在籍番号		氏名	
------	--	----	--

学務情報システム内では行列 $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ は [[a,b],[c,d]], A^{-1} は A^{-} {-1}と表記する.

- [1] (定義) Aを n 次正方行列とする.
 - (1) $AB = BA = E_n$ なる n 次正方行列 B が存在するとき, A を 行列という.

 - (4) 例えば,

- [2] n 次正則行列 A, B に対して, A^{-1} , AB も n 次正則行列であり,その逆行列は
- [4] $A = (a_{ij})$ を $m \times n$ 行列とする. $A^{T} = (a_{ji})$ を A の という.
- [5] $\boldsymbol{x}=\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix}$, $\boldsymbol{y}=\begin{pmatrix}y_1\\y_2\\y_3\end{pmatrix}$ に対して, \boldsymbol{x} と \boldsymbol{y} が直交するための必要十分条件は

 $\boldsymbol{x}^{\mathrm{T}}\boldsymbol{y} = x_1y_1 + x_2y_2 + x_3y_3 = 0$ である. この $\boldsymbol{x}^{\mathrm{T}}\boldsymbol{y}$ は \boldsymbol{x} と \boldsymbol{y} の内積と呼ばれている.

例えば、
$$m{x} = \begin{pmatrix} a \\ -3 \\ 1 \end{pmatrix}$$
と $m{y} = \begin{pmatrix} a \\ a \\ 2 \end{pmatrix}$ が直交するのは、 $a = m{\Box}$ のときである.