Rationality problem of two-dimensional quasi-monomial group actions (joint work with H. Kitayama)

Akinari Hoshi

Niigata University

March 2, 2024

Table of contents

- **0** Introduction: rationality problem for quasi-monomial actions
- 1 Monomial action & Noether's problem
- 2 Quasi-monomial actions: Known results
- 3 Quasi-monomial actions: Main theorem
- 4 Rationality problem for algebraic tori

$\S 0.$ Introduction

Inverse Galois problem (IGP)

Does every finite group occur as a quotient group of the absolute Galois group ${\rm Gal}(\overline{\mathbb Q}/\mathbb Q)$?

Related to rationality problem (Emmy Noether's strategy: 1913)

A finite group $G \curvearrowright k(x_g \mid g \in G)$: rational function field over k by permutation

 $k(x_g \mid g \in G)^G$ is k-rational, i.e. $k(x_g \mid g \in G)^G \simeq k(t_1, \ldots, t_n)$ (Noether's problem has an affirmative answer)

 $\implies k(x_g \mid g \in G)^G$ is retract k-rational (weaker concept)

 $\iff \exists \text{ generic extension (polynomial) for } (G,k) \text{ (Saltman's sense)}$ $\stackrel{k:\text{Hilbertian}}{\Longrightarrow} \text{ IGP for } (k,G) \text{ has an affirmative answer}$

Rationality problem for quasi-monomial actions

Definition (quasi-monomial action)

Let K/k be a finite field extension and $G \leq \operatorname{Aut}_k(K(x_1, \ldots, x_n))$; finite where $K(x_1, \ldots, x_n)$ is the rational function field of n variables over K. The action of G on $K(x_1, \ldots, x_n)$ is called quasi-monomial if (i) $\sigma(K) \subset K$ for any $\sigma \in G$; (ii) $K^G = k$; (iii) for any $\sigma \in G$, $\sigma(x_j) = c_j(\sigma) \prod_{i=1}^n x_i^{a_{ij}}$ where $c_j(\sigma) \in K^{\times}$, $1 \leq j \leq n$, $[a_{i,j}]_{1 \leq i, j \leq n} \in GL_n(\mathbb{Z})$.

Rationality problem

Under what situation the fixed field $K(x_1, \ldots, x_n)^G$ is k-rational, i.e. $K(x_1, \ldots, x_n)^G \simeq k(t_1, \ldots, t_n)$ (= purely transcendental over k), if G acts on $K(x_1, \ldots, x_n)$ by quasi-monomial k-automorphisms.

Rationality problem for quasi-monomial actions

Definition (quasi-monomial action)

Let K/k be a finite field extension and $G \leq \operatorname{Aut}_k(K(x_1, \ldots, x_n))$; finite where $K(x_1, \ldots, x_n)$ is the rational function field of n variables over K. The action of G on $K(x_1, \ldots, x_n)$ is called quasi-monomial if (i) $\sigma(K) \subset K$ for any $\sigma \in G$; (ii) $K^G = k$; (iii) for any $\sigma \in G$, $\sigma(x_j) = c_j(\sigma) \prod_{i=1}^n x_i^{a_{ij}}$ where $c_j(\sigma) \in K^{\times}$, $1 \leq j \leq n$, $[a_{i,j}]_{1 \leq i,j \leq n} \in GL_n(\mathbb{Z})$.

- When $G \curvearrowright K$; trivial (i.e. K = k), called (just) monomial action.
- When $G \curvearrowright K$; trivial and permutation \leftrightarrow Noether's problem.
- ▶ When $c_j(\sigma) = 1$ ($\forall \sigma \in G, \forall j$), called purely (quasi-)monomial.
- $G = \operatorname{Gal}(K/k)$ and purely \leftrightarrow Rationality problem for algebraic tori.

Exercises (1/2): Noether's problem

Open problem Is $k(x_1, \ldots, x_n)^{A_n}$ k-rational? $(n \ge 6)$

• $k(x_1,\ldots,x_5)^{A_5}$ is *k*-rational (Maeda, 1989).

Exercises (2/2): Noether's problem

•
$$k(x_1, x_2, x_3)^{A_3} = \mathbb{Q}(x_1, x_2, x_3)^{C_3} = \mathbb{Q}(t_1, t_2, t_3), \ Q. t_1, t_2, t_3?$$

 $(C_3 : x_1 \mapsto x_2 \mapsto x_3 \mapsto x_1)$
• Ans. $\mathbb{Q}(x_1, x_2, x_3)^{C_3} = \mathbb{Q}(t_1, t_2, t_3)$ where
 $t_1 = x_1 + x_2 + x_3,$
 $t_2 = \frac{x_1 x_2^2 + x_2 x_3^2 + x_3 x_1^2 - 3x_1 x_2 x_3}{x_1^2 + x_2^2 + x_3^2 - x_1 x_2 - x_2 x_3 - x_3 x_1},$
 $t_3 = \frac{x_1^2 x_2 + x_2^2 x_3 + x_3^2 x_1 - 3x_1 x_2 x_3}{x_1^2 + x_2^2 + x_3^2 - x_1 x_2 - x_2 x_3 - x_3 x_1}.$
• $\mathbb{Q}(x_1, x_2, \dots, x_8)^{C_8} = \mathbb{Q}(t_1, t_2, \dots, t_8), \ Q. t_1, t_2, \dots, t_8?$
 $(C_8 : x_1 \mapsto x_2 \mapsto x_3 \mapsto \dots \mapsto x_8 \mapsto x_1)$
• Ans. None: $\mathbb{Q}(x_1, x_2, \dots, x_8)^{C_8}$ is not \mathbb{Q} -rational!

Today's talk

Definition (quasi-monomial action)

Let K/k be a finite field extension and $G \leq \operatorname{Aut}_k(K(x_1, \ldots, x_n))$; finite where $K(x_1, \ldots, x_n)$ is the rational function field of n variables over K. The action of G on $K(x_1, \ldots, x_n)$ is called quasi-monomial if (i) $\sigma(K) \subset K$ for any $\sigma \in G$; (ii) $K^G = k$; (iii) for any $\sigma \in G$, $\sigma(x_j) = c_j(\sigma) \prod_{i=1}^n x_i^{a_{ij}}$ where $c_j(\sigma) \in K^{\times}$, $1 \leq j \leq n$, $[a_{i,j}]_{1 \leq i,j \leq n} \in GL_n(\mathbb{Z})$.

§1. $G \curvearrowright K$; trivial: monomial action & Noether's problem

- §2. Quasi-monomial actions: Known results
- §3. Quasi-monomial actions: Main theorem
- §4. G = Gal(K/k) and purely: rationality problem for algebraic tori

Various rationalities: definitions

 $k \subset L$; fin. gen. field extension, L is k-rational $\stackrel{\text{def}}{\iff} L \simeq k(x_1, \dots, x_n)$.

Definition (stably rational)

L is called stably k-rational $\stackrel{\text{def}}{\iff} L(y_1, \dots, y_m)$ is k-rational.

Definition (retract rational)

L is retract *k*-rational $\stackrel{\text{def}}{\iff} \exists k$ -algebra $R \subset L$ such that (i) *L* is the quotient field of *R*; (ii) $\exists f \in k[x_1, \dots, x_n] \exists k$ -algebra hom. $\varphi : R \to k[x_1, \dots, x_n][1/f]$ and $\psi : k[x_1, \dots, x_n][1/f] \to R$ satisfying $\psi \circ \varphi = 1_R$.

Definition (unirational)

$$L$$
 is k-unirational $\stackrel{\text{def}}{\iff} L \subset k(t_1, \ldots, t_n).$

- ► Assume L₁(x₁,...,x_n) ≃ L₂(y₁,...,y_m); stably isomorphic. If L₁ is retract k-rational, then so is L₂.
- ▶ "rational" ⇒ "stably rational" ⇒ "retract rational "⇒ "unirational"

"rational" \implies "stably rational" \implies "retract rational " \implies "unirational"

- The direction of the implication cannot be reversed.
- (Lüroth's problem) "unirational" \implies "rational" ? YES if trdeg= 1
- ► (Castelnuovo, 1894) L is \mathbb{C} -unirational and trdeg_{\mathbb{C}} $L = 2 \Longrightarrow L$ is \mathbb{C} -rational.
- ► (Zariski, 1958) Let k be an alg. closed field and k ⊂ L ⊂ k(x, y). If k(x, y) is separable algebraic over L, then L is k-rational.
- (Zariski cancellation problem) V₁ × Pⁿ ≈ V₂ × Pⁿ ⇒ V₁ ≈ V₂?
 In particular, "stably rational" ⇒ "rational"?
- ▶ (Beauville, Colliot-Thélène, Sansuc, Swinnerton-Dyer, 1985, Ann. Math.)
 L = Q(x, y, t) with x² + 3y² = t³ 2 (Châtelet surface)
 ⇒ L is not rational but stably Q-rational.
 Indeed, L(y₁, y₂, y₃) is Q-rational.
- $L(y_1, y_2)$ is Q-rational (Shepherd-Barron, 2002, Fano Conf.).
- $\mathbb{Q}(x_1, \ldots, x_{47})^{C_{47}}$ is not stably but retract \mathbb{Q} -rational.
- $\mathbb{Q}(x_1, \ldots, x_8)^{C_8}$ is not retract but \mathbb{Q} -unitational.

Retract rationality and generic extension

Theorem (Saltman, 1982, DeMeyer)

Let k be an infinite field and G be a finite group. The following are equivalent: (i) $k(x_g | g \in G)^G$ is retract k-rational. (ii) There is a generic G-Galois extension over k; (iii) There exists a generic G-polynomial over k.

▶ related to Inverse Galois Problem (IGP). (i) \implies IGP(G/\mathbb{Q}): true

Definition (generic polynomial)

A polynomial $f(t_1, \ldots, t_n; X) \in k(t_1, \ldots, t_n)[X]$ is generic for G over k if (1) $\operatorname{Gal}(f/k(t_1, \ldots, t_n)) \simeq G$; (2) $\forall L/M \supset k$ with $\operatorname{Gal}(L/M) \simeq G$, $\exists a_1, \ldots, a_n \in M$ such that $L = \operatorname{Spl}(f(a_1, \ldots, a_n; X)/M)$.

▶ By Hilbert's irreducibility theorem, $\exists L/\mathbb{Q}$ such that $Gal(L/\mathbb{Q}) \simeq G$.

$\S1$. Monomial action & Noether's problem

Definition (monomial action) $G \curvearrowright K$; trivial, $k = K^G = K$

An action of G on $k(x_1, \ldots, x_n)$ is monomial $\stackrel{\text{def}}{\iff}$

$$\sigma(x_j) = c_j(\sigma) \prod_{i=1}^n x_i^{a_{i,j}}, \ 1 \le j \le n, \forall \sigma \in G$$

where $[a_{i,j}]_{1 \le i,j \le n} \in \operatorname{GL}_n(\mathbb{Z})$, $c_j(\sigma) \in k^{\times} := k \setminus \{0\}$.

If $c_j(\sigma) = 1$ for any $1 \le j \le n$ then σ is called purely monomial.

Application to Noether's problem (permutation action)

Noether's problem (1/3) [G = A; abelian case]

- ► *k*; field, *G*; finite group
- $G \curvearrowright k$; trivial, $G \curvearrowright k(x_g \mid g \in G)$; permutation.
- $k(G) := k(x_g \mid g \in G)^G$; invariant field

Noether's problem (Emmy Noether, 1913)

Is k(G) k-rational?, i.e. $k(G) \simeq k(t_1, \ldots, t_n)$?

- Is the quotient variety \mathbb{A}^n/G k-rational?
- Assume G = A; abelian group.
- (Fisher, 1915) $\mathbb{C}(A)$ is \mathbb{C} -rational.
- (Masuda, 1955, 1968) $\mathbb{Q}(C_p)$ is \mathbb{Q} -rational for $p \leq 11$.
- ► (Swan, 1969, Invent. Math.) Q(C₄₇), Q(C₁₁₃), Q(C₂₃₃) are not Q-rational.
- ► S. Endo and T. Miyata (1973), V.E. Voskresenskii (1973), ... e.g. Q(C₈) is not Q-rational.
- (Lenstra, 1974, Invent. Math.)

k(A) is k-rational \iff some condition;

Noether's problem (2/3) [G = A; abelian case]

- ► (Endo-Miyata, 1973) $\mathbb{Q}(C_{p^r})$ is \mathbb{Q} -rational $\iff \exists \alpha \in \mathbb{Z}[\zeta_{\varphi(p^r)}]$ such that $N_{\mathbb{Q}(\zeta_{\varphi(p^r)})/\mathbb{Q}}(\alpha) = \pm p$ ► $h(\mathbb{Q}(\zeta_m)) = 1$ if m < 23 $\implies \mathbb{Q}(C_p)$ is \mathbb{Q} -rational for $p \leq 43$ and p = 61, 67, 71.
- (Endo-Miyata, 1973) For $p = 47, 79, 113, 137, 167, ..., \mathbb{Q}(C_p)$ is not Q-rational.
- ▶ However, for $p = 59, 83, 89, 97, 107, 163, \ldots$, unknown. Under the GRH, $\mathbb{Q}(C_p)$ is not rational for the above primes. But it was unknown for $p = 251, 347, 587, 2459, \ldots$
- For p ≤ 20000, see speaker's paper (using PARI/GP): Hoshi, Proc. Japan Acad. Ser. A 91 (2015) 39-44.

Theorem (Plans, 2017, Proc. AMS)

 $\mathbb{Q}(C_p)$ is \mathbb{Q} -rational $\iff p \leq 43$ or p = 61, 67, 71.

• Using lower bound of height, $\mathbb{Q}(C_p)$ is rational $\Rightarrow p < 173$.

Noether's problem (3/3) [G; non-abelian case]

Noether's problem (Emmy Noether, 1913)

Is k(G) k-rational?, i.e. $k(G) \simeq k(t_1, \ldots, t_n)$?

- Assume *G*; non-abelian group.
- ▶ (Maeda, 1989) *k*(*A*₅) is *k*-rational;
- ▶ (Rikuna, 2003; Plans, 2007) k(GL₂(𝔽₃)) and k(SL₂(𝔽₃)) is k-rational;

(Serre, 2003) if 2-Sylow subgroup of G ≃ C_{8m}, then Q(G) is not Q-rational; if 2-Sylow subgroup of G ≃ Q₁₆, then Q(G) is not Q-rational; e.g. G = Q₁₆, SL₂(F₇), SL₂(F₉), SL₂(F_q) with q ≡ 7 or 9 (mod 16).

From Noether's problem to monomial actions (1/2)

▶
$$k(G) := k(x_g \mid g \in G)^G$$
; invariant field

Noether's problem (Emmy Noether, 1913)

Is k(G) k-rational?, i.e. $k(G) \simeq k(t_1, \ldots, t_n)$?

By Hilbert 90, we have:

No-name lemma (e.g. Miyata, 1971, Remark 3)

Let G act faithfully on k-vector space V, $W \subset V$ faithful k[G]-submodule. Then $K(V)^G = K(W)^G(t_1, \ldots, t_m)$.

Rationality problem: linear action

Let G act on finite-dimensional k-vector space V and ρ : $G \to GL(V)$ be a representation. Whether $k(V)^G$ is k-rational?

the quotient variety V/G is k-rational?

From Noether's problem to monomial actions (2/2)

▶ For $\rho: G \to GL(V)$; monomial representation, i.e. matrix rep. has exactly one non-zero entry in each row and each column, G acts on $k(\mathbb{P}(V)) = k(\frac{w_1}{w_n}, \dots, \frac{w_{n-1}}{w_n})$ by monomial action.

By Hilbert 90, we have:

Lemma (e.g. Miyata, 1971, Lemma)

 $k(V)^G = k(\mathbb{P}(V))^G(t).$

- $V/G \approx \mathbb{P}(V)/G \times \mathbb{P}^1$ (birational)
- k(ℙ(V))^G (monomial action) is k-rational
 ⇒ k(V)^G (linear action) is k-rational
 ⇒ k(G) (permutation action) is k-rational
 (Noether's problem has an affirmative answer)

Example: Noether's problem for $GL_2(\mathbb{F}_3)$ and $SL_2(\mathbb{F}_3)$

G = GL₂(F₃) = ⟨A, B, C, D⟩ ⊂ GL₄(Q), |G| = 48,
H = SL₂(F₃) = ⟨A, B, C⟩ ⊂ GL₄(Q), |H| = 24, where
A =

$$\begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}, C = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, D = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

G and H act on k(V) = k(w₁, w₂, w₃, w₄) by
A : w₁ → -w₂ → -w₁ → w₂ → w₁, w₃ → -w₄ → -w₃ → w₄ → w₃,
B : w₁ → -w₃ → -w₁ → w₃ → w₁, w₂ → w₄ → -w₂ → -w₄ → w₂,
C : w₁ → -w₂ → w₃ → w₁, w₄ → w₄, D : w₁ → w₁, w₂ → -w₂, w₃ ↔ w₄.
k(P(V)) = k(x, y, z), x = w₁/w₄, y = w₂/w₄, z = w₃/w₄.
G and H act on k(x, y, z) as G/Z(G) ≃ S₄ and H/Z(H) ≃ A₄:
A : x → y/z, y → -x/z, z → -1/z, B : x → -y/z, y → -1/y, z → y/y,
C : x → y → z → x, D : x → x/z, y → -y/z, z → 1/z.
k(P(V))^G: k-rational ⇒ k(V)^G: k-rational ⇒ k(G): k-rational.

Monomial action (1/3) [3-dim. case]

Theorem (Hajja, 1987) 2-dim. monomial action

 $k(x_1, x_2)^G$ is *k*-rational.

Theorem (Hajja-Kang 1994, H-Rikuna 2008) 3-dim. purely monomial $k(x_1, x_2, x_3)^G$ is k-rational.

Theorem (Prokhorov, 2010) 3-dim. monomial action over $k = \mathbb{C}$ $\mathbb{C}(x_1, x_2, x_3)^G$ is \mathbb{C} -rational.

However, $\mathbb{Q}(x_1, x_2, x_3)^{\langle \sigma \rangle}$, $\sigma : x_1 \mapsto x_2 \mapsto x_3 \mapsto \frac{-1}{x_1 x_2 x_3}$ is not Q-rational (Hajja,1983).

Monomial action (2/3) [3-dim. case]

Theorem (Saltman, 2000) char $k \neq 2$

If $[k(\sqrt{a_1},\sqrt{a_2},\sqrt{a_3}):k]=8$, then $k(x_1,x_2,x_3)^{\langle\sigma
angle}$,

$$\sigma: x_1 \mapsto \frac{a_1}{x_1}, x_2 \mapsto \frac{a_2}{x_2}, x_3 \mapsto \frac{a_3}{x_3}$$

is not retract k-rational (hence not k-rational).

Theorem (Kang, 2004)

 $k(x_1, x_2, x_3)^{\langle \sigma \rangle}$, σ : $x_1 \mapsto x_2 \mapsto x_3 \mapsto \frac{c}{x_1 x_2 x_3} \mapsto x_1$, is *k*-rational \iff at least one of the following conditions is satisfied: (i) char k = 2; (ii) $c \in k^2$; (iii) $-4c \in k^4$; (iv) $-1 \in k^2$. If $k(x, y, z)^{\langle \sigma \rangle}$ is not *k*-rational, then it is not retract *k*-rational.

Recall that

▶ "rational" \implies "stably rational" \implies "retract rational " \implies "unirational"

Monomial action (3/3) [3-dim. case]

Theorem (Yamasaki, 2012) 3-dim. monomial, char $k \neq 2$

 $\exists 8 \text{ cases } G \leq GL_3(\mathbb{Z}) \text{ s.t } k(x_1, x_2, x_3)^G \text{ is not retract } k\text{-rational.}$ Moreover, the necessary and sufficient conditions are given.

- ▶ Two of 8 cases are Saltman's and Kang's cases.
- ∃G ≤ GL₃(ℤ); 73 finite subgroups (up to conjugacy)

Theorem (H-Kitayama-Yamasaki, 2011) 3-dim. monomial, char $k \neq 2$

 $k(x_1, x_2, x_3)^G$ is k-rational except for the 8 cases and $G = A_4$. For $G = A_4$, if $[k(\sqrt{a}, \sqrt{-1}) : k] \le 2$, then it is k-rational.

Corollary

 $\exists L = k(\sqrt{a})$ such that $L(x_1, x_2, x_3)^G$ is *L*-rational.

▶ However, $\exists 4\text{-dim}$. $\mathbb{C}(x_1, x_2, x_3, x_4)^{C_2 \times C_2}$ is not retract \mathbb{C} -rational.

§2. Quasi-monomial actions: Known results

Notion of "quasi-monomial" actions is defined in Hoshi-Kang-Kitayama [HKK14], J. Algebra (2014).
Pefinition

Theorem ([HKK14]) 1-dim. quasi-monomial actions

(1) purely quasi-monomial $\implies K(x)^G$ is k-rational. (2) $K(x)^G$ is k-rational except for the case: $\exists N \leq G$ such that (i) $G/N = \langle \sigma \rangle \simeq C_2$; (ii) $K(x)^N = k(\alpha)(y), \alpha^2 = a \in K^{\times}, \sigma(\alpha) = -\alpha$ (if char $k \neq 2$), $\alpha^2 + \alpha = a \in K, \sigma(\alpha) = \alpha + 1$ (if char k = 2); (iii) $\sigma \cdot y = b/y$ for some $b \in k^{\times}$. For the exceptional case, $K(x)^G = k(\alpha)(y)^{G/N}$ is k-rational \iff Hilbert symbol $(a, b)_k = 0$ (if char $k \neq 2$), $[a, b)_k = 0$ (if char k = 2). Moreover, $K(x)^G$ is not k-rational \implies not k-unirational. Theorem ([HKK14]) 2-dim. purely quasi-monomial actions

 $N = \{ \sigma \in G \mid \sigma(x) = x, \ \sigma(y) = y \}, \ H = \{ \sigma \in G \mid \sigma(\alpha) = \alpha \ (\forall \alpha \in K) \}.$ $K(x, y)^G$ is k-rational except for: (1) char $k \neq 2$ and (2) (i) $(G/N, HN/N) \simeq (C_4, C_2)$ or (ii) (D_4, C_2) . For the exceptional case, we have k(x, y) = k(u, v): (i) $(G/N, HN/N) \simeq (C_4, C_2),$ $K^N = k(\sqrt{a}), \ G/N = \langle \sigma \rangle \simeq C_4, \ \sigma : \sqrt{a} \mapsto -\sqrt{a}, \ u \mapsto \frac{1}{u}, \ v \mapsto -\frac{1}{v};$ (ii) $(G/N, HN/N) \simeq (D_4, C_2);$ $K^N = k(\sqrt{a}, \sqrt{b}), \ G/N = \langle \sigma, \tau \rangle \simeq D_4, \ \sigma : \sqrt{a} \mapsto -\sqrt{a}, \ \sqrt{b} \mapsto \sqrt{b},$ $u \mapsto \frac{1}{u}, v \mapsto -\frac{1}{v}, \tau : \sqrt{a} \mapsto \sqrt{a}, \sqrt{b} \mapsto -\sqrt{b}, u \mapsto u, v \mapsto -v.$ Case (i), $K(x,y)^G$ is k-rational \iff Hilbert symbol $(a,-1)_k = 0$. Case (ii), $K(x,y)^G$ is k-rational \iff Hilbert symbol $(a, -b)_k = 0$. Moreover, $K(x,y)^G$ is not k-rational \Longrightarrow Br $(k) \neq 0$ and $K(x,y)^G$ is not k-unitational.

Galois-theoretic interpretation:

(i) k-rational $\iff k(\sqrt{a})$ may be embedded into C_4 -ext. of k. (ii) k-rational $\iff k(\sqrt{a},\sqrt{b})$ may be embedded into D_4 -ext. of k.

Theorem ([HKK14]), 4-dim. purely monomial

Let M be a G-lattice with $\operatorname{rank}_{\mathbb{Z}} M = 4$ and G act on k(M) by purely monomial k-automorphisms. If M is decomposable, i.e. $M = M_1 \oplus M_2$ as $\mathbb{Z}[G]$ -modules where $1 \leq \operatorname{rank}_{\mathbb{Z}} M_1 \leq 3$, then $k(M)^G$ is k-rational.

- When rank_ℤM₁ = 1, rank_ℤM₂ = 3, it is easy to see k(M)^G is k-rational.
- ▶ When $\operatorname{rank}_{\mathbb{Z}} M_1 = \operatorname{rank}_{\mathbb{Z}} M_2 = 2$, we may apply Theorem of 2-dim. to $k(M) = k(x_1, x_2, y_1, y_2) = k(x_1, x_2)(y_1, y_2) = K(y_1, y_2)$.

Theorem ([HKK14]) char $k \neq 2$

Let $C_2 = \langle \tau \rangle$ act on the rational function field $k(x_1, x_2, x_3, x_4)$ by k-automorphisms defined as

$$\tau: x_1 \mapsto -x_1, \ x_2 \mapsto \frac{x_4}{x_2}, \ x_3 \mapsto \frac{(x_4-1)(x_4-x_1^2)}{x_3}, \ x_4 \mapsto x_4.$$

Then $k(x_1, x_2, x_3, x_4)^{C_2}$ is not retract *k*-rational. In particular, it is not *k*-rational.

Theorem A ([HKK14]) char $k \neq 2$, 5-dim. purely monomial

Let $D_4=\langle\rho,\tau\rangle$ act on the rational function field $k(x_1,x_2,x_3,x_4,x_5)$ by k-automorphisms defined as

$$\rho: x_1 \mapsto x_2, \ x_2 \mapsto x_1, \ x_3 \mapsto \frac{1}{x_1 x_2 x_3}, \ x_4 \mapsto x_5, \ x_5 \mapsto \frac{1}{x_4}, \tau: x_1 \mapsto x_3, \ x_2 \mapsto \frac{1}{x_1 x_2 x_3}, \ x_3 \mapsto x_1, \ x_4 \mapsto x_5, \ x_5 \mapsto x_4.$$

Then $k(x_1, x_2, x_3, x_4, x_5)^{D_4}$ is not retract *k*-rational. In particular, it is not *k*-rational.

Application to purely monomial actions (2/2)

Theorem ([HKK14]), 5-dim. purely monomial

Let M be a G-lattice and G act on k(M) by purely monomial k-automorphisms. Assume that (i) $M = M_1 \oplus M_2$ as $\mathbb{Z}[G]$ -modules where $\operatorname{rank}_{\mathbb{Z}} M_1 = 3$ and $\operatorname{rank}_{\mathbb{Z}} M_2 = 2$, (ii) either M_1 or M_2 is a faithful G-lattice. Then $k(M)^G$ is k-rational except for the case as in Theorem A.

• we may apply Theorem of 2-dim. to $k(M) = k(x_1, x_2, x_3, y_1, y_2) = k(x_1, x_2, x_3)(y_1, y_2) = K(y_1, y_2).$

More recent results

 3-dim. purely quasi-monomial actions (Hoshi-Kitayama, 2020, Kyoto J. Math.)

$\S3$. Quasi-monomial actions: Main theorem (1/3)

▶ $\exists 13 \ G \leq GL_2(\mathbb{Z})$ up to conjugacy.

Cyclic groups:

$$C_1 := \{I\}, \qquad C_2^{(1)} := \langle -I \rangle, \qquad C_2^{(2)} := \langle \lambda \rangle, \qquad C_2^{(3)} := \langle \tau \rangle, \\ C_3 := \langle \rho^2 \rangle, \qquad C_4 := \langle \sigma \rangle, \qquad C_6 := \langle \rho \rangle$$

where

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ \lambda = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \ \tau = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \ \sigma = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \ \rho = \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}$$

Non-cyclic groups:

$$V_4^{(1)} := \langle \lambda, -I \rangle, \quad V_4^{(2)} := \langle \tau, -I \rangle, \quad S_3^{(1)} := \langle \rho^2, \tau \rangle, \quad S_3^{(2)} := \langle \rho^2, -\tau \rangle,$$
$$D_4 := \langle \sigma, \tau \rangle, \qquad D_6 := \langle \rho, \tau \rangle.$$

Note that $\lambda^2 = \tau^2 = I$, $\sigma^2 = \rho^3 = -I$ and $\tau \sigma = \lambda$.

Quasi-monomial actions: Main theorem (2/3)

Define $H = \{ \sigma \in G \mid \sigma(\alpha) = \alpha \text{ for any } \alpha \in K \} \lhd G$. Then K is a (G/H)-Galois extension of k. Normal subgroups H of G are given as follows:

$$\begin{split} C_2^{(1)} &: H = \{1\}, \ \langle -I \rangle, & C_2^{(2)} : H = \{1\}, \ \langle \lambda \rangle, \\ C_2^{(3)} &: H = \{1\}, \ \langle \tau \rangle, & C_3 : H = \{1\}, \ \langle \rho^2 \rangle, \\ C_4 &: H = \{1\}, \ \langle \sigma^2 \rangle, \ \langle \sigma \rangle, & C_6 : H = \{1\}, \ \langle -I \rangle, \ \langle \rho^2 \rangle, \ \langle \rho \rangle, \end{split}$$

$$\begin{split} V_4^{(1)} &: H = \{1\}, \ \langle -I \rangle, \ \langle \lambda \rangle, \ \langle -\lambda \rangle, \ \langle \lambda, -I \rangle, \\ V_4^{(2)} &: H = \{1\}, \ \langle -I \rangle, \ \langle \tau \rangle, \ \langle -\tau \rangle, \ \langle \tau, -I \rangle, \\ S_3^{(1)} &: H = \{1\}, \ \langle \rho^2 \rangle, \ \langle \rho^2, \tau \rangle, \\ S_3^{(2)} &: H = \{1\}, \ \langle \rho^2 \rangle, \ \langle \rho^2, -\tau \rangle, \\ D_4 &: H = \{1\}, \ \langle -I \rangle, \ \langle -I, \lambda \rangle, \ \langle -I, \tau \rangle, \ \langle \sigma \rangle, \ \langle \sigma, \tau \rangle, \\ D_6 &: H = \{1\}, \ \langle -I \rangle, \ \langle \rho^2 \rangle, \ \langle \rho^2, \tau \rangle, \ \langle \rho^2, -\tau \rangle, \langle \rho, \tau \rangle. \end{split}$$

Quasi-monomial actions: Main theorem (3/3)

Main theorem solves the rationality problem of two-dimensional quasi-monomial actions under the condition that $c_j(\sigma) \in k \setminus \{0\}$ where $c_j(\sigma)$ is given as in (iii) of Definition \frown

- Let $(a, b)_{n,k}$ be the norm residue symbol of degree n over k.
- Let ω be a primitive cubic root of unity in \overline{k} .
- ► The case G = H was already solved affirmatively by Hajja. Theorem

Main theorem (Hoshi-Kitayama, 2024, Transform. Groups)

Let k be a field with char $k \neq 2$, 3, K/k be a finite extension and $G \leq GL_2(\mathbb{Z})$ acting on K(x, y) by quasi-monomial k-automorphisms. We assume that $c_j(\sigma) \in k \setminus \{0\}$ ($\forall \sigma \in G, 1 \leq \forall j \leq 2$) where $c_j(\sigma)$ is given as in (iii) of Definition \bullet Definition and $G \neq H$ where $H = \{\sigma \in G \mid \sigma(\alpha) = \alpha \text{ for any } \alpha \in K\}.$

(1) When $G = C_2^{(1)} = \langle -I \rangle$ and $H = \{1\}$, $K = k(\sqrt{a})$ and $-I : \sqrt{a} \mapsto -\sqrt{a}$, $x \mapsto b/x, y \mapsto c/y$ for $a, b, c \in k \setminus \{0\}$. Then $K(x, y)^G$ is k-rational if and only if $(a, b)_{2,k} = 0$ and $(a, c)_{2,k} = 0$. (2) When $G = C_2^{(2)} = \langle \lambda \rangle$ and $H = \{1\}$, $K = k(\sqrt{a})$ and $\lambda : \sqrt{a} \mapsto -\sqrt{a}$, $x \mapsto x, y \mapsto b/y$ for $a, b \in k \setminus \{0\}$. Then $K(x, y)^G$ is k-rational if and only if $(a, b)_{2,k} = 0$. (3) When $G = C_2^{(3)} = \langle \tau \rangle$ and $H = \{1\}$, $K = k(\sqrt{a})$ and $\tau : \sqrt{a} \mapsto -\sqrt{a}$, $x \mapsto y, y \mapsto x$ for $a \in k \setminus \{0\}$. Then $K(x, y)^G$ is k-rational. (4) When $G = C_3 = \langle \rho^2 \rangle$ and $H = \{1\}, \rho^2 : x \mapsto y, y \mapsto c/(xy)$ for $c \in k \setminus \{0\}$. $K(\omega) = k(\omega, \sqrt[3]{\alpha})$ for some $\alpha \in k(\omega)$ and $\rho^2 : \sqrt[3]{\alpha} \mapsto \omega \sqrt[3]{\alpha}$. Then $K(x, y)^G$ is *k*-rational if and only if $(\alpha, c)_{3,k(\omega)} = 0$. (5) When $G = C_4 = \langle \sigma \rangle$, $\sigma : x \mapsto y$, $y \mapsto c/x$ for $c \in k \setminus \{0\}$. (I) if $H = \{1\}$, then $K = k(\alpha, \beta)$ and $\sigma : \alpha \mapsto \beta, \beta \mapsto -\alpha$. We have $k(\alpha^2) = K^{\langle \sigma^2 \rangle}$ with $[k(\alpha^2) : k] = 2$. Then $K(x, y)^G$ is k-rational if and only if $(\alpha^2, c)_{2,k(\alpha^2)} = 0$; (II) if $H = \langle \sigma^2 \rangle$, $K = k(\sqrt{a})$ and $\sigma : \sqrt{a} \mapsto -\sqrt{a}$ for $a \in k \setminus \{0\}$. Then $K(x,y)^G$ is k-rational if and only if $(a,c)_{2,k} = 0$ and $(a,-c)_{2,k} = 0$.

(6) When $G = C_6 = \langle \rho \rangle$, $\rho : x \mapsto xy$, $y \mapsto 1/x$. Then $K(x, y)^G$ is k-rational. (7) When $G = V_4^{(1)} = \langle \lambda, -I \rangle = \langle \lambda, -\lambda \rangle$. (I) if $H = \{1\}$, then $K = k(\sqrt{a}, \sqrt{b})$ and $\lambda : \sqrt{a} \mapsto -\sqrt{a}, \sqrt{b} \mapsto \sqrt{b}, x \mapsto x$, $y \mapsto d/y, -\lambda : \sqrt{a} \mapsto \sqrt{a}, \sqrt{b} \mapsto -\sqrt{b}, x \mapsto c/x, y \mapsto y \text{ for } a, b, c, d \in k \setminus \{0\}.$ Then $K(x, y)^G$ is k-rational if and only if $(a, d)_{2,k} = 0$ and $(b, c)_{2,k} = 0$; (II) if $H = \langle -I \rangle$, then $K = k(\sqrt{a})$ and $\lambda : \sqrt{a} \mapsto -\sqrt{a}$, $x \mapsto x$, $y \mapsto d/y$, $-I: \sqrt{a} \mapsto \sqrt{a}, x \mapsto c/x, y \mapsto d/y \text{ for } a, c, d \in k \setminus \{0\}.$ Then $K(x,y)^G$ is k-rational if and only if $(a,d)_{2,k(\sqrt{cd})} = 0$; (III) if $H = \langle \lambda \rangle$, then $K = k(\sqrt{a})$ and $\lambda : \sqrt{a} \mapsto \sqrt{a}, x \mapsto \varepsilon_1 x, y \mapsto d/y$, $-I: \sqrt{a} \mapsto -\sqrt{a}, x \mapsto c/x, y \mapsto d/y$ for $a, c, d \in k \setminus \{0\}, \varepsilon_1 = \pm 1$. If $\varepsilon_1 = 1$, then $K(x, y)^G$ is k-rational if and only if $(a, c)_{2,k} = 0$. If $\varepsilon_1 = -1$, then $K(x, y)^G$ is k-rational if and only if $(a, -c)_{2,k(\sqrt{ad})} = 0$; (IV) if $H = \langle -\lambda \rangle$, then $K = k(\sqrt{a})$ and $-\lambda : \sqrt{a} \mapsto \sqrt{a}, x \mapsto c/x, y \mapsto \varepsilon_2 y$, $-I: \sqrt{a} \mapsto -\sqrt{a}, x \mapsto c/x, y \mapsto d/y$ for $a, c, d \in k \setminus \{0\}, \varepsilon_2 = \pm 1$. If $\varepsilon_2 = 1$, then $K(x, y)^G$ is k-rational if and only if $(a, d)_{2,k} = 0$. If $\varepsilon_2 = -1$, then $K(x, y)^G$ is k-rational if and only if $(a, -d)_{2,k(\sqrt{ac})} = 0$.

(8) When $G = V_4^{(2)} = \langle \tau, -I \rangle$, $\tau : x \mapsto y$, $y \mapsto x$, $-I : x \mapsto c/x$, $y \mapsto c/y$ for $c \in k \setminus \{0\}.$ (I) if $H = \{1\}$, then $K = k(\sqrt{a}, \sqrt{b})$ and $\tau : \sqrt{a} \mapsto -\sqrt{a}, \sqrt{b} \mapsto \sqrt{b}$. $-I: \sqrt{a} \mapsto \sqrt{a}, \sqrt{b} \mapsto -\sqrt{b}$ for $a, b \in k \setminus \{0\}$. Then $K(x, y)^G$ is k-rational if and only if $(b, c)_{2,k(\sqrt{a})} = 0$; (II) if $H = \langle \tau \rangle$, $\langle -I \rangle$ or $\langle -\tau \rangle$, then $K(x, y)^G$ is k-rational. (9) When $G = S_3^{(1)} = \langle \rho^2, \tau \rangle, \ \rho^2 : x \mapsto y, y \mapsto c/(xy), \ \tau : x \mapsto y, y \mapsto x$ for $c \in k \setminus \{0\}.$ (I) if $H = \{1\}$, then $K(\omega) = F(\omega, \sqrt[3]{\alpha})$ for some $\alpha \in F(\omega)$ and $\rho^2: \sqrt[3]{\alpha} \mapsto \omega \sqrt[3]{\alpha}$ where $F = K^{\langle \rho^2 \rangle}$ with [F:k] = 2 and $F(\omega) = k(\alpha, \omega)$. Then $K(x, y)^G$ is k-rational if and only if $(\alpha, c)_{3,k(\alpha, w)} = 0$; (II) if $H = \langle \rho^2 \rangle$, then $K(x, y)^G$ is k-rational. (10) When $G = S_3^{(2)} = \langle \rho^2, -\tau \rangle, \ \rho^2 : x \mapsto y, \ y \mapsto 1/(xy), \ -\tau : x \mapsto 1/y,$ $y \mapsto 1/x$. Then $K(x, y)^G$ is k-rational.

(11) When $G = D_4 = \langle \sigma, \tau \rangle$, $\sigma : x \mapsto y, y \mapsto c/x, \tau : x \mapsto \varepsilon y, y \mapsto \varepsilon x$ for $c \in k \setminus \{0\}, \varepsilon = \pm 1.$ (I) if $H = \{1\}$, then $K = k(\alpha, \beta)$ and $\sigma : \alpha \mapsto \beta, \beta \mapsto -\alpha, \tau : \alpha \mapsto \beta, \beta \mapsto \alpha$. We have $k(\alpha^2) = K^{\langle \sigma^2, \sigma \tau \rangle}$ with $[k(\alpha^2) : k] = 2$. If $\varepsilon = 1$, then $K(x, y)^G$ is k-rational if and only if $(\alpha^2, c)_{2,k(\alpha^2)} = 0$. If $\varepsilon = -1$, then $K(x, y)^G$ is k-rational if and only if $(\alpha^2, -\beta^2 c)_{2,k(\alpha^2)} = 0$; (II) if $H = \langle -I \rangle$, then $K = k(\sqrt{a}, \sqrt{b})$ and $\sigma : \sqrt{a} \mapsto -\sqrt{a}, \sqrt{b} \mapsto \sqrt{b}$, $\tau: \sqrt{a} \mapsto \sqrt{a}, \sqrt{b} \mapsto -\sqrt{b}$ for $a, b \in k \setminus \{0\}$. Then $K(x,y)^G$ is k-rational if and only if $(a, \varepsilon c)_{2,k} = 0$ and $(a, -\varepsilon bc)_{2,k} = 0$; (III) if $H = \langle -I, \tau \rangle$, then $K = k(\sqrt{a})$ and $\sigma : \sqrt{a} \mapsto -\sqrt{a}, \tau : \sqrt{a} \mapsto \sqrt{a}$ for $a \in k \setminus \{0\}$. Then $K(x, y)^G$ is k-rational if and only if $(a, \varepsilon c)_{2,k} = 0$; (IV) if $H = \langle -I, \tau \sigma \rangle$ or $\langle \sigma \rangle$, then $K(x, y)^G$ is k-rational. (12) When $G = D_6 = \langle \rho, \tau \rangle$, $\rho : x \mapsto xy, y \mapsto 1/x, \tau : x \mapsto y, y \mapsto x$. Then $K(x, y)^G$ is k-rational. Moreover, if $K(x, y)^G$ is not k-rational, then k is an infinite field, the Brauer group Br(k) is non-trivial, and $K(x, y)^G$ is not k-unitational.

Remark (from the viewpoint of algebraic geometry)

(1) When $H = \{1\}$ and $c_i(\sigma) = 1$ ($\forall \sigma \in G, 1 \leq \forall j \leq 2$), i.e. the action of G is faithful on K and purely monomial, $K(x,y)^G \simeq k(T)$ where T is an algebraic k-torus with dim T = 2. In this case, $k(T) \simeq K(x, y)^G$ is k-rational by Voskresenskii's theorem (1967). (2) When $H = \{1\}$, because $K(x, y)^G \otimes_k K = K(x, y)$ is K-rational, one can consider equivariant compactification of the corresponding (split) algebraic K-torus $T_K = T \otimes_k K$ and apply equivariant MMP, then get a certain (split) G-minimal toric surface S_K , for (1) $C_{2}^{(1)}$, (2) $C_{2}^{(2)}$, (7) $V_{4}^{(1)}$, $S_{K} \simeq \mathbb{P}_{K}^{1} \times \mathbb{P}_{K}^{1}$ with the *G*-invariant Picard number 2: for (3) $C_2^{(3)}$, (5) C_4 , (8) $V_4^{(2)}$, (11) D_4 , $S_K \simeq \mathbb{P}^1_K \times \mathbb{P}^1_K$ with the G-invariant Picard number 1. for (4) C_3 , (10) $S_3^{(2)}$, $S_K \simeq \mathbb{P}_K^2$ (Severi-Brauer surface), for (6) C_6 , (9) $S_3^{(1)}$, (12) D_6 , S_K is a del Pezzo surface of degree 6 (see Colliot-Thélène, Karpenko and Merkurjev 2008, Xie 2018).

As an application, we obtain some rationality result of $k(M)^G$ up to 5-dimensional cases under the action of monomial k-automorphisms.

Corollary (Hoshi-Kitayama, 2024, Transform. Groups) char $k \neq 2, 3$

Let G be one of the finite subgroups $C_2^{(3)} = \langle \tau \rangle$, $C_6 = \langle \rho \rangle$. $S_2^{(2)} = \langle \rho^2, -\tau \rangle$, $D_6 = \langle \rho, \tau \rangle$ of $GL_2(\mathbb{Z})$ as in Main theorem (3), (6), (10), (12). Let M be a G-lattice with $M = M_1 \oplus M_2$ as $\mathbb{Z}[G]$ -modules where $1 < \operatorname{rank}_{\mathbb{Z}} M_1 < 3$, $\operatorname{rank}_{\mathbb{Z}} M_2 = 2$ and G act on k(M) by monomial k-automorphisms where M_2 is a faithful G-lattice and the action of $G \leq GL_2(\mathbb{Z})$ on $k(M_2)$ is given as in (iii) of Definition \checkmark Definition. (1) If rank_{\mathbb{Z}} $M_1 = 1$ or 2, then $k(M)^G$ is k-rational; (2) If rank_Z $M_1 = 3$, then $k(M)^G$ is k-rational except for the case $G = D_6$ and the action of G on $k(M_1)$ is given as $G_{3,1,1} = \langle \tau_1, \lambda_1 \rangle \simeq V_4$ in [HKiY] (2011).

For proof (1/4)

• Let $(a, b)_{n,k}$ be the norm residue symbol of degree n over k.

Theorem (Hajja-Kang-Ohm 1994, Kang 2007) char $k \neq 2$

Let $K=k(\sqrt{a})$ be a quadratic field extension of k. Take $\mathrm{Gal}(K/k)=\langle\sigma\rangle$ and extend the action of σ to K(x,y) by

$$\sigma: \sqrt{a} \mapsto -\sqrt{a}, \ x \mapsto x, \ y \mapsto \frac{f(x)}{y} \quad (f(x) \in k[x]).$$

Then we have $K(x,y)^{\langle\sigma\rangle} = k(z_1, z_2, x)$ with the relation $z_1^2 - az_2^2 = f(x)$ where $z_1 = \frac{1}{2}(y + \frac{f(x)}{y})$, $z_2 = \frac{1}{2\sqrt{a}}(y - \frac{f(x)}{y})$. (1) When f(x) = b, $K(x,y)^{\langle\sigma\rangle}$ is *k*-rational if and only if $(a,b)_{2,k} = 0$. (2) When deg f(x) = 1, $K(x,y)^{\langle\sigma\rangle}$ is always *k*-rational. (3) When $f(x) = b(x^2 - c)$ for some $b, c \in k \setminus \{0\}$, then $K(x,y)^{\langle\sigma\rangle}$ is *k*-rational if and only if $(a,b)_{2,k} \in \operatorname{Br}(k(\sqrt{ac})/k)$, i.e. $(a,b)_{2,k}(\sqrt{ac}) = 0$. Moreover, if $K(x,y)^{\langle\sigma\rangle}$ is not *k*-rational, then *k* is an infinite field, the Brauer group $\operatorname{Br}(k)$ is non-trivial, and $K(x,y)^{\langle\sigma\rangle}$ is not *k*-unirational.

Theorem (Hoshi-Kitayama, 2024, Transform. Groups)

Let $n \geq 2$, k be a field with $gcd\{char k, n\} = 1$ and $\zeta_n \in k$ where ζ_n is a primitive *n*-th root of unity in \overline{k} . Suppose that $k(\sqrt[n]{a})$ is a cyclic extension of k of degree n with $a \in k \setminus \{0\}$. Take $Gal(k(\sqrt[n]{a})/k) = \langle \sigma \rangle$ and extend the action of σ to $k(\sqrt[n]{a})(x_1, \ldots, x_{n-1})$ by

$$\sigma: x_1 \mapsto \dots \mapsto x_{n-1} \mapsto \frac{b}{x_1 \cdots x_{n-1}} \mapsto x_1$$

where $b \in k \setminus \{0\}$. Then the following statements are equivalent: (i) $k(\sqrt[n]{a})(x_1, \dots, x_{n-1})^{\langle \sigma \rangle}$ is *k*-rational; (ii) $k(\sqrt[n]{a})(x_1, \dots, x_{n-1})^{\langle \sigma \rangle}$ is stably *k*-rational; (iii) $k(\sqrt[n]{a})(x_1, \dots, x_{n-1})^{\langle \sigma \rangle}$ is *k*-unirational; (iv) $(a, b)_{n,k} = 0$.

For proof (3/4)

Theorem (Hoshi-Kitayama, 2024, Transform. Groups) char $k \neq 2$

Let $K = k(\sqrt{a})$ be a quadratic field extension of k. Take $Gal(K/k) = \langle \sigma \rangle$ and extend the action of σ to $K(x_1, \ldots, x_n)$ by

$$\sigma: \sqrt{a} \mapsto -\sqrt{a}, \ x_i \mapsto \frac{b_i}{x_i} \quad (1 \le i \le n)$$

where
$$b_i \in k \setminus \{0\}$$
. Then $K(x_1, \dots, x_n)^{\langle \sigma \rangle} = k(s_i, t_i : 1 \le i \le n)$ where
 $s_i^2 - at_i^2 = b_i \quad (1 \le i \le n)$ (1)

and the following statements are equivalent: (i) $K(x_1, \ldots, x_n)^{\langle \sigma \rangle}$ is *k*-rational; (ii) $K(x_1, \ldots, x_n)^{\langle \sigma \rangle}$ is stably *k*-rational; (iii) $K(x_1, \ldots, x_n)^{\langle \sigma \rangle}$ is *k*-unirational; (iv) the variety defined by (1) has a *k*-rational point; (v) $(a, b_i)_{2,k} = 0$ for any $1 \leq i \leq n$.

For proof (4/4)

Theorem (Hoshi-Kitayama, 2024, Transform. Groups) char $k \neq 2$

Let $K = k(\sqrt{a_1}, \dots, \sqrt{a_n})$ where $a_i \in K \setminus \{0\}$ $(1 \le i \le n)$. Let σ_i $(1 \le i \le n)$ be a k-automorphism of $K(x_1, \dots, x_n)$ defined by

$$\sigma_i : \sqrt{a_j} \mapsto \begin{cases} -\sqrt{a_j} & \text{if } i = j \\ \sqrt{a_j} & \text{if } i \neq j \end{cases}, \ x_j \mapsto \begin{cases} \frac{C_j}{x_j} & \text{if } i = j \\ x_j & \text{if } i \neq j \end{cases} \quad (1 \le i, j \le n)$$

where $c_j \in k \setminus \{0\}$. Then $K(x_1, \ldots, x_n)^{\langle \sigma_1, \ldots, \sigma_n \rangle} = k(s_i, t_i : 1 \le i \le n)$ where

$$s_i^2 - a_i t_i^2 = c_i \quad (1 \le i \le n)$$
 (2)

and the following statements are equivalent: (i) $K(x_1, \ldots, x_n)^{\langle \sigma_1, \ldots, \sigma_n \rangle}$ is k-rational; (ii) $K(x_1, \ldots, x_n)^{\langle \sigma_1, \ldots, \sigma_n \rangle}$ is stably k-rational; (iii) $K(x_1, \ldots, x_n)^{\langle \sigma_1, \ldots, \sigma_n \rangle}$ is k-unirational; (iv) the variety defined by (2) has a k-rational point; (v) $(a_i, c_i)_{2,k} = 0$ for and $1 \le i \le n$.

§4. Rationality problem for algebraic tori (2-dim., 3-dim.)

 $G \simeq \operatorname{Gal}(K/k) \curvearrowright K(x_1, \ldots, x_n)$: purely quasi-monomial, $K(x_1, \ldots, x_n)^G$ may be regarded as the function field of algebraic torus T over k which splits over K $(T \otimes_k K \simeq \mathbb{G}_m^n)$.

- ► T is k-unirational, i.e. $K(x_1, \ldots, x_n)^G \subset k(t_1, \ldots, t_n)$.
- ▶ $\exists 13 \mathbb{Z}$ -coujugacy subgroups $G \leq GL_2(\mathbb{Z})$.

Theorem (Voskresenskii, 1967) 2-dim. algebraic tori T

T is k-rational.

▶ $\exists 73 \ \mathbb{Z}$ -coujugacy subgroups $G \leq \operatorname{GL}_3(\mathbb{Z})$.

Theorem (Kunyavskii, 1990) 3-dim. algebraic tori T

(i) T is k-rational $\iff T$ is stably k-rational $\iff T$ is retract k-rational $\iff \exists G: 58$ groups; (ii) T is not k-rational $\iff T$ is not stably k-rational $\iff T$ is not retract k-rational $\iff \exists G: 15$ groups.

Rationality of algebraic tori (4-dim., 5-dim.)

▶ $\exists 710 \ \mathbb{Z}$ -coujugacy subgroups $G \leq \operatorname{GL}_4(\mathbb{Z})$.

Theorem (Hoshi-Yamasaki, 2017, Mem. AMS) 4-dim. alg. tori T(i) T is stably k-rational $\iff \exists G: 487$ groups; (ii) T is not stably but retract k-rational $\iff \exists G: 7$ groups; (iii) T is not retract k-rational $\iff \exists G: 216$ groups.

▶ $\exists 6079 \ \mathbb{Z}$ -coujugacy subgroups $G \leq GL_5(\mathbb{Z})$.

Theorem (Hoshi-Yamasaki, 2017, Mem. AMS) 5-dim. alg. tori T(i) T is stably k-rational $\iff \exists G: 3051$ groups; (ii) T is not stably but retract k-rational $\iff \exists G: 25$ groups; (iii) T is not retract k-rational $\iff \exists G: 3003$ groups.

- (Voskresenskii's conjecture) any stably rational torus is rational.
- ▶ $\exists 85308 \ \mathbb{Z}$ -coujugacy subgroups $G \leq \operatorname{GL}_6(\mathbb{Z})!$

Special case: $T = R_{K/k}^{(1)}(\mathbb{G}_m)$; norm one tori (1/5)

Rationality problem for T = R⁽¹⁾_{K/k}(G_m) is investigated by S. Endo, Colliot-Thélène and Sansuc, W. Hürlimann, L. Le Bruyn, A. Cortella and B. Kunyavskii, N. Lemire and M. Lorenz, M. Florence, etc.

Theorem (Endo-Miyata, 1974), (Saltman, 1984)

Let K/k be a finite Galois field extension and $G = \operatorname{Gal}(K/k)$. (i) T is retract k-rational \iff all the Sylow subgroups of G are cyclic; (ii) T is stably k-rational \iff G is a cyclic group, or a direct product of a cyclic group of order m and a group $\langle \sigma, \tau | \sigma^n = \tau^{2^d} = 1, \tau \sigma \tau^{-1} = \sigma^{-1} \rangle$, where $d, m \ge 1, n \ge 3, m, n$: odd, and (m, n) = 1.

Theorem (Endo, 2011)

Let K/k be a finite non-Galois, separable field extension and L/k be the Galois closure of K/k. Assume that the Galois group of L/k is nilpotent. Then the norm one torus $T = R_{K/k}^{(1)}(\mathbb{G}_m)$ is not retract k-rational. Special case: $T = R_{K/k}^{(1)}(\mathbb{G}_m)$; norm one tori (2/5)

- Let K/k be a finite non-Galois, separable field extension
- Let L/k be the Galois closure of K/k.
- Let $G = \operatorname{Gal}(L/k)$ and $H = \operatorname{Gal}(L/K) \leq G$.

Theorem (Endo, 2011)

Assume that all the Sylow subgroups of G are cyclic. Then T is retract k-rational. $T = R_{K/k}^{(1)}(\mathbb{G}_m)$ is stably k-rational $\iff G = D_n$, $n \text{ odd } (n \ge 3)$ or $C_m \times D_n$, $m, n \text{ odd } (m, n \ge 3)$, (m, n) = 1, $H \le D_n$ with |H| = 2.

Special case:
$$T = R^{(1)}_{K/k}(\mathbb{G}_m)$$
; norm one tori (3/5)

Theorem (Endo, 2011) dim T = n - 1

Assume that $\operatorname{Gal}(L/k) = S_n$, $n \ge 3$, and $\operatorname{Gal}(L/K) = S_{n-1}$ is the stabilizer of one of the letters in S_n . (i) $R_{K/k}^{(1)}(\mathbb{G}_m)$ is retract k-rational $\iff n$ is a prime; (ii) $R_{K/k}^{(1)}(\mathbb{G}_m)$ is (stably) k-rational $\iff n = 3$.

Theorem (Endo, 2011) dim T = n - 1

Assume that $\operatorname{Gal}(L/k) = A_n$, $n \ge 4$, and $\operatorname{Gal}(L/K) = A_{n-1}$ is the stabilizer of one of the letters in A_n . (i) $R_{K/k}^{(1)}(\mathbb{G}_m)$ is retract k-rational $\iff n$ is a prime; (ii) $\exists t \in \mathbb{N}$ s.t. $[R_{K/k}^{(1)}(\mathbb{G}_m)]^{(t)}$ is stably k-rational $\iff n = 5$.

• $[R_{K/k}^{(1)}(\mathbb{G}_m)]^{(t)}$: the product of t copies of $R_{K/k}^{(1)}(\mathbb{G}_m)$.

Special case: $T = R_{K/k}^{(1)}(\mathbb{G}_m)$; norm one tori (4/5)

Theorem ([HY17], Rationality for $R_{K/k}^{(1)}(\mathbb{G}_m)$ (dim. 4, [K:k] = 5))

Let K/k be a separable field extension of degree 5 and L/k be the Galois closure of K/k. Assume that $G = \operatorname{Gal}(L/k)$ is a transitive subgroup of S_5 and $H = \operatorname{Gal}(L/K)$ is the stabilizer of one of the letters in G. Then the rationality of $R_{K/k}^{(1)}(\mathbb{G}_m)$ is given by

G		$L(M) = L(x_1, x_2, x_3, x_4)^G$
5T1	C_5	stably k -rational
5T2	D_5	stably k-rational
5T3	F_{20}	not stably but retract k -rational
5T4	A_5	stably k -rational
5T5	S_5	not stably but retract k -rational

- ▶ This theorem is already known except for the case of A₅ (Endo).
- Stably k-rationality for the case A_5 is asked by S. Endo (2011).

Special case: $T = R_{K/k}^{(1)}(\mathbb{G}_m)$; norm one tori (5/5)

Corollary of (Endo 2011) and [HY17]

Assume that $\operatorname{Gal}(L/k) = A_n$, $n \ge 4$, and $\operatorname{Gal}(L/K) = A_{n-1}$ is the stabilizer of one of the letters in A_n . Then $R_{K/k}^{(1)}(\mathbb{G}_m)$ is stably k-rational $\iff n = 5$.

More recent results on stably/retract k-rational classification for T

- ▶ $G \leq S_n \ (n \leq 10)$ and $G \neq 9T27 \simeq PSL_2(\mathbb{F}_8)$, $G \leq S_p$ and $G \neq PSL_2(\mathbb{F}_{2^e}) \ (p = 2^e + 1 \geq 17$; Fermat prime) (Hoshi-Yamasaki [HY21] Israel J. Math.)
- ► $G \leq S_n \ (n = 12, 14, 15) \ (n = 2^e)$ (Hasegawa-Hoshi-Yamasaki [HHY20] Math. Comp.)

 $\operatorname{III}(T)$ and Hasse norm principle over number fields k (see next slides)

(Hoshi-Kanai-Yamasaki [HKY22] Math. Comp., [HKY23] JNT)

$\operatorname{III}(T)$ and HNP for K/k: Ono's theorem (1963)

•
$$T$$
 : algebraic k-torus, i.e. $T \times_k \overline{k} \simeq (\mathbb{G}_{m,\overline{k}})^n$.

•
$$\operatorname{III}(T) := \operatorname{Ker}\{H^1(k,T) \xrightarrow{\operatorname{res}} \bigoplus_{v \in V_k} H^1(k_v,T)\}$$
 : Shafarevich-Tate gp.

▶ $T = R_{K/k}^{(1)}(\mathbb{G}_m)$ is biregularly isomorphic to the norm hyper surface $f(x_1, \ldots, x_n) = 1$ where $f \in k[x_1, \ldots, x_n]$ is the norm form of K/k.

Theorem (Ono 1963, Ann. of Math.)

Let K/k be a finite extension of number fields and $T = R_{K/k}^{(1)}(\mathbb{G}_m)$. Then

$$\mathrm{III}(T) \simeq (N_{K/k}(\mathbb{A}_K^{\times}) \cap k^{\times})/N_{K/k}(K^{\times})$$

where \mathbb{A}_{K}^{\times} is the idele group of K. In particular,

 $\operatorname{III}(T) = 0 \iff$ Hasse norm principle holds for K/k.