はじめに (数学基礎 B1)

数学基礎 B = 線形代数

教科書「要点明解 線形数学 三訂版」培風館

(第1章 ベクトル)

- ▶ 第2章 行列
- ▶ 第3章 連立1次方程式

(第4章 行列式)

(第5章 行列の対角化)

講義の情報 http://mathweb.sc.niigata-u.ac.jp/~hoshi/teaching-j.html

シラバス LINK

- ▶ ノートを取りながら講義を聴くこと. (ノートを回収して確認する可能性があります)
- ▶ 講義 → 小テスト (理解度確認テスト, 学務情報システム内)

A:n 次正方行列, $E_n:n$ 次単位行列.

$$AB = BA = E_n \cdots (1)$$

A:n 次正方行列, $E_n:n$ 次单位行列.

$$AB = BA = E_n \cdots (1)$$

なるn次正方行列Bが存在するとき,Aをn次正則行列という.

A:n 次正方行列, $E_n:n$ 次単位行列.

$$AB = BA = E_n \cdots (1)$$

なるn次正方行列Bが存在するとき,Aをn次 正則行列Eという.このとき,E1、をみたす行列E2 をE3 といい,E4 とあらわす.

A:n 次正方行列, $E_n:n$ 次単位行列.

$$AB = BA = E_n \cdots (1)$$

なるn次正方行列Bが存在するとき,Aをn次 正則行列Eという.このとき,E1、をみたす行列E2 をE3 をE4 をE5 といい,E6 を E7 とあらわす.

注意

A:n 次正方行列, $E_n:n$ 次単位行列.

$$AB = BA = E_n \cdots (1)$$

なる n 次正方行列 B が存在するとき,A を n 次 正則行列 という.このとき,(1) をみたす行列 B を A の逆行列 といい, $B = A^{-1}$ とあらわす.

注意

$$AB = BA = E_n \cdots (1)$$

$$AB' = B'A = E_n \cdots (2)$$

A:n 次正方行列, $E_n:n$ 次単位行列.

$$AB = BA = E_n \cdots (1)$$

なるn次正方行列Bが存在するとき,Aをn次 $_{}$ <u>正則行列</u> という.このとき,(1) をみたす行列BをAの<mark>逆行列</mark>といい, $\underline{B} = A^{-1}$ とあらわす.

注意

$$AB = BA = E_n \cdots (1)$$

$$AB' = B'A = E_n \cdots (2)$$

$$\Rightarrow B = BE_n$$

A:n 次正方行列, $E_n:n$ 次単位行列.

$$AB = BA = E_n \cdots (1)$$

なる n 次正方行列 B が存在するとき,A を n 次 正則行列 という.このとき,(1) をみたす行列 B を A の逆行列 といい, $B = A^{-1}$ とあらわす.

注意

$$AB = BA = E_n \cdots (1)$$

$$AB' = B'A = E_n \cdots (2)$$

$$\Rightarrow B = BE_n = B(AB')$$

A:n 次正方行列, $E_n:n$ 次単位行列.

$$AB = BA = E_n \cdots (1)$$

なるn次正方行列Bが存在するとき,Aをn次 正則行列E という.このとき,E1)をみたす行列E2 をE3 をE4 といい,E5 を E5 とあらわす.

注意

$$AB = BA = E_n \cdots (1)$$

$$AB' = B'A = E_n \cdots (2)$$

$$\Rightarrow B = BE_n = B(AB') = \underset{\text{$A = A \neq B | }}{=} (BA)B'$$

A:n 次正方行列, $E_n:n$ 次単位行列.

$$AB = BA = E_n \cdots (1)$$

なるn次正方行列Bが存在するとき,Aをn次 正則行列E という.このとき,E1)をみたす行列E2 をE3 をE4 といい,E5 を E5 とあらわす.

注意

$$AB = BA = E_n \cdots (1)$$

$$AB' = B'A = E_n \cdots (2)$$

$$\Rightarrow B = BE_n = B(AB') = (BA)B' = E_nB' = B'$$

A:n 次正方行列, $E_n:n$ 次単位行列.

$$AB = BA = E_n \cdots (1)$$

なるn次正方行列Bが存在するとき,Aをn次 正則行列E という.このとき,E1)をみたす行列E2 をE3 をE4 といい,E5 を E5 とあらわす.

注意

$$AB = BA = E_n \cdots (1)$$

$$AB' = B'A = E_n \cdots (2)$$

$$\Rightarrow B = BE_n = B(AB') = (BA)B' = E_nB' = B'$$
 より $B = B'$

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, $ad - bc \neq 0$ のとき,

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, $ad - bc \neq 0$ のとき,

$$A$$
 は正則行列で逆行列 $A^{-1}=rac{1}{ad-bc}\left(egin{array}{cc} d & -b \ -c & a \end{array}
ight).$

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, $ad - bc \neq 0$ のとき,

$$A$$
 は正則行列で逆行列 $A^{-1}=rac{1}{ad-bc}\left(egin{array}{ccc} d & -b \\ -c & a \end{array}
ight).$

(:: 実際, 各自確かめてみる)

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, $ad - bc \neq 0$ のとき,

$$A$$
 は正則行列で逆行列 $A^{-1} = \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$. (: 実際, 各自確かめてみる)

$$A = \left(\begin{array}{cc} 2 & -7 \\ 3 & -5 \end{array}\right),$$

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, $ad - bc \neq 0$ のとき,

$$A$$
 は正則行列で逆行列 $A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$. (: 実際, 各自確かめてみる)

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, $ad - bc \neq 0$ $\emptyset \succeq \mathfrak{F}$,

$$A$$
 は正則行列で逆行列 $A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$. (: 実際, 各自確かめてみる)

$$A$$
 は正則行列で $A^{-1} = \frac{1}{11}\begin{pmatrix} -5 & 7 \\ -3 & 2 \end{pmatrix}$.

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, $ad - bc \neq 0$ $\emptyset \succeq \mathfrak{F}$,

A は正則行列で<mark>逆行列</mark> $A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$. (: 実際、各自確かめてみる)

例

A は正則行列で $A^{-1} = \frac{1}{11} \begin{pmatrix} -5 & 7 \\ -3 & 2 \end{pmatrix}$.

注意

後に、 $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$: 正則行列 $\iff ad - bc \neq 0$ を示す. ((\iff) は OK)

第3回

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, $ad - bc \neq 0$ のとき,

$$A$$
 は正則行列で逆行列 $A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.
(:: 実際, 各自確かめてみる)

例

A は正則行列で $A^{-1} = \frac{1}{11} \begin{pmatrix} -5 & 7 \\ -3 & 2 \end{pmatrix}$.

注意

後に、 $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$: 正則行列 \iff $ad - bc \neq 0$ を示す. ((\iff) は OK) また、 $n \times n$ 行列 $(n \geq 3)$ がいつ正則行列となるかは、今後学んでいく.

第3回

連立1次方程式

$$\begin{cases} x + 2y = 3\\ 2x + 3y = 2 \end{cases}$$

は

$$\begin{cases} x + 2y = 3\\ 2x + 3y = 2 \end{cases}$$

は
$$A = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$$
を用いて、

$$\begin{cases} x + 2y = 3\\ 2x + 3y = 2 \end{cases}$$

は
$$A = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$$
を用いて, $A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$ とかける.

$$\begin{cases} x + 2y = 3\\ 2x + 3y = 2 \end{cases}$$

は
$$A=\begin{pmatrix}1&2\\2&3\end{pmatrix}$$
 を用いて、 $A\begin{pmatrix}x\\y\end{pmatrix}=\begin{pmatrix}3\\2\end{pmatrix}$ とかける。この両辺に逆行列 $A^{-1}=\frac{1}{-1}\begin{pmatrix}3&-2\\-2&1\end{pmatrix}=\begin{pmatrix}-3&2\\2&-1\end{pmatrix}$ をかけると、

$$\begin{cases} x + 2y = 3\\ 2x + 3y = 2 \end{cases}$$

は
$$A = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$$
 を用いて、 $A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$ とかける.この両辺に逆行列 $A^{-1} = \frac{1}{-1}\begin{pmatrix} 3 & -2 \\ -2 & 1 \end{pmatrix} = \begin{pmatrix} -3 & 2 \\ 2 & -1 \end{pmatrix}$ をかけると、

$$\left(\begin{array}{c} x \\ y \end{array}\right) = A^{-1} \left(\begin{array}{cc} 3 \\ 2 \end{array}\right) = \left(\begin{array}{cc} -3 & 2 \\ 2 & -1 \end{array}\right) \left(\begin{array}{c} 3 \\ 2 \end{array}\right) = \left(\begin{array}{c} -5 \\ 4 \end{array}\right).$$

連立1次方程式

$$\begin{cases} x + 2y = 3\\ 2x + 3y = 2 \end{cases}$$

は
$$A = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$$
 を用いて、 $A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$ とかける.この両辺に逆行列 $A^{-1} = \frac{1}{-1}\begin{pmatrix} 3 & -2 \\ -2 & 1 \end{pmatrix} = \begin{pmatrix} -3 & 2 \\ 2 & -1 \end{pmatrix}$ をかけると、

$$\left(\begin{array}{c} x \\ y \end{array}\right) = A^{-1} \left(\begin{array}{cc} 3 \\ 2 \end{array}\right) = \left(\begin{array}{cc} -3 & 2 \\ 2 & -1 \end{array}\right) \left(\begin{array}{c} 3 \\ 2 \end{array}\right) = \left(\begin{array}{c} -5 \\ 4 \end{array}\right).$$

他の解 $\begin{pmatrix} x' \\ y' \end{pmatrix}$ がないことは、

連立1次方程式

$$\begin{cases} x + 2y = 3\\ 2x + 3y = 2 \end{cases}$$

は
$$A = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$$
 を用いて、 $A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$ とかける.この両辺に逆行列 $A^{-1} = \frac{1}{-1}\begin{pmatrix} 3 & -2 \\ -2 & 1 \end{pmatrix} = \begin{pmatrix} -3 & 2 \\ 2 & -1 \end{pmatrix}$ をかけると、

$$\left(\begin{array}{c} x \\ y \end{array}\right) = A^{-1} \left(\begin{array}{cc} 3 \\ 2 \end{array}\right) = \left(\begin{array}{cc} -3 & 2 \\ 2 & -1 \end{array}\right) \left(\begin{array}{c} 3 \\ 2 \end{array}\right) = \left(\begin{array}{c} -5 \\ 4 \end{array}\right).$$

他の解 $\begin{pmatrix} x' \\ y' \end{pmatrix}$ がないことは,逆行列 A^{-1} の一意性(1つしかないこと)

からわかる.

(1) A:n 次正則行列 \Rightarrow $A^{-1}:n$ 次正則行列であり、

$$(A^{-1})^{-1} = A.$$

(1) A:n 次正則行列 \Rightarrow $A^{-1}:n$ 次正則行列であり、

$$(A^{-1})^{-1} = A.$$

(2) A, B: n 次正則行列 \Rightarrow AB, BA は n 次正則行列であり、

$$(AB)^{-1} = B^{-1}A^{-1}$$
, $(BA)^{-1} = A^{-1}B^{-1}$. (順番 に注意)

(1) A:n 次正則行列 $\Rightarrow A^{-1}:n$ 次正則行列であり、

$$(A^{-1})^{-1} = A.$$

(2) A, B: n 次正則行列 \Rightarrow AB, BA は n 次正則行列であり、

$$(AB)^{-1} = B^{-1}A^{-1}$$
, $(BA)^{-1} = A^{-1}B^{-1}$. (順番 に注意)

注意

実際, $(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AE_nA^{-1} = AA^{-1} = E_n$.

(1) A:n 次正則行列 \Rightarrow $A^{-1}:n$ 次正則行列であり、

$$(A^{-1})^{-1} = A.$$

(2) A, B: n 次正則行列 \Rightarrow AB, BA は n 次正則行列であり、

$$(AB)^{-1} = B^{-1}A^{-1}$$
, $(BA)^{-1} = A^{-1}B^{-1}$. (順番 に注意)

注意

実際, $(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AE_nA^{-1} = AA^{-1} = E_n$. $(B^{-1}A^{-1})(AB) = E_n$ も同様. $\therefore (AB)^{-1} = B^{-1}A^{-1}$.

定義 (A^n)

A: 正方行列.

 $A^2 := AA, A^3 := AAA, \dots, A^n := A \cdots A (n 個).$ Aのn乗という.

定義 (A^n)

A: 正方行列.

 $A^2:=AA$, $A^3:=AAA$,..., $A^n:=A\cdots A$ (n 個). $\underline{A \ \textit{O} \ n \ \#}$ という.

 $A^0 := E$ (単位行列), $A^1 := A$ とする.

定義 (Aⁿ)

A: 正方行列.

 $A^2:=AA$, $A^3:=AAA$,..., $A^n:=A\cdots A$ (n 個). $\underline{A \ \textit{O} \ n \ \#}$ という.

 $A^0 := E$ (単位行列), $A^1 := A$ とする.

定義 (A^{T}) [転置 \cdots transposed]

 $A = (a_{ij}) : m \times n$ 行列.

定義 (*A*ⁿ)

A: 正方行列.

 $A^2 := AA$, $A^3 := AAA$,..., $A^n := A \cdots A$ $(n ext{ } extbf{l})$. $A extstyle n extstyle <math>\pi$ という.

 $A^0 := E$ (単位行列), $A^1 := A$ とする.

定義 (A^{T}) [転置 … transposed]

 $A = (a_{ij}) : m \times n$ 行列.

 $A^{\mathrm{T}}:=(a_{ii}):n\times m$ 行列を A の転置行列 という. (行 \leftrightarrow 列)

定義 (A^n)

A: 正方行列.

 $A^2 := AA, A^3 := AAA, \dots, A^n := A \cdots A (n 個). A の n 乗 という.$

 $A^0 := E$ (単位行列), $A^1 := A$ とする.

定義 (A^{T}) [転置 \cdots transposed]

 $A = (a_{ij}) : m \times n$ 行列.

 $A^{\mathrm{T}}:=(a_{ji}):n\times m$ 行列を A の転置行列 という. (行 \leftrightarrow 列)

$$\begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix}^{T} = (1\ 3\ 5), \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}^{T} = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}^{T} = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix}.$$

例 (内積,直交する)

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \ \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}.$$

$$\mathbf{x}^{\mathrm{T}}\mathbf{y} = (x_1 \ x_2 \ x_3) \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = x_1 y_1 + x_2 y_2 + x_3 y_3 : \underline{\mathbf{x}} \ \mathbf{z} \ \mathbf{y} \ \mathcal{O}$$
内積.

例 (内積, 直交する)

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \ \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}.$$

$$\mathbf{x}^{\mathrm{T}}\mathbf{y} = (x_1 \ x_2 \ x_3) \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = x_1y_1 + x_2y_2 + x_3y_3 : \underline{\mathbf{x}} \ \underline{\mathbf{y}} \ \underline{\mathbf{0}} \ \underline{\mathbf{0}}$$

 \mathbf{x} と y が <u>直交する</u> $\overset{\mathrm{def}}{\Longleftrightarrow} \mathbf{x}^T \mathbf{y} = 0.$

例 (内積,直交する)

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \ \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}.$$

$$\mathbf{x}^{\mathrm{T}}\mathbf{y} = (x_1 \ x_2 \ x_3) \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = x_1y_1 + x_2y_2 + x_3y_3 : \underline{\mathbf{x}} \ \mathbf{z} \ \mathbf{y} \ \mathbf{0}$$
内積.

x と y が <u>直交する</u> $\stackrel{\text{def}}{\Longleftrightarrow}$ $x^Ty = 0$.

例

$$x = \begin{pmatrix} a \\ a \\ 1 \end{pmatrix}, y = \begin{pmatrix} a \\ -3 \\ 2 \end{pmatrix}.$$

第3回

例 (内積,直交する)

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \ \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}.$$

 $\mathbf{x}^{\mathrm{T}}\mathbf{y} = (x_1 \ x_2 \ x_3) \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = x_1y_1 + x_2y_2 + x_3y_3 : \underline{\mathbf{x}} \ \mathbf{v} \ \underline{\mathbf{v}} \ \mathbf{v} \ \mathbf{v}$

例

$$\mathbf{x} = \begin{pmatrix} a \\ a \\ 1 \end{pmatrix}, \ \mathbf{y} = \begin{pmatrix} a \\ -3 \\ 2 \end{pmatrix}.$$

 $\mathbf{x}^{\mathrm{T}} \mathbf{y} = (a \ a \ 1) \begin{pmatrix} a \\ -3 \\ 2 \end{pmatrix} = a^2 - 3a + 2 = (a - 1)(a - 2) \text{ Tobs 9,}$

第3回

例 (内積,直交する)

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \ \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}.$$

 $\mathbf{x}^{\mathrm{T}}\mathbf{y} = (x_1 \ x_2 \ x_3) \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = x_1y_1 + x_2y_2 + x_3y_3 : \underline{\mathbf{x}} \ \mathbf{v} \ \mathbf{y} \ \mathbf{0}$ 内積. xとy が 直交する $\stackrel{\text{def}}{\Longleftrightarrow} x^T v = 0$.

例

$$\mathbf{x} = \begin{pmatrix} a \\ a \\ 1 \end{pmatrix}$$
, $\mathbf{y} = \begin{pmatrix} a \\ -3 \\ 2 \end{pmatrix}$.
$$\mathbf{x}^{\mathrm{T}} \mathbf{y} = \begin{pmatrix} a & 1 \end{pmatrix} \begin{pmatrix} a \\ -3 \\ 2 \end{pmatrix} = a^2 - 3a + 2 = (a-1)(a-2)$$
 であり,

 $x e v が直交する \iff a = 1$ または a = 2.

第3回

 $(A+B)^{\mathrm{T}} = A^{\mathrm{T}} + B^{\mathrm{T}}.$

$$(A+B)^{\mathrm{T}} = A^{\mathrm{T}} + B^{\mathrm{T}}.$$

$$A^{\mathrm{T}} + B^{\mathrm{T}} = (a_{ji}) + (b_{ji}) = (a_{ji} + b_{ji}) = (a_{ij} + b_{ij})^{\mathrm{T}} = (A + B)^{\mathrm{T}}.$$

$$(A+B)^{\mathrm{T}} = A^{\mathrm{T}} + B^{\mathrm{T}}.$$

$$A^{\mathrm{T}} + B^{\mathrm{T}} = (a_{ji}) + (b_{ji}) = (a_{ji} + b_{ji}) = (a_{ij} + b_{ij})^{\mathrm{T}} = (A + B)^{\mathrm{T}}.$$

$$(AB)^{\mathrm{T}} = B^{\mathrm{T}}A^{\mathrm{T}}$$
. (順番 に注意)

$$(A+B)^{\mathrm{T}} = A^{\mathrm{T}} + B^{\mathrm{T}}.$$

$$A^{T} + B^{T} = (a_{ji}) + (b_{ji}) = (a_{ji} + b_{ji}) = (a_{ij} + b_{ij})^{T} = (A + B)^{T}.$$

$$(AB)^{\mathrm{T}} = B^{\mathrm{T}}A^{\mathrm{T}}.$$
 (順番 に注意)

$$\therefore A = (a_{ij})$$
, $B = (b_{jk})$ とすると, $AB = (\sum_{j=1}^n a_{ij}b_{jk})$ より,

$$(A+B)^{\mathrm{T}} = A^{\mathrm{T}} + B^{\mathrm{T}}.$$

$$A^{\mathrm{T}} + B^{\mathrm{T}} = (a_{ji}) + (b_{ji}) = (a_{ji} + b_{ji}) = (a_{ij} + b_{ij})^{\mathrm{T}} = (A + B)^{\mathrm{T}}.$$

$$(AB)^{\mathrm{T}} = B^{\mathrm{T}}A^{\mathrm{T}}$$
. (順番 に注意)

$$\therefore A = (a_{ij}), B = (b_{jk})$$
 とすると、 $AB = (\sum_{j=1}^{n} a_{ij}b_{jk})$ より、

$$AB \mathcal{O}(i,k)$$
 成分 = $\sum_{j=1}^{n} a_{ij}b_{jk} = (AB)^{\mathrm{T}} \mathcal{O}(k,i)$ 成分

$$=\sum_{j=1}^{n}a_{ij}b_{jk}=\sum_{j=1}^{n}b_{jk}a_{ij}=B^{T}A^{T}$$
 の (k,i) 成分.

$$(A+B)^{\mathrm{T}} = A^{\mathrm{T}} + B^{\mathrm{T}}.$$

$$A^{\mathrm{T}} + B^{\mathrm{T}} = (a_{ji}) + (b_{ji}) = (a_{ji} + b_{ji}) = (a_{ij} + b_{ij})^{\mathrm{T}} = (A + B)^{\mathrm{T}}.$$

例

$$(AB)^{\mathrm{T}} = B^{\mathrm{T}}A^{\mathrm{T}}$$
. (順番 に注意)

$$\therefore A = (a_{ij}), B = (b_{jk})$$
 とすると、 $AB = (\sum_{j=1}^{n} a_{ij}b_{jk})$ より、

$$AB \mathcal{O}(i,k)$$
 成分 = $\sum_{j=1}^{n} a_{ij} b_{jk} = (AB)^{\mathrm{T}} \mathcal{O}(k,i)$ 成分

$$=\sum_{j=1}^{n} a_{ij}b_{jk} = \sum_{j=1}^{n} b_{jk}a_{ij} = B^{T}A^{T} \mathcal{O}(k,i)$$
 成分.

例

A: 正則行列 $\Rightarrow A^{\mathrm{T}}:$ 正則行列.

$$(A+B)^{\mathrm{T}} = A^{\mathrm{T}} + B^{\mathrm{T}}.$$

$$A^{T} + B^{T} = (a_{ij}) + (b_{ji}) = (a_{ji} + b_{ji}) = (a_{ij} + b_{ij})^{T} = (A + B)^{T}.$$

例

$$(AB)^{\mathrm{T}} = B^{\mathrm{T}}A^{\mathrm{T}}$$
. (順番 に注意)

$$\therefore A = (a_{ij}), B = (b_{jk})$$
 とすると、 $AB = (\sum_{j=1}^{n} a_{ij}b_{jk})$ より、

$$AB \mathcal{O}(i,k)$$
 成分 = $\sum_{j=1}^{n} a_{ij} b_{jk} = (AB)^{\mathrm{T}} \mathcal{O}(k,i)$ 成分

$$=\sum_{j=1}^{n} a_{ij}b_{jk} = \sum_{j=1}^{n} b_{jk}a_{ij} = B^{T}A^{T}$$
 の (k,i) 成分.

例

A: 正則行列 $\Rightarrow A^{\mathrm{T}}:$ 正則行列.

:: 実際, $(A^{\mathrm{T}})^{-1} = (A^{-1})^{\mathrm{T}}$ となる:

$$(A+B)^{\mathrm{T}} = A^{\mathrm{T}} + B^{\mathrm{T}}.$$

$$A^{T} + B^{T} = (a_{ji}) + (b_{ji}) = (a_{ji} + b_{ji}) = (a_{ij} + b_{ij})^{T} = (A + B)^{T}.$$

例

$$(AB)^{\mathrm{T}} = B^{\mathrm{T}}A^{\mathrm{T}}$$
. (順番 に注意)

$$\therefore A = (a_{ij}), B = (b_{jk})$$
 とすると、 $AB = (\sum_{j=1}^n a_{ij}b_{jk})$ より、

$$AB \mathcal{O}(i,k)$$
 成分 = $\sum_{j=1}^{n} a_{ij}b_{jk} = (AB)^{\mathrm{T}} \mathcal{O}(k,i)$ 成分

$$=\sum_{j=1}^{n}a_{ij}b_{jk}=\sum_{j=1}^{n}b_{jk}a_{ij}=B^{T}A^{T}$$
 の (k,i) 成分.

$$A:$$
 正則行列 $\Rightarrow A^{\mathrm{T}}:$ 正則行列.

:: 実際,
$$(A^{\mathrm{T}})^{-1} = (A^{-1})^{\mathrm{T}}$$
 となる:

$$A^{\mathrm{T}}(A^{\mathrm{T}})^{-1} = A^{\mathrm{T}}(A^{-1})^{\mathrm{T}} = (A^{-1}A)^{\mathrm{T}} = E_n^{\mathrm{T}} = I$$

$$A^{\mathrm{T}}(A^{\mathrm{T}})^{-1} = A^{\mathrm{T}}(A^{-1})^{\mathrm{T}} = \underset{\mathbb{L}}{\mathbb{L}}$$
 ($A^{-1}A$) $^{\mathrm{T}} = E_n^{\mathrm{T}} = E_n$.
 $(A^{\mathrm{T}})^{-1}A^{\mathrm{T}} = (A^{-1})^{\mathrm{T}}A^{\mathrm{T}} = \underset{\mathbb{L}}{\mathbb{L}}$ (AA^{-1}) $^{\mathrm{T}} = E_n^{\mathrm{T}} = E_n$.

定義(対称行列,交代行列)

A: 正方行列.

A: 対称行列 $\stackrel{\text{def}}{\Longleftrightarrow} A^{\mathrm{T}} = A$.

A:交代行列 $\stackrel{\text{def}}{\Longleftrightarrow}$ $A^{\mathrm{T}}=-A$.

定義(対称行列,交代行列)

A: 正方行列.

A: 対称行列 $\stackrel{\mathrm{def}}{\Longleftrightarrow}$ $A^{\mathrm{T}}=A$

A: 交代行列 $\stackrel{\text{def}}{\Longleftrightarrow} A^{\mathrm{T}} = -A.$

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 6 \\ 3 & 6 & 9 \end{pmatrix} = A^{\mathrm{T}}$$
 より、 A は対称行列.
$$B = \begin{pmatrix} 0 & 2 & 3 \\ -2 & 0 & 6 \\ -3 & -6 & 0 \end{pmatrix} = -B^{\mathrm{T}}$$
 より、 B は交代行列.

$$B=\left(egin{array}{ccc} 0 & 2 & 3 \ -2 & 0 & 6 \ \end{array}
ight)=-B^{\mathrm{T}}$$
 より, B は交代行列。