	数学基礎 B2(第 5 回・2025/7/11)小テスト	
右	籍番号	
	名務情報システム内では行列 $\left(egin{array}{c} a & b \ c & d \end{array} ight)$ は [[a,b],[c,d]], A^{-1} は A^{-1} と表記する.	
[1]	定義) $A = (a_{i,j})$ を n 次正方行列とする. A の (i,j) 成分 a_{ij} を中心に第 i 行と第 j 列を取り除いてできる行列を A_{ij} とおく. このとき, $\widetilde{a}_{ij} = (-1)^{i+j} A_{ij} $ を行列 A の (i,j) 余因子という. $A =a_{13}\widetilde{a}_{13}+\cdots+a_{n3}\widetilde{a}_{n3}$ を第	_
	$\widetilde{A}=(\widetilde{a}_{ji})=(\widetilde{a}_{ij})^{\mathrm{T}}$ を行列 A の $\qquad \qquad $	
	定理) n 次正方行列 A の <u>行列式 A を用いれば</u> , A が正則 \iff (3) となる.	
	A が正則のとき, $ ilde{A}$ を用いて, A の逆行列 A^{-1} は $\dfrac{1}{ A }\widetilde{A}$ と書ける. $oxedow$	
	別えば, $A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 0 & 1 \\ 1 & 1 & 2 \end{pmatrix}$ に対して, $ A = 1$ であるから, $A^{-1} = \widetilde{A} = \begin{bmatrix} & & & & & & & & & & & & & & & & & &$	
[2]	定義) $\mathbb{R}^n := \left\{ \left(\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array} \right) \;\middle \; x_i \in \mathbb{R} \; (i=1,\ldots,n) \right\}$ を n 次元	•
	寺に, $\mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$, $\mathbf{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \in \mathbb{R}^n$ に対して,内積 $\langle \mathbf{x}, \mathbf{y} \rangle := $ (2)	
	が定義されているとき, \mathbb{R}^n を \mathbb{E}^n と書き, n 次元 (3) という.	
	内積の性質) $x,y,z \in \mathbb{E}^n, c \in \mathbb{R}$ に対して,以下が成り立つ:	
	i) $\langle \mathbf{x}, \mathbf{x} \rangle \geq 0$. $\langle \mathbf{x}, \mathbf{x} \rangle = 0 \Leftrightarrow \mathbf{x} = 0$; (ii) $\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = $ (4);	
	iii) $\langle c \mathbf{x}, \mathbf{y} \rangle =$ (5); (iv) $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$.	
	定義) $\mathbf{x} \in \mathbb{E}^n$ に対して, \mathbf{x} の大きさ $ \mathbf{x} $ を $\sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$ と定める.例えば, $\mathbf{x} = \begin{pmatrix} 1 \\ 2 \\ 2 \\ 4 \end{pmatrix} \in \mathbb{E}^4$	

(6) となる.

に対して、xの大きさは ||x|| =