & 0 & 0 & 3 \\ 2 & -5 & -3 & -2 & 6 \\ 0 & 5 & 15 & 10 & 0 \\ 2 & 6 & 18 & 8 & 6 \end{pmatrix}}$$
とすれば、 $R(A) = \operatorname{Span}\{v_1, v_2, v_3, v_4\}.$

行基本変形によってガウス行列をもとめると:

$$A \to \cdots \to \begin{pmatrix} 1 & -2 & 0 & 0 & 3 \\ 0 & 1 & 3 & 2 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
. 定理 11 より, $V = R(A)$ の基底は,

 $\mathbf{w}_1=(1,-2,0,0,3)$, $\mathbf{w}_2=(0,1,3,2,0)$, $\mathbf{w}_3=(0,0,1,1,0)$ であり, $\dim V=3$.