1	E籍番号	氏名			
[1] (定理 7) V を線形空間, $\mathbb{V}_1, \ldots, \mathbb{V}_n \in V$ を V の基底とする.					
	このとき、Vの 個以上のベクトルは1次従属となる				
	(ただし、答えの候補の内最小のものを答えること)。 対偶を取れば、 V のベクトルが 1 次独立ならば、その個数は n 個以下である。 これを用いると、次の定理が従う:				
	(定理8) 有限次元の線形空間の基底は,常に一定の個数のベクトルからなる.				
[2]	$oxed{2}$ (定義) V を線形空間, $\mathbb{V}_1,\ldots,\mathbb{V}_n\in V$ を V の基底とする.				
	このとき, (1) V の次元 (dimension) は であるといい, $\dim V$ とかく.				
	(2) 線形空間 {0} の次元は と定める.				
	例えば、 (3) dim $\mathbb{R}^n =$				
	(5) dim $\left\{ \begin{bmatrix} a & 0 \\ b & c \end{bmatrix} \middle a, b, c \in \mathbb{R} \right\} = \boxed{},$ (6) dim $\left\{ \begin{bmatrix} a & 0 \\ a & a \end{bmatrix} \middle a \in \mathbb{R} \right\} = \boxed{}.$				
	但し, $\mathbb{R}[X]_n$ は n 次以下の実数係数の多項式全体のなす線形空間とする.				
[3]	B] 連立方程式				
$\begin{cases} -3x_1 + x_2 + x_3 + x_4 &= 0 \\ x_1 - 3x_2 + x_3 + x_4 &= 0 \\ x_1 + x_2 - 3x_3 + x_4 &= 0 \\ x_1 + x_2 + x_3 - 3x_4 &= 0 \end{cases}$					
	の解空間を W とすれば、 $\dim W =$:	となる.		
[4]	[4] (定義) m×n 行列				
	$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$ に対して、 j 列からなるベクトル $\mathbf{c}_j = \begin{pmatrix} a_{1j} \\ \vdots \\ a_{mj} \end{pmatrix}$ を列ベクトル、				
	i 行からなるベクトル $\mathbf{r}_i = (a_{i1}, \ldots, a_{in})$ を行ベクトル,				
	$(1) R(A) = \operatorname{Span}(\mathbf{r}_1, \dots \mathbf{r}_m) \subset \mathbb{R}^n \mathcal{E} A \mathcal{O} $				
	(2) $C(A) = \operatorname{Span}(\mathbf{c}_1, \dots \mathbf{c}_n) \subset \mathbb{R}^m$	をAの	という		