はじめに (線形代数 IIA)

線形代数Ⅱ = 線形代数Ⅰのつづき

教科書 「やさしい線形代数,H. アントン著,山下純一訳」現代数学社

講義の情報 http://mathweb.sc.niigata-u.ac.jp/~hoshi/teaching-j.html

シラバス LINK

- ▶ ノートを取りながら講義を聴くこと. (ノートを回収して確認する可能性があります)
- ▶ 講義 → 小テスト (理解度確認テスト, 学務情報システム内)

$$A = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 3 & 2 & 5 & 1 \\ 0 & 4 & 4 & -4 \end{pmatrix}$$
 の列空間 $C(A)$ の基底を構成せよ.

$$A = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 3 & 2 & 5 & 1 \\ 0 & 4 & 4 & -4 \end{pmatrix}$$
 の列空間 $C(A)$ の基底を構成せよ.

$$A = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 3 & 2 & 5 & 1 \\ 0 & 4 & 4 & -4 \end{pmatrix}$$
 の列空間 $C(A)$ の基底を構成せよ.

前回の行空間 R(A) に対して、 $f \leftrightarrow M$ とする. (転置する)

$$A^t = \begin{pmatrix} 1 & 3 & 0 \\ 0 & 2 & 4 \\ 1 & 5 & 4 \\ 1 & 1 & -4 \end{pmatrix} \rightarrow \cdots \rightarrow \begin{pmatrix} 1 & 3 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 (行基本変形で ガウス行列に)

$$A = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 3 & 2 & 5 & 1 \\ 0 & 4 & 4 & -4 \end{pmatrix}$$
 の列空間 $C(A)$ の基底を構成せよ.

$$A^{t} = \begin{pmatrix} 1 & 3 & 0 \\ 0 & 2 & 4 \\ 1 & 5 & 4 \\ 1 & 1 & -4 \end{pmatrix} \rightarrow \cdots \rightarrow \begin{pmatrix} 1 & 3 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 (行基本変形で ガウス行列に)

 \therefore $(1,3,0),(0,1,2):R(A^t)$ の基底 (前回の定理 11 より)

$$A = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 3 & 2 & 5 & 1 \\ 0 & 4 & 4 & -4 \end{pmatrix}$$
 の列空間 $C(A)$ の基底を構成せよ.

前回の行空間 R(A) に対して、 $f \leftrightarrow M$ とする. (転置する)

$$A^{t} = \begin{pmatrix} 1 & 3 & 0 \\ 0 & 2 & 4 \\ 1 & 5 & 4 \\ 1 & 1 & -4 \end{pmatrix} \rightarrow \cdots \rightarrow \begin{pmatrix} 1 & 3 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 (行基本変形で ガウス行列に)

$$\therefore \ (1,3,0), (0,1,2): R(A^t)$$
の基底 (前回の定理 11 より)

$$\begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} : C(A)$$
 の基底

(証明)
$$R(A) = \operatorname{Span}\{\mathbb{r}_1, \dots, \mathbb{r}_m\}$$
 の基底を $\mathbb{b}_1, \dots, \mathbb{b}_l$

$$(b_i = (b_{i1}, \ldots, b_{in}))$$
 とすれば、

(証明)
$$R(A) = \operatorname{Span}\{\mathbb{r}_1, \dots, \mathbb{r}_m\}$$
 の基底を $\mathbb{b}_1, \dots, \mathbb{b}_l$ ($\mathbb{b}_i = (b_{i1}, \dots, b_{in})$) とすれば、
$$\begin{cases} \mathbb{r}_1 = c_{11}\mathbb{b}_1 + \dots + c_{1l}\mathbb{b}_l \\ \vdots \\ \mathbb{r}_m = c_{m1}\mathbb{b}_1 + \dots + c_{ml}\mathbb{b}_l. \end{cases}$$

(証明)
$$R(A) = \operatorname{Span}\{\mathbb{r}_1, \dots, \mathbb{r}_m\}$$
 の基底を $\mathbb{b}_1, \dots, \mathbb{b}_l$ $\{\mathbb{r}_1 = c_{11}\mathbb{b}_1 + \dots + c_{1l}\mathbb{b}_l : \mathbb{r}_m = c_{m1}\mathbb{b}_1 + \dots + c_{ml}\mathbb{b}_l . \}$ つまり、 $1 \leq \forall j \leq n$ に対して、 $\{a_{1j} = c_{11}b_{1j} + \dots + c_{ml}b_{lj} : \mathbb{c}_{mj} = c_{m1}b_{1j} + \dots + c_{ml}b_{lj} \}$

(証明)
$$R(A) = \operatorname{Span}\{\mathbb{r}_1, \dots, \mathbb{r}_m\}$$
 の基底を $\mathbb{b}_1, \dots, \mathbb{b}_l$ $\mathbb{b}_i = (b_{i1}, \dots, b_{in}))$ とすれば、
$$\begin{cases} \mathbb{r}_1 = c_{11}\mathbb{b}_1 + \dots + c_{1l}\mathbb{b}_l \\ \vdots \\ \mathbb{r}_m = c_{m1}\mathbb{b}_1 + \dots + c_{ml}\mathbb{b}_l. \end{cases}$$
 つまり、 $1 \leq \forall j \leq n$ に対して、
$$\begin{cases} a_{1j} = c_{11}b_{1j} + \dots + c_{1l}b_{lj} \\ \vdots \\ a_{mj} = c_{m1}b_{1j} + \dots + c_{ml}b_{lj} \end{cases}$$
 であり、
$$a_{mj} = c_{m1}b_{1j} + \dots + c_{ml}b_{lj}$$
 に $a_{nj} = b_{nj} \begin{pmatrix} c_{11} \\ \vdots \\ c_{ml} \end{pmatrix} + \dots + b_{nj} \begin{pmatrix} c_{1l} \\ \vdots \\ c_{ml} \end{pmatrix}$ より、

(証明)
$$R(A) = \operatorname{Span}\{\mathbf{r}_1, \dots, \mathbf{r}_m\}$$
 の基底を $\mathbf{b}_1, \dots, \mathbf{b}_l$ $\{\mathbf{r}_1 = c_{11}\mathbf{b}_1 + \dots + c_{1l}\mathbf{b}_l : \mathbf{r}_m = c_{m1}\mathbf{b}_1 + \dots + c_{ml}\mathbf{b}_l. \}$ $\{\mathbf{r}_m = c_{m1}\mathbf{b}_1 + \dots + c_{ml}\mathbf{b}_l. \}$ $\{\mathbf{a}_{1j} = c_{11}b_{1j} + \dots + c_{nl}\mathbf{b}_l. \}$ $\{\mathbf{a}_{1j} = c_{11}b_{1j} + \dots + c_{nl}\mathbf{b}_l. \}$ $\{\mathbf{a}_{mj} = c_{m1}b_{1j} + \dots + c_{ml}\mathbf{b}_{lj}\}$ $\{\mathbf{a}_{mj} = c_{m1}b_{1j} + \dots + c_{ml}\mathbf{b}_{lj}\}$ $\{\mathbf{a}_{mj} = c_{m1}b_{1j} + \dots + c_{ml}\mathbf{b}_{lj}\}$ $\{\mathbf{a}_{mj} = c_{m1}b_{1j} + \dots + c_{ml}\mathbf{b}_{lj}\}$ 以上の議論を $A \to A^t$ とすれば、

(証明)
$$R(A) = \operatorname{Span}\{\mathbb{r}_1, \dots, \mathbb{r}_m\}$$
 の基底を $\mathbb{b}_1, \dots, \mathbb{b}_l$ $\{ \mathbb{r}_1 = c_{11}\mathbb{b}_1 + \dots + c_{1l}\mathbb{b}_l : \mathbb{r}_m = c_{m1}\mathbb{b}_1 + \dots + c_{ml}\mathbb{b}_l . \}$ $\{ \mathbb{r}_1 = c_{11}\mathbb{b}_1 + \dots + c_{ml}\mathbb{b}_l . \}$ $\{ \mathbb{r}_m = c_{m1}\mathbb{b}_1 + \dots + c_{ml}\mathbb{b}_l . \}$ $\{ \mathbb{r}_m = c_{m1}\mathbb{b}_1 + \dots + c_{ml}\mathbb{b}_l . \}$ $\{ \mathbb{r}_m = c_{m1}\mathbb{b}_1 + \dots + c_{ml}\mathbb{b}_l . \}$ $\{ \mathbb{r}_m = c_{m1}\mathbb{b}_1 + \dots + c_{ml}\mathbb{b}_l . \}$ $\{ \mathbb{r}_m = c_{m1}\mathbb{b}_1 + \dots + c_{ml}\mathbb{b}_l . \}$ $\{ \mathbb{r}_m = c_{m1}\mathbb{b}_1 + \dots + c_{ml}\mathbb{b}_l . \}$ $\{ \mathbb{r}_m = c_{m1}\mathbb{b}_1 + \dots + c_{ml}\mathbb{b}_l . \}$ 以上の議論を $A \to A^t$ とすれば、 $\{ \mathbb{r}_m = \mathbb{r}_m = \mathbb{r}_m + \mathbb{r}_m + \mathbb{r}_m = \mathbb{r}_m = \mathbb{r}_m = \mathbb{r}_m + \mathbb{r}_m = \mathbb{r}_m = \mathbb{r}_m + \mathbb{r}_m = \mathbb$

 $\dim R(A) = \dim C(A)$.

(証明)
$$R(A) = \operatorname{Span}\{\mathbb{r}_1, \dots, \mathbb{r}_m\}$$
 の基底を $\mathbb{b}_1, \dots, \mathbb{b}_l$ ($\mathbb{b}_i = (b_{i1}, \dots, b_{in})$) とすれば、
$$\begin{cases} \mathbb{r}_1 = c_{11}\mathbb{b}_1 + \dots + c_{1l}\mathbb{b}_l \\ \vdots \\ \mathbb{r}_m = c_{m1}\mathbb{b}_1 + \dots + c_{ml}\mathbb{b}_l. \end{cases}$$
 つまり、 $1 \leq \forall j \leq n$ に対して、
$$\begin{cases} a_{1j} = c_{11}b_{1j} + \dots + c_{1l}b_{lj} \\ \vdots \\ a_{mj} = c_{m1}b_{1j} + \dots + c_{ml}b_{lj} \end{cases}$$
 であり、
$$a_{mj} = c_{m1}b_{1j} + \dots + c_{ml}b_{lj}$$
 以上の議論を $A \to A^t$ とすれば、

 \therefore dim $R(A) = \dim C(A)$.

 $\dim R(A) = \dim C(A^t) \le \dim R(A^t) = \dim C(A).$

定義(階数)

 $\dim R(A) (= \dim C(A))$ を行列 A の 階数 といい、 $\operatorname{rank}(A)$ とかく.

定義(階数)

 $\dim R(A) (= \dim C(A))$ を行列 A の 階数 といい, $\operatorname{rank}(A)$ とかく.

注意

行列 A の階数 $\operatorname{rank}(A)$ とは、A を行基本変形してガウス行列にしたとき の階段の数(先頭の1,初1の個数)に等しい.

 $A: n \times n$ 行列. 次の (a)~(h) は同値:

(a) A は可逆 (正則);

- (a) A は可逆 (正則);
- (b) Ax = 0 は x = 0 以外の解をもたない;

- (a) A は可逆 (正則);
- (b) Ax = 0 は x = 0 以外の解をもたない;
- (c) A と単位行列 I_n は行同値;

- (a) A は可逆 (正則);
- (b) Ax = 0 は x = 0 以外の解をもたない;
- (c) A と単位行列 I_n は行同値;
- (d) Ax = b は任意の b について解をもつ;

- (a) A は可逆 (正則);
- (b) Ax = 0 は x = 0 以外の解をもたない;
- (c) A と単位行列 I_n は行同値;
- (d) Ax = b は任意の b について解をもつ;
- (e) $\det(A) \neq 0$;

- (a) A は可逆 (正則);
- (b) Ax = 0 は x = 0 以外の解をもたない;
- (c) A と単位行列 I_n は行同値;
- (d) $A_{\mathbb{X}} = \mathbf{b}$ は任意の \mathbf{b} について解をもつ;
- (e) $\det(A) \neq 0$;
- (f) rank(A) = n;

- (a) A は可逆 (正則);
- (b) Ax = 0 は x = 0 以外の解をもたない;
- (c) A と単位行列 I_n は行同値;
- (d) $A_{\mathbb{X}} = \mathbf{b}$ は任意の \mathbf{b} について解をもつ;
- (e) $\det(A) \neq 0$;
- (f) rank(A) = n;
- (q) A の行ベクトル $\mathbf{r}_1, \ldots, \mathbf{r}_n$ は 1 次独立;

- (a) A は可逆 (正則);
- (b) Ax = 0 は x = 0 以外の解をもたない;
- (c) A と単位行列 I_n は行同値;
- (d) Ax = b は任意の b について解をもつ;
- (e) $\det(A) \neq 0$;
- (f) rank(A) = n;
- (q) A の行ベクトル $\mathbb{F}_1, \ldots, \mathbb{F}_n$ は 1 次独立;
- (h) A の列ベクトル $\mathbb{C}_1, \ldots, \mathbb{C}_n$ は 1 次独立;

- (a) A は可逆 (正則);
- (b) Ax = 0 は x = 0 以外の解をもたない;
- (c) A と単位行列 I_n は行同値;
- (d) Ax = b は任意の b について解をもつ;
- (e) $\det(A) \neq 0$;
- (f) rank(A) = n;
- (q) A の行ベクトル $\mathbb{F}_1, \ldots, \mathbb{F}_n$ は 1 次独立;
- (h) A の列ベクトル $\mathbb{C}_1, \ldots, \mathbb{C}_n$ は 1 次独立;
- (c') A を行基本変形で既約ガウス行列にすると単位行列 I_n となる.

 $A: n \times n$ 行列. 次の $(a) \sim (h)$ は同値:

- (a) A は可逆 (正則);
- (b) Ax = 0 は x = 0 以外の解をもたない;
- (c) A と単位行列 I_n は行同値;
- (d) Ax = b は任意の b について解をもつ;
- (e) $\det(A) \neq 0$;
- (f) rank(A) = n;
- (q) A の行ベクトル $\mathbb{F}_1, \ldots, \mathbb{F}_n$ は 1 次独立;
- (h) A の列ベクトル $\mathbb{C}_1, \ldots, \mathbb{C}_n$ は 1 次独立;
- (c') A を行基本変形で既約ガウス行列にすると単位行列 I_n となる.

既約ガウス行列 … 先頭の1の上下が全て $0.(c) \Leftrightarrow (c')$ はOK.

- $A: n \times n$ 行列. 次の $(a) \sim (h)$ は同値:
- (a) A は可逆 (正則);
- (b) Ax = 0 は x = 0 以外の解をもたない;
- (c) A と単位行列 I_n は行同値;
- (d) Ax = b は任意の b について解をもつ;
- (e) $\det(A) \neq 0$;
- (f) rank(A) = n;
- (q) A の行ベクトル $\mathbb{F}_1, \ldots, \mathbb{F}_n$ は 1 次独立;
- (h) A の列ベクトル $\mathbb{C}_1, \ldots, \mathbb{C}_n$ は 1 次独立;
- (c') A を行基本変形で既約ガウス行列にすると単位行列 I_n となる.

既約ガウス行列 … 先頭の1の上下が全て $0.(c) \Leftrightarrow (c')$ はOK.

(証明) $(a) \Leftrightarrow (b) \Leftrightarrow (c) \Leftrightarrow (d)$ は OK. (1.7 節, 定理 13, 教 p.65)

- $A: n \times n$ 行列. 次の $(a) \sim (h)$ は同値:
- (a) A は可逆 (正則);
- (b) Ax = 0 は x = 0 以外の解をもたない;
- (c) A と単位行列 I_n は行同値;
- (d) Ax = b は任意の b について解をもつ;
- (e) $\det(A) \neq 0$;
- (f) rank(A) = n;
- (q) A の行ベクトル $\mathbb{F}_1, \ldots, \mathbb{F}_n$ は 1 次独立;
- (h) A の列ベクトル $\mathbb{C}_1, \ldots, \mathbb{C}_n$ は 1 次独立;
- (c') A を行基本変形で既約ガウス行列にすると単位行列 I_n となる.

既約ガウス行列 \cdots 先頭の1の上下が全て $0.(c) \Leftrightarrow (c')$ はOK.

- (証明) $(a) \Leftrightarrow (b) \Leftrightarrow (c) \Leftrightarrow (d)$ は OK. (1.7 節, 定理 13, 教 p.65)
- $(a) \Leftrightarrow (e)$ も OK. (2.3 節, 定理 6, 教 p.91)

- $A: n \times n$ 行列. 次の $(a) \sim (h)$ は同値:
- (a) A は可逆 (正則);
- (b) Ax = 0 は x = 0 以外の解をもたない;
- (c) A と単位行列 I_n は行同値;
- (d) Ax = b は任意の b について解をもつ;
- (e) $\det(A) \neq 0$;
- (f) rank(A) = n;
- (q) A の行ベクトル $\mathbb{F}_1, \ldots, \mathbb{F}_n$ は 1 次独立;
- (h) A の列ベクトル $\mathbb{C}_1, \ldots, \mathbb{C}_n$ は 1 次独立;
- (c') A を行基本変形で既約ガウス行列にすると単位行列 I_n となる.

既約ガウス行列 … 先頭の1の上下が全て $0.(c) \Leftrightarrow (c')$ は OK.

- (証明) $(a) \Leftrightarrow (b) \Leftrightarrow (c) \Leftrightarrow (d)$ は OK. (1.7 節, 定理 13, 教 p.65)
- $(a) \Leftrightarrow (e)$ も OK. (2.3 節, 定理 6, 教 p.91)
- よって, $(c) \Leftrightarrow (f) \Leftrightarrow (g) \Leftrightarrow (h)$ を示せばよい.

- $A: n \times n$ 行列. 次の $(a) \sim (h)$ は同値:
- (a) A は可逆 (正則);
- (b) Ax = 0 は x = 0 以外の解をもたない;
- (c) A と単位行列 I_n は行同値;
- (d) Ax = b は任意の b について解をもつ;
- (e) $\det(A) \neq 0$;
- (f) rank(A) = n;
- (q) A の行ベクトル $\mathbb{F}_1, \ldots, \mathbb{F}_n$ は 1 次独立;
- (h) A の列ベクトル $\mathbb{C}_1, \ldots, \mathbb{C}_n$ は 1 次独立;
- (c') A を行基本変形で既約ガウス行列にすると単位行列 I_n となる.

既約ガウス行列 \cdots 先頭の1の上下が全て $0. (c) \Leftrightarrow (c')$ は $\mathsf{OK}.$

(証明) $(a) \Leftrightarrow (b) \Leftrightarrow (c) \Leftrightarrow (d)$ は OK. (1.7 節, 定理 13, 教 p.65)

 $(a) \Leftrightarrow (e)$ も OK. (2.3 節, 定理 6, 教 p.91)

よって, $(c) \Leftrightarrow (f) \Leftrightarrow (g) \Leftrightarrow (h)$ を示せばよい.

以下, $(c) \Rightarrow (f) \Rightarrow (g) \Rightarrow (h) \Rightarrow (c')$ の順に示す.

 $(c) \Rightarrow (f)$:

 $(c) \Rightarrow (f): A \to \cdots \to I_n$ (行基本変形)

$$(c)\Rightarrow (f):A\to\cdots\to I_n$$
 (行基本変形)

 $\Rightarrow \dim R(A) = n \Leftrightarrow \operatorname{rank}(A) = n.$

$$(c) \Rightarrow (f): A \to \cdots \to I_n$$
 (行基本変形) $\Rightarrow \dim R(A) = n \Leftrightarrow \operatorname{rank}(A) = n.$

$$(f) \Rightarrow (g)$$
:

$$(c) \Rightarrow (f): A \to \cdots \to I_n$$
 (行基本変形)

$$\Rightarrow \dim R(A) = n \Leftrightarrow \operatorname{rank}(A) = n.$$

$$(f) \Rightarrow (g) : \operatorname{rank}(A) = n$$

- $(c) \Rightarrow (f): A \to \cdots \to I_n$ (行基本変形)
- $\Rightarrow \dim R(A) = n \Leftrightarrow \operatorname{rank}(A) = n.$
- $(f) \Rightarrow (g) : \operatorname{rank}(A) = n$
- の基底 (: 定理 9(b)) $\Rightarrow \mathbb{r}_1, \dots, \mathbb{r}_n : 1$ 次独立.

- $(c) \Rightarrow (f): A \rightarrow \cdots \rightarrow I_n$ (行基本変形) $\Rightarrow \dim R(A) = n \Leftrightarrow \operatorname{rank}(A) = n.$
- $(f) \Rightarrow (g) : \operatorname{rank}(A) = n$ の基底 (:: 定理 9(b)) $\Rightarrow \mathbb{r}_1, \dots, \mathbb{r}_n : 1$ 次独立.
- $(q) \Rightarrow (h)$:

- $(c) \Rightarrow (f): A \to \cdots \to I_n$ (行基本変形) $\Rightarrow \dim R(A) = n \Leftrightarrow \operatorname{rank}(A) = n.$
- $(f) \Rightarrow (g) : \operatorname{rank}(A) = n$ の基底 $(\cdot : 定理 9(b)) \Rightarrow \mathbb{r}_1, \ldots, \mathbb{r}_n : 1$ 次独立.
- $(q) \Rightarrow (h) : \mathbb{r}_1, \dots, \mathbb{r}_n : 1$ 次独立

- $(c) \Rightarrow (f): A \to \cdots \to I_n$ (行基本変形)
- $\Rightarrow \dim R(A) = n \Leftrightarrow \operatorname{rank}(A) = n.$
- $(f) \Rightarrow (g) : \operatorname{rank}(A) = n$
- の基底 $(\cdot : 定理 9(b)) \Rightarrow r_1, \ldots, r_n : 1 次独立.$
- $(q) \Rightarrow (h) : \mathbb{r}_1, \dots, \mathbb{r}_n : 1$ 次独立
- \Rightarrow $\mathbb{F}_1, \ldots, \mathbb{F}_n$ は $R(A) = \operatorname{Span}\{\mathbb{F}_1, \ldots, \mathbb{F}_n\}$ の基底 $\Rightarrow \dim R(A) = n$
- \Rightarrow dim C(A) = n (: 定理 12)
- $\Rightarrow C(A) = \operatorname{Span}\{\mathfrak{c}_1, \ldots, \mathfrak{c}_n\}$ で $\mathfrak{c}_1, \ldots, \mathfrak{c}_n$ は 1 次独立.

- $(c) \Rightarrow (f): A \to \cdots \to I_n$ (行基本変形) $\Rightarrow \dim R(A) = n \Leftrightarrow \operatorname{rank}(A) = n.$
- $(f) \Rightarrow (g) : \operatorname{rank}(A) = n$ の基底 $(:: 定理 9(b)) \Rightarrow \mathbb{r}_1, \ldots, \mathbb{r}_n : 1$ 次独立.
- $(q) \Rightarrow (h) : \mathbb{r}_1, \dots, \mathbb{r}_n : 1$ 次独立 \Rightarrow $\mathbb{F}_1, \ldots, \mathbb{F}_n$ は $R(A) = \operatorname{Span}\{\mathbb{F}_1, \ldots, \mathbb{F}_n\}$ の基底 $\Rightarrow \dim R(A) = n$ \Rightarrow dim C(A) = n (: 定理 12)
- $\Rightarrow C(A) = \operatorname{Span}\{\mathfrak{c}_1, \dots, \mathfrak{c}_n\}$ で $\mathfrak{c}_1, \dots, \mathfrak{c}_n$ は1次独立.
- $(h) \Rightarrow (c')$:

- $(c) \Rightarrow (f): A \to \cdots \to I_n$ (行基本変形)
- $\Rightarrow \dim R(A) = n \Leftrightarrow \operatorname{rank}(A) = n.$
- $(f) \Rightarrow (g) : \operatorname{rank}(A) = n$

 - の基底 $(\cdot : 定理 9(b)) \Rightarrow r_1, \ldots, r_n : 1 次独立.$
- $(q) \Rightarrow (h) : \mathbb{r}_1, \dots, \mathbb{r}_n : 1$ 次独立
- \Rightarrow $\mathbb{F}_1, \ldots, \mathbb{F}_n$ は $R(A) = \operatorname{Span}\{\mathbb{F}_1, \ldots, \mathbb{F}_n\}$ の基底 $\Rightarrow \dim R(A) = n$
- $\Rightarrow C(A) = \operatorname{Span}\{\mathfrak{c}_1, \ldots, \mathfrak{c}_n\}$ で $\mathfrak{c}_1, \ldots, \mathfrak{c}_n$ は 1 次独立.
- $(h) \Rightarrow (c') : c_1, \ldots, c_n$ は 1 次独立

- $(c) \Rightarrow (f): A \to \cdots \to I_n$ (行基本変形)
- $\Rightarrow \dim R(A) = n \Leftrightarrow \operatorname{rank}(A) = n.$
- $(f) \Rightarrow (g) : \operatorname{rank}(A) = n$ の基底 $(\cdot : 定理 9(b)) \Rightarrow r_1, \ldots, r_n : 1 次独立.$
- $(q) \Rightarrow (h): \mathbb{r}_1, \dots, \mathbb{r}_n: 1$ 次独立
- \Rightarrow $\mathbb{F}_1, \ldots, \mathbb{F}_n$ は $R(A) = \operatorname{Span}\{\mathbb{F}_1, \ldots, \mathbb{F}_n\}$ の基底 $\Rightarrow \dim R(A) = n$
- $\Rightarrow C(A) = \operatorname{Span}\{\mathfrak{c}_1, \ldots, \mathfrak{c}_n\}$ で $\mathfrak{c}_1, \ldots, \mathfrak{c}_n$ は 1 次独立.
- $(h) \Rightarrow (c') : \mathbb{C}_1, \dots, \mathbb{C}_n$ は 1 次独立
- $\Rightarrow c_1, \ldots, c_n$ は $C(A) = \operatorname{Span}\{c_1, \ldots, c_n\}$ の基底 $\Rightarrow \dim C(A) = n$
- \Rightarrow dim R(A) = n (: 定理 12) \Rightarrow A の既約ガウス行列の行ベクトルはす
- べて $_{0}$ でなく, 既約ガウス行列は I_{n} に等しい.

Ax = b が解をもつ $\Leftrightarrow b \in C(A)$.

(証明) Ax = b

(証明)
$$A \mathbf{x} = \mathbf{b}$$

$$\Leftrightarrow \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$

(証明)
$$Ax = b$$

$$\Leftrightarrow \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix} a_{11}x_1 + \cdots + a_{1n}x_n \\ \vdots \\ a_{m1}x_1 + \cdots + a_{mn}x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$

(証明)
$$Ax = \mathbb{D}$$

$$\Leftrightarrow \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix} a_{11}x_1 + \cdots + a_{1n}x_n \\ \vdots \\ a_{m1}x_1 + \cdots + a_{mn}x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$

$$\Leftrightarrow x_1 \begin{pmatrix} a_{11} \\ \vdots \\ a_{m1} \end{pmatrix} + \cdots + x_n \begin{pmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}.$$

(証明)
$$Ax = b$$

$$\Leftrightarrow \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix} a_{11}x_1 + \cdots + a_{1n}x_n \\ \vdots \\ a_{m1}x_1 + \cdots + a_{mn}x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$

$$\Leftrightarrow x_1 \begin{pmatrix} a_{11} \\ \vdots \\ a_{m1} \end{pmatrix} + \cdots + x_n \begin{pmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$

よって、 $Ax = b$ が解をもつ $\Leftrightarrow b \in C(A)$.

Ax = b が解をもつ $\Leftrightarrow b \in C(A)$.

(証明)
$$A = b$$

$$\Leftrightarrow \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix} a_{11}x_1 + \cdots + a_{1n}x_n \\ \vdots \\ a_{m1}x_1 + \cdots + a_{mn}x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$

$$\Leftrightarrow x_1 \begin{pmatrix} a_{11} \\ \vdots \\ a_{m1} \end{pmatrix} + \cdots + x_n \begin{pmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}.$$

よって、Ax = b が解をもつ $\Leftrightarrow b \in C(A)$.

▶ 教 pp.196~198 の練習問題 4.6 を各自やってみる