Rationality problem of two-dimensional quasi-monomial group actions (joint work with H. Kitayama)

Akinari Hoshi
Niigata University

March 2, 2024

Table of contents

0 Introduction: rationality problem for quasi-monomial actions
1 Monomial action \& Noether's problem
2 Quasi-monomial actions: Known results
3 Quasi-monomial actions: Main theorem
4 Rationality problem for algebraic tori

§0. Introduction

Inverse Galois problem (IGP)

Does every finite group occur as a quotient group of the absolute Galois $\operatorname{group} \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$?

- Related to rationality problem (Emmy Noether's strategy: 1913)

A finite group $G \curvearrowright k\left(x_{g} \mid g \in G\right)$: rational function field over k by permutation
$k\left(x_{g} \mid g \in G\right)^{G}$ is k-rational, i.e. $k\left(x_{g} \mid g \in G\right)^{G} \simeq k\left(t_{1}, \ldots, t_{n}\right)$ (Noether's problem has an affirmative answer)
$\Longrightarrow k\left(x_{g} \mid g \in G\right)^{G}$ is retract k-rational (weaker concept)
$\Longleftrightarrow \exists$ generic extension (polynomial) for (G, k) (Saltman's sense)
$\stackrel{k: \text { Hilbertian }}{\Longrightarrow}$ IGP for (k, G) has an affirmative answer

Rationality problem for quasi-monomial actions

Definition (quasi-monomial action)

Let K / k be a finite field extension and $G \leq \operatorname{Aut}_{k}\left(K\left(x_{1}, \ldots, x_{n}\right)\right)$; finite where $K\left(x_{1}, \ldots, x_{n}\right)$ is the rational function field of n variables over K. The action of G on $K\left(x_{1}, \ldots, x_{n}\right)$ is called quasi-monomial if (i) $\sigma(K) \subset K$ for any $\sigma \in G$;
(ii) $K^{G}=k$;
(iii) for any $\sigma \in G, \quad \sigma\left(x_{j}\right)=c_{j}(\sigma) \prod_{i=1} x_{i}^{a_{i j}}$
where $c_{j}(\sigma) \in K^{\times}, 1 \leq j \leq n,\left[a_{i, j}\right]_{1 \leq i, j \leq n} \in G L_{n}(\mathbb{Z})$.

Rationality problem

Under what situation the fixed field $K\left(x_{1}, \ldots, x_{n}\right)^{G}$ is k-rational, i.e. $K\left(x_{1}, \ldots, x_{n}\right)^{G} \simeq k\left(t_{1}, \ldots, t_{n}\right)(=$ purely transcendental over $k)$, if G acts on $K\left(x_{1}, \ldots, x_{n}\right)$ by quasi-monomial k-automorphisms.

Rationality problem for quasi-monomial actions

Definition (quasi-monomial action)

Let K / k be a finite field extension and $G \leq \operatorname{Aut}_{k}\left(K\left(x_{1}, \ldots, x_{n}\right)\right)$; finite where $K\left(x_{1}, \ldots, x_{n}\right)$ is the rational function field of n variables over K. The action of G on $K\left(x_{1}, \ldots, x_{n}\right)$ is called quasi-monomial if (i) $\sigma(K) \subset K$ for any $\sigma \in G$;
(ii) $K^{G}=k$;
(iii) for any $\sigma \in G$,

$$
\sigma\left(x_{j}\right)=c_{j}(\sigma) \prod_{i=1}^{n} x_{i}^{a_{i j}}
$$

where $c_{j}(\sigma) \in K^{\times}, 1 \leq j \leq n,\left[a_{i, j}\right]_{1 \leq i, j \leq n} \in G L_{n}(\mathbb{Z})$.

- When $G \curvearrowright K$; trivial (i.e. $K=k$), called (just) monomial action.
- When $G \curvearrowright K$; trivial and permutation \leftrightarrow Noether's problem.
- When $c_{j}(\sigma)=1(\forall \sigma \in G, \forall j)$, called purely (quasi-)monomial.
- $G=\operatorname{Gal}(K / k)$ and purely \leftrightarrow Rationality problem for algebraic tori

Exercises (1/2): Noether's problem

- $S_{n} \curvearrowright k\left(x_{1}, \ldots, x_{n}\right)$; permutation
Q. Is $k\left(x_{1}, \ldots, x_{n}\right)^{S_{n}} k$-rational? Ans. Yes!
$k\left(x_{1}, \ldots, x_{n}\right)^{S_{n}}=k\left(s_{1}, \ldots, s_{n}\right) ; s_{i}$, i th elementary symmetric
\Longrightarrow IGP for $\left(k, S_{n}\right)$ has affirmative solution.
- $A_{n} \curvearrowright k\left(x_{1}, \ldots, x_{n}\right)$; permutation
Q. Is $k\left(x_{1}, \ldots, x_{n}\right)^{A_{n}} k$-rational? Ans. Yes? ?? ??
$k\left(x_{1}, \ldots, x_{n}\right)^{A_{n}}=k\left(s_{1}, \ldots, s_{n}, \Delta\right)$; but \ldots
Open problem Is $k\left(x_{1}, \ldots, x_{n}\right)^{A_{n}} k$-rational? $(n \geq 6)$
- $k\left(x_{1}, \ldots, x_{5}\right)^{A_{5}}$ is k-rational (Maeda, 1989).

Exercises (2/2): Noether's problem

- $k\left(x_{1}, x_{2}, x_{3}\right)^{A_{3}}=\mathbb{Q}\left(x_{1}, x_{2}, x_{3}\right)^{C_{3}}=\mathbb{Q}\left(t_{1}, t_{2}, t_{3}\right)$, Q. t_{1}, t_{2}, t_{3} ? $\left(C_{3}: x_{1} \mapsto x_{2} \mapsto x_{3} \mapsto x_{1}\right)$
- Ans. $\mathbb{Q}\left(x_{1}, x_{2}, x_{3}\right)^{C_{3}}=\mathbb{Q}\left(t_{1}, t_{2}, t_{3}\right)$ where

$$
\begin{aligned}
t_{1} & =x_{1}+x_{2}+x_{3} \\
t_{2} & =\frac{x_{1} x_{2}^{2}+x_{2} x_{3}^{2}+x_{3} x_{1}^{2}-3 x_{1} x_{2} x_{3}}{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-x_{1} x_{2}-x_{2} x_{3}-x_{3} x_{1}}, \\
t_{3} & =\frac{x_{1}^{2} x_{2}+x_{2}^{2} x_{3}+x_{3}^{2} x_{1}-3 x_{1} x_{2} x_{3}}{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-x_{1} x_{2}-x_{2} x_{3}-x_{3} x_{1}} .
\end{aligned}
$$

- $\mathbb{Q}\left(x_{1}, x_{2}, \ldots, x_{8}\right)^{C_{8}}=\mathbb{Q}\left(t_{1}, t_{2}, \ldots, t_{8}\right), \mathrm{Q} . t_{1}, t_{2}, \ldots, t_{8}$? $\left(C_{8}: x_{1} \mapsto x_{2} \mapsto x_{3} \mapsto \cdots \mapsto x_{8} \mapsto x_{1}\right)$
- Ans. None: $\mathbb{Q}\left(x_{1}, x_{2}, \ldots, x_{8}\right)^{C_{8}}$ is not \mathbb{Q}-rational!

Today's talk

Definition (quasi-monomial action)

Let K / k be a finite field extension and $G \leq \operatorname{Aut}_{k}\left(K\left(x_{1}, \ldots, x_{n}\right)\right)$; finite where $K\left(x_{1}, \ldots, x_{n}\right)$ is the rational function field of n variables over K. The action of G on $K\left(x_{1}, \ldots, x_{n}\right)$ is called quasi-monomial if (i) $\sigma(K) \subset K$ for any $\sigma \in G$;
(ii) $K^{G}=k$;
(iii) for any $\sigma \in G, \quad \sigma\left(x_{j}\right)=c_{j}(\sigma) \prod_{i=1} x_{i}^{a_{i j}}$
where $c_{j}(\sigma) \in K^{\times}, 1 \leq j \leq n,\left[a_{i, j}\right]_{1 \leq i, j \leq n} \in G L_{n}(\mathbb{Z})$.
§1. $G \curvearrowright K$; trivial: monomial action \& Noether's problem
§2. Quasi-monomial actions: Known results
§3. Quasi-monomial actions: Main theorem
§4. $G=\operatorname{Gal}(K / k)$ and purely: rationality problem for algebraic tori

Various rationalities: definitions

$k \subset L$; fin. gen. field extension, L is k-rational $\stackrel{\text { def }}{\Longleftrightarrow} L \simeq k\left(x_{1}, \ldots, x_{n}\right)$.

Definition (stably rational)

L is called stably k-rational $\stackrel{\text { def }}{\Longleftrightarrow} L\left(y_{1}, \ldots, y_{m}\right)$ is k-rational.

Definition (retract rational)

L is retract k-rational $\stackrel{\text { def }}{\Longleftrightarrow} \exists k$-algebra $R \subset L$ such that
(i) L is the quotient field of R;
(ii) $\exists f \in k\left[x_{1}, \ldots, x_{n}\right] \exists k$-algebra hom. $\varphi: R \rightarrow k\left[x_{1}, \ldots, x_{n}\right][1 / f]$ and $\psi: k\left[x_{1}, \ldots, x_{n}\right][1 / f] \rightarrow R$ satisfying $\psi \circ \varphi=1_{R}$.

Definition (unirational)

L is k-unirational $\stackrel{\text { def }}{\Longleftrightarrow} L \subset k\left(t_{1}, \ldots, t_{n}\right)$.

- Assume $L_{1}\left(x_{1}, \ldots, x_{n}\right) \simeq L_{2}\left(y_{1}, \ldots, y_{m}\right)$; stably isomorphic. If L_{1} is retract k-rational, then so is L_{2}.
- "rational" \Longrightarrow "stably rational" \Longrightarrow "retract rational " \Longrightarrow "unirational"
"rational" \Longrightarrow "stably rational" \Longrightarrow "retract rational " \Longrightarrow "unirational"
- The direction of the implication cannot be reversed.
- (Lüroth's problem) "unirational" \Longrightarrow "rational" ? YES if trdeg=1
- (Castelnuovo, 1894)
L is \mathbb{C}-unirational and $\operatorname{trdeg}_{\mathbb{C}} L=2 \Longrightarrow L$ is \mathbb{C}-rational.
- (Zariski, 1958) Let k be an alg. closed field and $k \subset L \subset k(x, y)$. If $k(x, y)$ is separable algebraic over L, then L is k-rational.
- (Zariski cancellation problem) $V_{1} \times \mathbb{P}^{n} \approx V_{2} \times \mathbb{P}^{n} \Longrightarrow V_{1} \approx V_{2}$? In particular, "stably rational" \Longrightarrow "rational"?
- (Beauville, Colliot-Thélène, Sansuc, Swinnerton-Dyer, 1985, Ann. Math.) $L=\mathbb{Q}(x, y, t)$ with $x^{2}+3 y^{2}=t^{3}-2$ (Châtelet surface)
$\Longrightarrow L$ is not rational but stably \mathbb{Q}-rational.
Indeed, $L\left(y_{1}, y_{2}, y_{3}\right)$ is \mathbb{Q}-rational.
- $L\left(y_{1}, y_{2}\right)$ is \mathbb{Q}-rational (Shepherd-Barron, 2002, Fano Conf.).
- $\mathbb{Q}\left(x_{1}, \ldots, x_{47}\right)^{C_{47}}$ is not stably but retract \mathbb{Q}-rational.
- $\mathbb{Q}\left(x_{1}, \ldots, x_{8}\right)^{C_{8}}$ is not retract but \mathbb{Q}-unirational.

Retract rationality and generic extension

Theorem (Saltman, 1982, DeMeyer)

Let k be an infinite field and G be a finite group.
The following are equivalent:
(i) $k\left(x_{g} \mid g \in G\right)^{G}$ is retract k-rational.
(ii) There is a generic G-Galois extension over k;
(iii) There exists a generic G-polynomial over k.

- related to Inverse Galois Problem (IGP). (i) $\Longrightarrow \operatorname{IGP}(G / \mathbb{Q})$: true

Definition (generic polynomial)

A polynomial $f\left(t_{1}, \ldots, t_{n} ; X\right) \in k\left(t_{1}, \ldots, t_{n}\right)[X]$ is generic for G over k if (1) $\operatorname{Gal}\left(f / k\left(t_{1}, \ldots, t_{n}\right)\right) \simeq G$;
(2) $\forall L / M \supset k$ with $\operatorname{Gal}(L / M) \simeq G$, $\exists a_{1}, \ldots, a_{n} \in M$ such that $L=\operatorname{Spl}\left(f\left(a_{1}, \ldots, a_{n} ; X\right) / M\right)$.

- By Hilbert's irreducibility theorem, $\exists L / \mathbb{Q}$ such that $\operatorname{Gal}(L / \mathbb{Q}) \simeq G$.

§1. Monomial action \& Noether's problem

Definition (monomial action) $G \curvearrowright K$; trivial, $k=K^{G}=K$

An action of G on $k\left(x_{1}, \ldots, x_{n}\right)$ is monomial $\stackrel{\text { def }}{\Longleftrightarrow}$

$$
\sigma\left(x_{j}\right)=c_{j}(\sigma) \prod_{i=1}^{n} x_{i}^{a_{i, j}}, 1 \leq j \leq n, \forall \sigma \in G
$$

where $\left[a_{i, j}\right]_{1 \leq i, j \leq n} \in \mathrm{GL}_{n}(\mathbb{Z}), c_{j}(\sigma) \in k^{\times}:=k \backslash\{0\}$.
If $c_{j}(\sigma)=1$ for any $1 \leq j \leq n$ then σ is called purely monomial.

- Application to Noether's problem (permutation action)

Noether's problem $(1 / 3)[G=A$; abelian case $]$

- k; field, G; finite group
- $G \curvearrowright k$; trivial, $G \curvearrowright k\left(x_{g} \mid g \in G\right)$; permutation.
- $k(G):=k\left(x_{g} \mid g \in G\right)^{G}$; invariant field

Noether's problem (Emmy Noether, 1913)

Is $k(G) k$-rational?, i.e. $k(G) \simeq k\left(t_{1}, \ldots, t_{n}\right)$?

- Is the quotient variety $\mathbb{A}^{n} / G k$-rational?
- Assume $G=A$; abelian group.
- (Fisher, 1915) $\mathbb{C}(A)$ is \mathbb{C}-rational.
- (Masuda, 1955, 1968) $\mathbb{Q}\left(C_{p}\right)$ is \mathbb{Q}-rational for $p \leq 11$.
- (Swan, 1969, Invent. Math.)
$\mathbb{Q}\left(C_{47}\right), \mathbb{Q}\left(C_{113}\right), \mathbb{Q}\left(C_{233}\right)$ are not \mathbb{Q}-rational.
- S. Endo and T. Miyata (1973), V.E. Voskresenskii (1973), ... e.g. $\mathbb{Q}\left(C_{8}\right)$ is not \mathbb{Q}-rational.
- (Lenstra, 1974, Invent. Math.)
$k(A)$ is k-rational \Longleftrightarrow some condition;

Noether's problem $(2 / 3)[G=A$; abelian case $]$

- (Endo-Miyata, 1973) $\mathbb{Q}\left(C_{p^{r}}\right)$ is \mathbb{Q}-rational
$\Longleftrightarrow \exists \alpha \in \mathbb{Z}\left[\zeta_{\varphi\left(p^{r}\right)}\right]$ such that $N_{\mathbb{Q}\left(\zeta_{\varphi\left(p^{r}\right)}\right) / \mathbb{Q}}(\alpha)= \pm p$
- $h\left(\mathbb{Q}\left(\zeta_{m}\right)\right)=1$ if $m<23$
$\Longrightarrow \mathbb{Q}\left(C_{p}\right)$ is \mathbb{Q}-rational for $p \leq 43$ and $p=61,67,71$.
- (Endo-Miyata, 1973) For $p=47,79,113,137,167, \ldots$, $\mathbb{Q}\left(C_{p}\right)$ is not \mathbb{Q}-rational.
- However, for $p=59,83,89,97,107,163, \ldots$, unknown.

Under the GRH, $\mathbb{Q}\left(C_{p}\right)$ is not rational for the above primes.
But it was unknown for $p=251,347,587,2459, \ldots$

- For $p \leq 20000$, see speaker's paper (using PARI/GP): Hoshi, Proc. Japan Acad. Ser. A 91 (2015) 39-44.

Theorem (Plans, 2017, Proc. AMS)

$\mathbb{Q}\left(C_{p}\right)$ is \mathbb{Q}-rational $\Longleftrightarrow p \leq 43$ or $p=61,67,71$.

- Using lower bound of height, $\mathbb{Q}\left(C_{p}\right)$ is rational $\Rightarrow p<173$.

Noether's problem $(3 / 3)$ [G; non-abelian case]

Noether's problem (Emmy Noether, 1913)

Is $k(G) k$-rational?, i.e. $k(G) \simeq k\left(t_{1}, \ldots, t_{n}\right)$?

- Assume G; non-abelian group.
- (Maeda, 1989) $k\left(A_{5}\right)$ is k-rational;
- (Rikuna, 2003; Plans, 2007)
$k\left(G L_{2}\left(\mathbb{F}_{3}\right)\right)$ and $k\left(S L_{2}\left(\mathbb{F}_{3}\right)\right)$ is k-rational;
- (Serre, 2003)
if 2-Sylow subgroup of $G \simeq C_{8 m}$, then $\mathbb{Q}(G)$ is not \mathbb{Q}-rational; if 2-Sylow subgroup of $G \simeq Q_{16}$, then $\mathbb{Q}(G)$ is not \mathbb{Q}-rational; e.g. $G=Q_{16}, S L_{2}\left(\mathbb{F}_{7}\right), S L_{2}\left(\mathbb{F}_{9}\right)$, $S L_{2}\left(\mathbb{F}_{q}\right)$ with $q \equiv 7$ or $9(\bmod 16)$.

From Noether's problem to monomial actions (1/2)

- $k(G):=k\left(x_{g} \mid g \in G\right)^{G}$; invariant field

Noether's problem (Emmy Noether, 1913)

Is $k(G) k$-rational?, i.e. $k(G) \simeq k\left(t_{1}, \ldots, t_{n}\right)$?
By Hilbert 90, we have:

No-name lemma (e.g. Miyata, 1971, Remark 3)

Let G act faithfully on k-vector space $V, W \subset V$ faithful $k[G]$-submodule. Then $K(V)^{G}=K(W)^{G}\left(t_{1}, \ldots, t_{m}\right)$.

Rationality problem: linear action

Let G act on finite-dimensional k-vector space V and $\rho: G \rightarrow G L(V)$ be a representation. Whether $k(V)^{G}$ is k-rational?

- the quotient variety V / G is k-rational?

From Noether's problem to monomial actions $(2 / 2)$

- For $\rho: G \rightarrow G L(V)$; monomial representation, i.e. matrix rep. has exactly one non-zero entry in each row and each column, G acts on $k(\mathbb{P}(V))=k\left(\frac{w_{1}}{w_{n}}, \ldots, \frac{w_{n-1}}{w_{n}}\right)$ by monomial action.

By Hilbert 90, we have:

```
Lemma (e.g. Miyata, 1971, Lemma)
k(V)}\mp@subsup{)}{}{G}=k(\mathbb{P}(V)\mp@subsup{)}{}{G}(t)
```

- $V / G \approx \mathbb{P}(V) / G \times \mathbb{P}^{1}$ (birational)
- $k(\mathbb{P}(V))^{G}$ (monomial action) is k-rational $\Longrightarrow k(V)^{G}$ (linear action) is k-rational $\Longrightarrow k(G)$ (permutation action) is k-rational (Noether's problem has an affirmative answer)

Example: Noether's problem for $G L_{2}\left(\mathbb{F}_{3}\right)$ and $S L_{2}\left(\mathbb{F}_{3}\right)$

- $G=G L_{2}\left(\mathbb{F}_{3}\right)=\langle A, B, C, D\rangle \subset G L_{4}(\mathbb{Q}),|G|=48$,
- $H=S L_{2}\left(\mathbb{F}_{3}\right)=\langle A, B, C\rangle \subset G L_{4}(\mathbb{Q}),|H|=24$, where
$A=\left[\begin{array}{cccc}0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0\end{array}\right], B=\left[\begin{array}{cccc}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right], C=\left[\begin{array}{cccc}0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right], D=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$.
- G and H act on $k(V)=k\left(w_{1}, w_{2}, w_{3}, w_{4}\right)$ by
$A: w_{1} \mapsto-w_{2} \mapsto-w_{1} \mapsto w_{2} \mapsto w_{1}, w_{3} \mapsto-w_{4} \mapsto-w_{3} \mapsto w_{4} \mapsto w_{3}$,
$B: w_{1} \mapsto-w_{3} \mapsto-w_{1} \mapsto w_{3} \mapsto w_{1}, w_{2} \mapsto w_{4} \mapsto-w_{2} \mapsto-w_{4} \mapsto w_{2}$,
$C: w_{1} \mapsto-w_{2} \mapsto w_{3} \mapsto w_{1}, w_{4} \mapsto w_{4}, \quad D: w_{1} \mapsto w_{1}, w_{2} \mapsto-w_{2}, w_{3} \leftrightarrow w_{4}$.
- $k(\mathbb{P}(V))=k(x, y, z), x=w_{1} / w_{4}, y=w_{2} / w_{4}, z=w_{3} / w_{4}$.
- G and H act on $k(x, y, z)$ as $G / Z(G) \simeq S_{4}$ and $H / Z(H) \simeq A_{4}$:

$$
\begin{aligned}
& A: x \mapsto \frac{y}{z}, y \mapsto \frac{-x}{z}, z \mapsto \frac{-1}{z}, B: x \mapsto \frac{-z}{y}, y \mapsto \frac{-1}{y}, z \mapsto \frac{x}{y}, \\
& C: x \mapsto y \mapsto z \mapsto x, D: x \mapsto \frac{x}{z}, y \mapsto \frac{-y}{z}, z \mapsto \frac{1}{z} .
\end{aligned}
$$

- $k(\mathbb{P}(V))^{G}: k$-rational $\Longrightarrow k(V)^{G}: k$-rational $\Longrightarrow k(G): k$-rational.

Monomial action (1/3) [3-dim. case]

Theorem (Hajja,1987) 2-dim. monomial action
 $k\left(x_{1}, x_{2}\right)^{G}$ is k-rational.

Theorem (Hajja-Kang 1994, H-Rikuna 2008) 3-dim. purely monomial $k\left(x_{1}, x_{2}, x_{3}\right)^{G}$ is k-rational.

Theorem (Prokhorov, 2010) 3-dim. monomial action over $k=\mathbb{C}$
$\mathbb{C}\left(x_{1}, x_{2}, x_{3}\right)^{G}$ is \mathbb{C}-rational.

However,
$\mathbb{Q}\left(x_{1}, x_{2}, x_{3}\right)^{\langle\sigma\rangle}, \sigma: x_{1} \mapsto x_{2} \mapsto x_{3} \mapsto \frac{-1}{x_{1} x_{2} x_{3}}$ is not \mathbb{Q}-rational (Hajja,1983).

Monomial action (2/3) [3-dim. case]

Theorem (Saltman, 2000) char $k \neq 2$

If $\left[k\left(\sqrt{a_{1}}, \sqrt{a_{2}}, \sqrt{a_{3}}\right): k\right]=8$, then $k\left(x_{1}, x_{2}, x_{3}\right)^{\langle\sigma\rangle}$,

$$
\sigma: x_{1} \mapsto \frac{a_{1}}{x_{1}}, x_{2} \mapsto \frac{a_{2}}{x_{2}}, x_{3} \mapsto \frac{a_{3}}{x_{3}}
$$

is not retract k-rational (hence not k-rational).

Theorem (Kang, 2004)

$k\left(x_{1}, x_{2}, x_{3}\right)^{\langle\sigma\rangle}, \sigma: x_{1} \mapsto x_{2} \mapsto x_{3} \mapsto \frac{c}{x_{1} x_{2} x_{3}} \mapsto x_{1}$, is k-rational
\Longleftrightarrow at least one of the following conditions is satisfied:
(i) char $k=2$; (ii) $c \in k^{2}$; (iii) $-4 c \in k^{4}$; (iv) $-1 \in k^{2}$.

If $k(x, y, z)^{\langle\sigma\rangle}$ is not k-rational, then it is not retract k-rational.
Recall that

- "rational" \Longrightarrow "stably rational" \Longrightarrow "retract rational " \Longrightarrow "unirational"

Monomial action (3/3) [3-dim. case]

Theorem (Yamasaki, 2012) 3-dim. monomial, char $k \neq 2$

$\exists 8$ cases $G \leq G L_{3}(\mathbb{Z})$ s.t $k\left(x_{1}, x_{2}, x_{3}\right)^{G}$ is not retract k-rational. Moreover, the necessary and sufficient conditions are given.

- Two of 8 cases are Saltman's and Kang's cases.
- $\exists G \leq G L_{3}(\mathbb{Z}) ; 73$ finite subgroups (up to conjugacy)

Theorem (H-Kitayama-Yamasaki, 2011) 3-dim. monomial, char $k \neq 2$

 $k\left(x_{1}, x_{2}, x_{3}\right)^{G}$ is k-rational except for the 8 cases and $G=A_{4}$. For $G=A_{4}$, if $[k(\sqrt{a}, \sqrt{-1}): k] \leq 2$, then it is k-rational.
Corollary

$\exists L=k(\sqrt{a})$ such that $L\left(x_{1}, x_{2}, x_{3}\right)^{G}$ is L-rational.

- However, $\exists 4$-dim. $\mathbb{C}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{C_{2} \times C_{2}}$ is not retract \mathbb{C}-rational.

§2. Quasi-monomial actions: Known results

Notion of "quasi-monomial" actions is defined in Hoshi-Kang-Kitayama [HKK14], J. Algebra (2014).

Theorem ([HKK14]) 1-dim. quasi-monomial actions

(1) purely quasi-monomial $\Longrightarrow K(x)^{G}$ is k-rational.
(2) $K(x)^{G}$ is k-rational excpet for the case: $\exists N \leq G$ such that
(i) $G / N=\langle\sigma\rangle \simeq C_{2}$;
(ii) $K(x)^{N}=k(\alpha)(y), \alpha^{2}=a \in K^{\times}, \sigma(\alpha)=-\alpha$ (if char $\mathrm{k} \neq 2$),
$\alpha^{2}+\alpha=a \in K, \sigma(\alpha)=\alpha+1$ (if char $k=2$);
(iii) $\sigma \cdot y=b / y$ for some $b \in k^{\times}$.

For the exceptional case, $K(x)^{G}=k(\alpha)(y)^{G / N}$ is k-rational \Longleftrightarrow Hilbert symbol $(a, b)_{k}=0$ (if char $k \neq 2$), $[a, b)_{k}=0$ (if char $k=2$). Moreover, $K(x)^{G}$ is not k-rational \Longrightarrow not k-unirational.

Theorem ([HKK14]) 2-dim. purely quasi-monomial actions

$N=\{\sigma \in G \mid \sigma(x)=x, \sigma(y)=y\}, H=\{\sigma \in G \mid \sigma(\alpha)=\alpha(\forall \alpha \in K)\}$.
$K(x, y)^{G}$ is k-rational except for:
(1) char $k \neq 2$ and (2) (i) $(G / N, H N / N) \simeq\left(C_{4}, C_{2}\right)$ or (ii) $\left(D_{4}, C_{2}\right)$.

For the exceptional case, we have $k(x, y)=k(u, v)$:
(i) $(G / N, H N / N) \simeq\left(C_{4}, C_{2}\right)$,
$K^{N}=k(\sqrt{a}), G / N=\langle\sigma\rangle \simeq C_{4}, \sigma: \sqrt{a} \mapsto-\sqrt{a}, u \mapsto \frac{1}{u}, v \mapsto-\frac{1}{v}$;
(ii) $(G / N, H N / N) \simeq\left(D_{4}, C_{2}\right)$;
$K^{N}=k(\sqrt{a}, \sqrt{b}), G / N=\langle\sigma, \tau\rangle \simeq D_{4}, \quad \sigma: \sqrt{a} \mapsto-\sqrt{a}, \sqrt{b} \mapsto \sqrt{b}$, $u \mapsto \frac{1}{u}, v \mapsto-\frac{1}{v}, \tau: \sqrt{a} \mapsto \sqrt{a}, \sqrt{b} \mapsto-\sqrt{b}, u \mapsto u, v \mapsto-v$.
Case (i), $K(x, y)^{G}$ is k-rational \Longleftrightarrow Hilbert symbol $(a,-1)_{k}=0$.
Case (ii), $K(x, y)^{G}$ is k-rational \Longleftrightarrow Hilbert symbol $(a,-b)_{k}=0$.
Moreover, $K(x, y)^{G}$ is not k-rational $\Longrightarrow \operatorname{Br}(k) \neq 0$ and $K(x, y)^{G}$ is not k-unirational.

Galois-theoretic interpretation:
(i) k-rational $\Longleftrightarrow k(\sqrt{a})$ may be embedded into C_{4}-ext. of k.
(ii) k-rational $\Longleftrightarrow k(\sqrt{a}, \sqrt{b})$ may be embedded into D_{4}-ext. of k.

Application to purely monomial actions ($1 / 2$)

Theorem ([HKK14]), 4-dim. purely monomial

Let M be a G-lattice with $\operatorname{rank}_{\mathbb{Z}} M=4$ and G act on $k(M)$ by purely monomial k-automorphisms. If M is decomposable, i.e. $M=M_{1} \oplus M_{2}$ as $\mathbb{Z}[G]$-modules where $1 \leq \operatorname{rank}_{\mathbb{Z}} M_{1} \leq 3$, then $k(M)^{G}$ is k-rational.

- When $\operatorname{rank}_{\mathbb{Z}} M_{1}=1, \operatorname{rank}_{\mathbb{Z}} M_{2}=3$, it is easy to see $k(M)^{G}$ is k-rational.
- When $\operatorname{rank}_{\mathbb{Z}} M_{1}=\operatorname{rank}_{\mathbb{Z}} M_{2}=2$, we may apply Theorem of 2-dim. to $k(M)=k\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=k\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)=K\left(y_{1}, y_{2}\right)$.

Theorem ([HKK14]) char $k \neq 2$

Let $C_{2}=\langle\tau\rangle$ act on the rational function field $k\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ by k-automorphisms defined as

$$
\tau: x_{1} \mapsto-x_{1}, x_{2} \mapsto \frac{x_{4}}{x_{2}}, x_{3} \mapsto \frac{\left(x_{4}-1\right)\left(x_{4}-x_{1}^{2}\right)}{x_{3}}, x_{4} \mapsto x_{4}
$$

Then $k\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{C_{2}}$ is not retract k-rational.
In particular, it is not k-rational.

Theorem A ([HKK14]) char $k \neq 2,5$-dim. purely monomial

Let $D_{4}=\langle\rho, \tau\rangle$ act on the rational function field $k\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$ by k-automorphisms defined as

$$
\begin{aligned}
& \rho: x_{1} \mapsto x_{2}, x_{2} \mapsto x_{1}, x_{3} \mapsto \frac{1}{x_{1} x_{2} x_{3}}, x_{4} \mapsto x_{5}, x_{5} \mapsto \frac{1}{x_{4}} \\
& \tau: x_{1} \mapsto x_{3}, x_{2} \mapsto \frac{1}{x_{1} x_{2} x_{3}}, x_{3} \mapsto x_{1}, x_{4} \mapsto x_{5}, x_{5} \mapsto x_{4}
\end{aligned}
$$

Then $k\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)^{D_{4}}$ is not retract k-rational. In particular, it is not k-rational.

Application to purely monomial actions (2/2)

Theorem ([HKK14]), 5-dim. purely monomial

Let M be a G-lattice and G act on $k(M)$ by purely monomial k-automorphisms. Assume that
(i) $M=M_{1} \oplus M_{2}$ as $\mathbb{Z}[G]$-modules where $\operatorname{rank}_{\mathbb{Z}} M_{1}=3$ and $\operatorname{rank}_{\mathbb{Z}} M_{2}=2$,
(ii) either M_{1} or M_{2} is a faithful G-lattice.

Then $k(M)^{G}$ is k-rational except for the case as in Theorem A .

- we may apply Theorem of 2-dim. to

$$
k(M)=k\left(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}\right)=k\left(x_{1}, x_{2}, x_{3}\right)\left(y_{1}, y_{2}\right)=K\left(y_{1}, y_{2}\right) .
$$

More recent results

- 3-dim. purely quasi-monomial actions (Hoshi-Kitayama, 2020, Kyoto J. Math.)

§3. Quasi-monomial actions: Main theorem ($1 / 3$)

- $\exists 13 G \leq G L_{2}(\mathbb{Z})$ up to conjugacy.

Cyclic groups:

$$
\begin{aligned}
C_{1} & :=\{I\}, & C_{2}^{(1)}:=\langle-I\rangle, & C_{2}^{(2)}:=\langle\lambda\rangle, \quad C_{2}^{(3)}:=\langle\tau\rangle, \\
C_{3} & :=\left\langle\rho^{2}\right\rangle, & C_{4}:=\langle\sigma\rangle, & C_{6}:=\langle\rho\rangle
\end{aligned}
$$

where

$$
I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \lambda=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], \tau=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \sigma=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right], \rho=\left[\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right]
$$

Non-cyclic groups:

$$
\begin{array}{rlrl}
V_{4}^{(1)} & : & =\langle\lambda,-I\rangle, & V_{4}^{(2)}:=\langle\tau,-I\rangle, \quad S_{3}^{(1)}:=\left\langle\rho^{2}, \tau\right\rangle, \quad S_{3}^{(2)}:=\left\langle\rho^{2},-\tau\right\rangle, \\
D_{4} & :=\langle\sigma, \tau\rangle, \quad D_{6} & :=\langle\rho, \tau\rangle .
\end{array}
$$

Note that $\lambda^{2}=\tau^{2}=I, \sigma^{2}=\rho^{3}=-I$ and $\tau \sigma=\lambda$.

Quasi-monomial actions: Main theorem (2/3)

Define $H=\{\sigma \in G \mid \sigma(\alpha)=\alpha$ for any $\alpha \in K\} \triangleleft G$.
Then K is a (G / H)-Galois extension of k.
Normal subgroups H of G are given as follows:

$$
\begin{aligned}
& C_{2}^{(1)}: H=\{1\},\langle-I\rangle, C_{2}^{(2)}: H=\{1\},\langle\lambda\rangle \\
& C_{2}^{(3)}: H=\{1\},\langle\tau\rangle, C_{3}: H=\{1\},\left\langle\rho^{2}\right\rangle, \\
& C_{4}: H=\{1\},\left\langle\sigma^{2}\right\rangle,\langle\sigma\rangle, C_{6}: H=\{1\},\langle-I\rangle,\left\langle\rho^{2}\right\rangle,\langle\rho\rangle, \\
& V_{4}^{(1)}: H=\{1\},\langle-I\rangle,\langle\lambda\rangle,\langle-\lambda\rangle,\langle\lambda,-I\rangle, \\
& V_{4}^{(2)}: H=\{1\},\langle-I\rangle,\langle\tau\rangle,\langle-\tau\rangle,\langle\tau,-I\rangle, \\
& S_{3}^{(1)}: H=\{1\},\left\langle\rho^{2}\right\rangle,\left\langle\rho^{2}, \tau\right\rangle, \\
& S_{3}^{(2)}: H=\{1\},\left\langle\rho^{2}\right\rangle,\left\langle\rho^{2},-\tau\right\rangle, \\
& D_{4}: H=\{1\},\langle-I\rangle,\langle-I, \lambda\rangle,\langle-I, \tau\rangle,\langle\sigma\rangle,\langle\sigma, \tau\rangle, \\
& D_{6}: H=\{1\},\langle-I\rangle,\left\langle\rho^{2}\right\rangle,\langle\rho\rangle,\left\langle\rho^{2}, \tau\right\rangle,\left\langle\rho^{2},-\tau\right\rangle,\langle\rho, \tau\rangle
\end{aligned}
$$

Quasi-monomial actions: Main theorem (3/3)

Main theorem solves the rationality problem of two-dimensional quasi-monomial actions under the condition that $c_{j}(\sigma) \in k \backslash\{0\}$ where $c_{j}(\sigma)$ is given as in (iii) of Definition Definition

- Let $(a, b)_{n, k}$ be the norm residue symbol of degree n over k.
- Let ω be a primitive cubic root of unity in \bar{k}.
- The case $G=H$ was already solved affirmatively by Hajja.

Main theorem (Hoshi-Kitayama, 2024, Transform. Groups)

Let k be a field with char $k \neq 2,3, K / k$ be a finite extension and $G \leq G L_{2}(\mathbb{Z})$ acting on $K(x, y)$ by quasi-monomial k-automorphisms.
We assume that $c_{j}(\sigma) \in k \backslash\{0\}(\forall \sigma \in G, 1 \leq \forall j \leq 2)$ where $c_{j}(\sigma)$ is given as in (iii) of Definition Definition and $G \neq H$ where $H=\{\sigma \in G \mid \sigma(\alpha)=\alpha$ for any $\alpha \in K\}$.

Main theorem (Hoshi-Kitayama, 2024, Transform. Groups) cont.

(1) When $G=C_{2}^{(1)}=\langle-I\rangle$ and $H=\{1\}, K=k(\sqrt{a})$ and $-I: \sqrt{a} \mapsto-\sqrt{a}$, $x \mapsto b / x, y \mapsto c / y$ for $a, b, c \in k \backslash\{0\}$.
Then $K(x, y)^{G}$ is k-rational if and only if $(a, b)_{2, k}=0$ and $(a, c)_{2, k}=0$.
(2) When $G=C_{2}^{(2)}=\langle\lambda\rangle$ and $H=\{1\}, K=k(\sqrt{a})$ and $\lambda: \sqrt{a} \mapsto-\sqrt{a}$, $x \mapsto x, y \mapsto b / y$ for $a, b \in k \backslash\{0\}$.
Then $K(x, y)^{G}$ is k-rational if and only if $(a, b)_{2, k}=0$.
(3) When $G=C_{2}^{(3)}=\langle\tau\rangle$ and $H=\{1\}, K=k(\sqrt{a})$ and $\tau: \sqrt{a} \mapsto-\sqrt{a}$, $x \mapsto y, y \mapsto x$ for $a \in k \backslash\{0\}$. Then $K(x, y)^{G}$ is k-rational.
(4) When $G=C_{3}=\left\langle\rho^{2}\right\rangle$ and $H=\{1\}, \rho^{2}: x \mapsto y, y \mapsto c /(x y)$ for $c \in k \backslash\{0\}$. $K(\omega)=k(\omega, \sqrt[3]{\alpha})$ for some $\alpha \in k(\omega)$ and $\rho^{2}: \sqrt[3]{\alpha} \mapsto \omega \sqrt[3]{\alpha}$.
Then $K(x, y)^{G}$ is k-rational if and only if $(\alpha, c)_{3, k(\omega)}=0$.
(5) When $G=C_{4}=\langle\sigma\rangle, \sigma: x \mapsto y, y \mapsto c / x$ for $c \in k \backslash\{0\}$.
(I) if $H=\{1\}$, then $K=k(\alpha, \beta)$ and $\sigma: \alpha \mapsto \beta, \beta \mapsto-\alpha$. We have $k\left(\alpha^{2}\right)=K^{\left\langle\sigma^{2}\right\rangle}$ with $\left[k\left(\alpha^{2}\right): k\right]=2$.
Then $K(x, y)^{G}$ is k-rational if and only if $\left(\alpha^{2}, c\right)_{2, k\left(\alpha^{2}\right)}=0$;
(II) if $H=\left\langle\sigma^{2}\right\rangle, K=k(\sqrt{a})$ and $\sigma: \sqrt{a} \mapsto-\sqrt{a}$ for $a \in k \backslash\{0\}$. Then
$K(x, y)^{G}$ is k-rational if and only if $(a, c)_{2, k}=0$ and $(a,-c)_{2, k}=0$.

Main theorem (Hoshi-Kitayama, 2024, Transform. Groups) cont.

(6) When $G=C_{6}=\langle\rho\rangle, \rho: x \mapsto x y, y \mapsto 1 / x$. Then $K(x, y)^{G}$ is k-rational.
(7) When $G=V_{4}^{(1)}=\langle\lambda,-I\rangle=\langle\lambda,-\lambda\rangle$,
(I) if $H=\{1\}$, then $K=k(\sqrt{a}, \sqrt{b})$ and $\lambda: \sqrt{a} \mapsto-\sqrt{a}, \sqrt{b} \mapsto \sqrt{b}, x \mapsto x$, $y \mapsto d / y,-\lambda: \sqrt{a} \mapsto \sqrt{a}, \sqrt{b} \mapsto-\sqrt{b}, x \mapsto c / x, y \mapsto y$ for $a, b, c, d \in k \backslash\{0\}$.
Then $K(x, y)^{G}$ is k-rational if and only if $(a, d)_{2, k}=0$ and $(b, c)_{2, k}=0$; (II) if $H=\langle-I\rangle$, then $K=k(\sqrt{a})$ and $\lambda: \sqrt{a} \mapsto-\sqrt{a}, x \mapsto x, y \mapsto d / y$, $-I: \sqrt{a} \mapsto \sqrt{a}, x \mapsto c / x, y \mapsto d / y$ for $a, c, d \in k \backslash\{0\}$.
Then $K(x, y)^{G}$ is k-rational if and only if $(a, d)_{2, k(\sqrt{c d})}=0$;
(III) if $H=\langle\lambda\rangle$, then $K=k(\sqrt{a})$ and $\lambda: \sqrt{a} \mapsto \sqrt{a}, x \mapsto \varepsilon_{1} x, y \mapsto d / y$,
$-I: \sqrt{a} \mapsto-\sqrt{a}, x \mapsto c / x, y \mapsto d / y$ for $a, c, d \in k \backslash\{0\}, \varepsilon_{1}= \pm 1$.
If $\varepsilon_{1}=1$, then $K(x, y)^{G}$ is k-rational if and only if $(a, c)_{2, k}=0$.
If $\varepsilon_{1}=-1$, then $K(x, y)^{G}$ is k-rational if and only if $(a,-c)_{2, k(\sqrt{a d})}=0$;
(IV) if $H=\langle-\lambda\rangle$, then $K=k(\sqrt{a})$ and $-\lambda: \sqrt{a} \mapsto \sqrt{a}, x \mapsto c / x, y \mapsto \varepsilon_{2} y$,
$-I: \sqrt{a} \mapsto-\sqrt{a}, x \mapsto c / x, y \mapsto d / y$ for $a, c, d \in k \backslash\{0\}, \varepsilon_{2}= \pm 1$.
If $\varepsilon_{2}=1$, then $K(x, y)^{G}$ is k-rational if and only if $(a, d)_{2, k}=0$.
If $\varepsilon_{2}=-1$, then $K(x, y)^{G}$ is k-rational if and only if $(a,-d)_{2, k(\sqrt{a c})}=0$.

Main theorem (Hoshi-Kitayama, 2024, Transform. Groups) cont.

(8) When $G=V_{4}^{(2)}=\langle\tau,-I\rangle, \tau: x \mapsto y, y \mapsto x,-I: x \mapsto c / x, y \mapsto c / y$ for $c \in k \backslash\{0\}$.
(I) if $H=\{1\}$, then $K=k(\sqrt{a}, \sqrt{b})$ and $\tau: \sqrt{a} \mapsto-\sqrt{a}, \sqrt{b} \mapsto \sqrt{b}$,
$-I: \sqrt{a} \mapsto \sqrt{a}, \sqrt{b} \mapsto-\sqrt{b}$ for $a, b \in k \backslash\{0\}$.
Then $K(x, y)^{G}$ is k-rational if and only if $(b, c)_{2, k(\sqrt{a})}=0$;
(II) if $H=\langle\tau\rangle,\langle-I\rangle$ or $\langle-\tau\rangle$, then $K(x, y)^{G}$ is k-rational.
(9) When $G=S_{3}^{(1)}=\left\langle\rho^{2}, \tau\right\rangle, \rho^{2}: x \mapsto y, y \mapsto c /(x y), \tau: x \mapsto y, y \mapsto x$ for $c \in k \backslash\{0\}$.
(I) if $H=\{1\}$, then $K(\omega)=F(\omega, \sqrt[3]{\alpha})$ for some $\alpha \in F(\omega)$ and $\rho^{2}: \sqrt[3]{\alpha} \mapsto \omega \sqrt[3]{\alpha}$ where $F=K^{\left\langle\rho^{2}\right\rangle}$ with $[F: k]=2$ and $F(\omega)=k(\alpha, \omega)$.
Then $K(x, y)^{G}$ is k-rational if and only if $(\alpha, c)_{3, k(\alpha, \omega)}=0$;
(II) if $H=\left\langle\rho^{2}\right\rangle$, then $K(x, y)^{G}$ is k-rational.
(10) When $G=S_{3}^{(2)}=\left\langle\rho^{2},-\tau\right\rangle, \rho^{2}: x \mapsto y, y \mapsto 1 /(x y),-\tau: x \mapsto 1 / y$, $y \mapsto 1 / x$. Then $K(x, y)^{G}$ is k-rational.

Main theorem (Hoshi-Kitayama, 2024, Transform. Groups) cont.

(11) When $G=D_{4}=\langle\sigma, \tau\rangle, \sigma: x \mapsto y, y \mapsto c / x, \tau: x \mapsto \varepsilon y, y \mapsto \varepsilon x$ for $c \in k \backslash\{0\}, \varepsilon= \pm 1$.
(I) if $H=\{1\}$, then $K=k(\alpha, \beta)$ and $\sigma: \alpha \mapsto \beta, \beta \mapsto-\alpha, \tau: \alpha \mapsto \beta, \beta \mapsto \alpha$.

We have $k\left(\alpha^{2}\right)=K^{\left\langle\sigma^{2}, \sigma \tau\right\rangle}$ with $\left[k\left(\alpha^{2}\right): k\right]=2$.
If $\varepsilon=1$, then $K(x, y)^{G}$ is k-rational if and only if $\left(\alpha^{2}, c\right)_{2, k\left(\alpha^{2}\right)}=0$.
If $\varepsilon=-1$, then $K(x, y)^{G}$ is k-rational if and only if $\left(\alpha^{2},-\beta^{2} c\right)_{2, k\left(\alpha^{2}\right)}=0$;
(II) if $H=\langle-I\rangle$, then $K=k(\sqrt{a}, \sqrt{b})$ and $\sigma: \sqrt{a} \mapsto-\sqrt{a}, \sqrt{b} \mapsto \sqrt{b}$, $\tau: \sqrt{a} \mapsto \sqrt{a}, \sqrt{b} \mapsto-\sqrt{b}$ for $a, b \in k \backslash\{0\}$.
Then $K(x, y)^{G}$ is k-rational if and only if $(a, \varepsilon c)_{2, k}=0$ and $(a,-\varepsilon b c)_{2, k}=0$; (III) if $H=\langle-I, \tau\rangle$, then $K=k(\sqrt{a})$ and $\sigma: \sqrt{a} \mapsto-\sqrt{a}, \tau: \sqrt{a} \mapsto \sqrt{a}$ for $a \in k \backslash\{0\}$. Then $K(x, y)^{G}$ is k-rational if and only if $(a, \varepsilon c)_{2, k}=0$; (IV) if $H=\langle-I, \tau \sigma\rangle$ or $\langle\sigma\rangle$, then $K(x, y)^{G}$ is k-rational.
(12) When $G=D_{6}=\langle\rho, \tau\rangle, \rho: x \mapsto x y, y \mapsto 1 / x, \tau: x \mapsto y, y \mapsto x$.

Then $K(x, y)^{G}$ is k-rational.
Moreover, if $K(x, y)^{G}$ is not k-rational, then k is an infinite field, the Brauer group $\operatorname{Br}(k)$ is non-trivial, and $K(x, y)^{G}$ is not k-unirational.

Remark (from the viewpoint of algebraic geometry)

(1) When $H=\{1\}$ and $c_{j}(\sigma)=1(\forall \sigma \in G, 1 \leq \forall j \leq 2)$, i.e. the action of G is faithful on K and purely monomial, $K(x, y)^{G} \simeq k(T)$ where T is an algebraic k-torus with $\operatorname{dim} T=2$. In this case, $k(T) \simeq K(x, y)^{G}$ is k-rational by Voskresenskii's theorem (1967).
(2) When $H=\{1\}$, because $K(x, y)^{G} \otimes_{k} K=K(x, y)$ is K-rational, one can consider equivariant compactification of the corresponding (split) algebraic K-torus $T_{K}=T \otimes_{k} K$ and apply equivariant MMP, then get a certain (split) G-minimal toric surface S_{K},
for (1) $C_{2}^{(1)}$, (2) $C_{2}^{(2)}$, (7) $V_{4}^{(1)}, S_{K} \simeq \mathbb{P}_{K}^{1} \times \mathbb{P}_{K}^{1}$ with the G-invariant Picard number 2 ;
for (3) $C_{2}^{(3)}$, (5) C_{4}, (8) $V_{4}^{(2)}$, (11) $D_{4}, S_{K} \simeq \mathbb{P}_{K}^{1} \times \mathbb{P}_{K}^{1}$ with the G-invariant Picard number 1, for (4) $C_{3},(10) S_{3}^{(2)}, S_{K} \simeq \mathbb{P}_{K}^{2}$ (Severi-Brauer surface), for (6) C_{6}, (9) $S_{3}^{(1)}$, (12) D_{6}, S_{K} is a del Pezzo surface of degree 6 (see Colliot-Thélène, Karpenko and Merkurjev 2008, Xie 2018).

As an application, we obtain some rationality result of $k(M)^{G}$ up to 5 -dimensional cases under the action of monomial k-automorphisms.

Corollary (Hoshi-Kitayama, 2024, Transform. Groups) char $k \neq 2,3$

Let G be one of the finite subgroups $C_{2}^{(3)}=\langle\tau\rangle, C_{6}=\langle\rho\rangle$, $S_{3}^{(2)}=\left\langle\rho^{2},-\tau\right\rangle, D_{6}=\langle\rho, \tau\rangle$ of $G L_{2}(\mathbb{Z})$ as in Main theorem (3), (6), (10), (12). Let M be a G-lattice with $M=M_{1} \oplus M_{2}$ as $\mathbb{Z}[G]$-modules where $1 \leq \operatorname{rank}_{\mathbb{Z}} M_{1} \leq 3, \operatorname{rank}_{\mathbb{Z}} M_{2}=2$ and G act on $k(M)$ by monomial k-automorphisms where M_{2} is a faithful G-lattice and the action of $G \leq G L_{2}(\mathbb{Z})$ on $k\left(M_{2}\right)$ is given as in (iii) of Definition Definition (1) If $\operatorname{rank}_{\mathbb{Z}} M_{1}=1$ or 2 , then $k(M)^{G}$ is k-rational; (2) If $\operatorname{rank}_{\mathbb{Z}} M_{1}=3$, then $k(M)^{G}$ is k-rational except for the case $G=D_{6}$ and the action of G on $k\left(M_{1}\right)$ is given as $G_{3,1,1}=\left\langle\tau_{1}, \lambda_{1}\right\rangle \simeq V_{4}$ in [HKiY] (2011).

For proof (1/4)

- Let $(a, b)_{n, k}$ be the norm residue symbol of degree n over k.

Theorem (Hajja-Kang-Ohm 1994, Kang 2007) char $k \neq 2$

Let $K=k(\sqrt{a})$ be a quadratic field extension of k. Take $\operatorname{Gal}(K / k)=\langle\sigma\rangle$ and extend the action of σ to $K(x, y)$ by

$$
\sigma: \sqrt{a} \mapsto-\sqrt{a}, x \mapsto x, y \mapsto \frac{f(x)}{y} \quad(f(x) \in k[x]) .
$$

Then we have $K(x, y)^{\langle\sigma\rangle}=k\left(z_{1}, z_{2}, x\right)$ with the relation $z_{1}^{2}-a z_{2}^{2}=f(x)$ where $z_{1}=\frac{1}{2}\left(y+\frac{f(x)}{y}\right), z_{2}=\frac{1}{2 \sqrt{a}}\left(y-\frac{f(x)}{y}\right)$.
(1) When $f(x)=b, K(x, y)^{\langle\sigma\rangle}$ is k-rational if and only if $(a, b)_{2, k}=0$.
(2) When $\operatorname{deg} f(x)=1, K(x, y)^{\langle\sigma\rangle}$ is always k-rational.
(3) When $f(x)=b\left(x^{2}-c\right)$ for some $b, c \in k \backslash\{0\}$, then $K(x, y)^{\langle\sigma\rangle}$ is k-rational if and only if $(a, b)_{2, k} \in \operatorname{Br}(k(\sqrt{a c}) / k)$, i.e. $(a, b)_{2, k(\sqrt{a c})}=0$. Moreover, if $K(x, y)^{\langle\sigma\rangle}$ is not k-rational, then k is an infinite field, the Brauer group $\operatorname{Br}(k)$ is non-trivial, and $K(x, y)^{\langle\sigma\rangle}$ is not k-unirational.

For proof (2/4)

Theorem (Hoshi-Kitayama, 2024, Transform. Groups)

Let $n \geq 2, k$ be a field with $\operatorname{gcd}\{\operatorname{char} k, n\}=1$ and $\zeta_{n} \in k$ where ζ_{n} is a primitive n-th root of unity in \bar{k}. Suppose that $k(\sqrt[n]{a})$ is a cyclic extension of k of degree n with $a \in k \backslash\{0\}$. Take $\operatorname{Gal}(k(\sqrt[n]{a}) / k)=\langle\sigma\rangle$ and extend the action of σ to $k(\sqrt[n]{a})\left(x_{1}, \ldots, x_{n-1}\right)$ by

$$
\sigma: x_{1} \mapsto \cdots \mapsto x_{n-1} \mapsto \frac{b}{x_{1} \cdots x_{n-1}} \mapsto x_{1}
$$

where $b \in k \backslash\{0\}$. Then the following statements are equivalent:
(i) $k(\sqrt[n]{a})\left(x_{1}, \ldots, x_{n-1}\right)^{\langle\sigma\rangle}$ is k-rational;
(ii) $k(\sqrt[n]{a})\left(x_{1}, \ldots, x_{n-1}\right)^{\langle\sigma\rangle}$ is stably k-rational;
(iii) $k(\sqrt[n]{a})\left(x_{1}, \ldots, x_{n-1}\right)^{\langle\sigma\rangle}$ is k-unirational;
(iv) $(a, b)_{n, k}=0$.

For proof (3/4)

Theorem (Hoshi-Kitayama, 2024, Transform. Groups) char $k \neq 2$

Let $K=k(\sqrt{a})$ be a quadratic field extension of k. Take $\operatorname{Gal}(K / k)=\langle\sigma\rangle$ and extend the action of σ to $K\left(x_{1}, \ldots, x_{n}\right)$ by

$$
\sigma: \sqrt{a} \mapsto-\sqrt{a}, x_{i} \mapsto \frac{b_{i}}{x_{i}} \quad(1 \leq i \leq n)
$$

where $b_{i} \in k \backslash\{0\}$. Then $K\left(x_{1}, \ldots, x_{n}\right)^{\langle\sigma\rangle}=k\left(s_{i}, t_{i}: 1 \leq i \leq n\right)$ where

$$
\begin{equation*}
s_{i}^{2}-a t_{i}^{2}=b_{i} \quad(1 \leq i \leq n) \tag{1}
\end{equation*}
$$

and the following statements are equivalent:
(i) $K\left(x_{1}, \ldots, x_{n}\right)^{\langle\sigma\rangle}$ is k-rational;
(ii) $K\left(x_{1}, \ldots, x_{n}\right)^{\langle\sigma\rangle}$ is stably k-rational;
(iii) $K\left(x_{1}, \ldots, x_{n}\right)^{\langle\sigma\rangle}$ is k-unirational;
(iv) the variety defined by (1) has a k-rational point;
(v) $\left(a, b_{i}\right)_{2, k}=0$ for any $1 \leq i \leq n$.

For proof (4/4)

Theorem (Hoshi-Kitayama, 2024, Transform. Groups) char $k \neq 2$

Let $K=k\left(\sqrt{a_{1}}, \ldots, \sqrt{a_{n}}\right)$ where $a_{i} \in K \backslash\{0\}(1 \leq i \leq n)$. Let σ_{i} $(1 \leq i \leq n)$ be a k-automorphism of $K\left(x_{1}, \ldots, x_{n}\right)$ defined by

$$
\sigma_{i}: \sqrt{a_{j}} \mapsto\left\{\begin{array}{lll}
-\sqrt{a_{j}} & \text { if } \quad i=j \\
\sqrt{a_{j}} & \text { if } \quad i \neq j
\end{array} \quad, x_{j} \mapsto\left\{\begin{array}{lll}
\frac{c_{j}}{x_{j}} & \text { if } \quad i=j \\
x_{j} & \text { if } \quad i \neq j
\end{array} \quad(1 \leq i, j \leq n)\right.\right.
$$

where $c_{j} \in k \backslash\{0\}$. Then $K\left(x_{1}, \ldots, x_{n}\right)^{\left\langle\sigma_{1}, \ldots, \sigma_{n}\right\rangle}=k\left(s_{i}, t_{i}: 1 \leq i \leq n\right)$ where

$$
\begin{equation*}
s_{i}^{2}-a_{i} t_{i}^{2}=c_{i} \quad(1 \leq i \leq n) \tag{2}
\end{equation*}
$$

and the following statements are equivalent:
(i) $K\left(x_{1}, \ldots, x_{n}\right)^{\left\langle\sigma_{1}, \ldots, \sigma_{n}\right\rangle}$ is k-rational;
(ii) $K\left(x_{1}, \ldots, x_{n}\right)^{\left\langle\sigma_{1}, \ldots, \sigma_{n}\right\rangle}$ is stably k-rational;
(iii) $K\left(x_{1}, \ldots, x_{n}\right)^{\left\langle\sigma_{1}, \ldots, \sigma_{n}\right\rangle}$ is k-unirational;
(iv) the variety defined by (2) has a k-rational point;
(v) $\left(a_{i}, c_{i}\right)_{2, k}=0$ for and $1 \leq i \leq n$.
§4. Rationality problem for algebraic tori (2-dim., 3-dim.)
$G \simeq \operatorname{Gal}(K / k) \curvearrowright K\left(x_{1}, \ldots, x_{n}\right)$: purely quasi-monomial, $K\left(x_{1}, \ldots, x_{n}\right)^{G}$ may be regarded as the function field of algebraic torus T over k which splits over $K\left(T \otimes_{k} K \simeq \mathbb{G}_{m}^{n}\right)$.

- T is k-unirational, i.e. $K\left(x_{1}, \ldots, x_{n}\right)^{G} \subset k\left(t_{1}, \ldots, t_{n}\right)$.
- $\exists 13 \mathbb{Z}$-coujugacy subgroups $G \leq \mathrm{GL}_{2}(\mathbb{Z})$.

Theorem (Voskresenskii, 1967) 2-dim. algebraic tori T

T is k-rational.

- $\exists 73 \mathbb{Z}$-coujugacy subgroups $G \leq \mathrm{GL}_{3}(\mathbb{Z})$.

Theorem (Kunyavskii, 1990) 3-dim. algebraic tori T

(i) T is k-rational $\Longleftrightarrow T$ is stably k-rational
$\Longleftrightarrow T$ is retract k-rational $\Longleftrightarrow \exists G$: 58 groups;
(ii) T is not k-rational $\Longleftrightarrow T$ is not stably k-rational
$\Longleftrightarrow T$ is not retract k-rational $\Longleftrightarrow \exists G$: 15 groups.

Rationality of algebraic tori (4-dim., 5-dim.)

- $\exists 710 \mathbb{Z}$-coujugacy subgroups $G \leq \mathrm{GL}_{4}(\mathbb{Z})$.

Theorem (Hoshi-Yamasaki, 2017, Mem. AMS) 4-dim. alg. tori T

(i) T is stably k-rational $\Longleftrightarrow \exists G$: 487 groups;
(ii) T is not stably but retract k-rational $\Longleftrightarrow \exists G$: 7 groups;
(iii) T is not retract k-rational $\Longleftrightarrow \exists G: 216$ groups.

- $\exists 6079 \mathbb{Z}$-coujugacy subgroups $G \leq \mathrm{GL}_{5}(\mathbb{Z})$.

Theorem (Hoshi-Yamasaki, 2017, Mem. AMS) 5-dim. alg. tori T

(i) T is stably k-rational $\Longleftrightarrow \exists G$: 3051 groups;
(ii) T is not stably but retract k-rational $\Longleftrightarrow \exists G$: 25 groups;
(iii) T is not retract k-rational $\Longleftrightarrow \exists G$: 3003 groups.

- (Voskresenskii's conjecture) any stably rational torus is rational.
- $\exists 85308 \mathbb{Z}$-coujugacy subgroups $G \leq \mathrm{GL}_{6}(\mathbb{Z})$!

Special case: $T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right) ;$ norm one tori $(1 / 5)$

- Rationality problem for $T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ is investigated by S . Endo, Colliot-Thélène and Sansuc, W. Hürlimann, L. Le Bruyn, A. Cortella and B. Kunyavskii, N. Lemire and M. Lorenz, M. Florence, etc.

Theorem (Endo-Miyata, 1974), (Saltman, 1984)

Let K / k be a finite Galois field extension and $G=\operatorname{Gal}(K / k)$.
(i) T is retract k-rational \Longleftrightarrow all the Sylow subgroups of G are cyclic; (ii) T is stably k-rational $\Longleftrightarrow G$ is a cyclic group, or a direct product of a cyclic group of order m and a group $\left\langle\sigma, \tau \mid \sigma^{n}=\tau^{2^{d}}=1, \tau \sigma \tau^{-1}=\sigma^{-1}\right\rangle$, where $d, m \geq 1, n \geq 3, m, n$: odd, and $(m, n)=1$.

Theorem (Endo, 2011)

Let K / k be a finite non-Galois, separable field extension and L / k be the Galois closure of K / k. Assume that the Galois group of L / k is nilpotent. Then the norm one torus $T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ is not retract k-rational.

Special case: $T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right) ;$ norm one tori $(2 / 5)$

- Let K / k be a finite non-Galois, separable field extension
- Let L / k be the Galois closure of K / k.
- Let $G=\operatorname{Gal}(L / k)$ and $H=\operatorname{Gal}(L / K) \leq G$.

Theorem (Endo, 2011)

Assume that all the Sylow subgroups of G are cyclic. Then T is retract k-rational. $T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ is stably k-rational $\Longleftrightarrow G=D_{n}, n$ odd $(n \geq 3)$ or $C_{m} \times D_{n}, m, n$ odd $(m, n \geq 3),(m, n)=1, H \leq D_{n}$ with $|H|=2$.

Special case: $T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right) ;$ norm one tori $(3 / 5)$

Theorem (Endo, 2011) $\operatorname{dim} T=n-1$

Assume that $\operatorname{Gal}(L / k)=S_{n}, n \geq 3$, and $\operatorname{Gal}(L / K)=S_{n-1}$ is the stabilizer of one of the letters in S_{n}.
(i) $R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ is retract k-rational $\Longleftrightarrow n$ is a prime; (ii) $R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ is (stably) k-rational $\Longleftrightarrow n=3$.

Theorem (Endo, 2011) $\operatorname{dim} T=n-1$

Assume that $\operatorname{Gal}(L / k)=A_{n}, n \geq 4$, and $\operatorname{Gal}(L / K)=A_{n-1}$ is the stabilizer of one of the letters in A_{n}.
(i) $R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ is retract k-rational $\Longleftrightarrow n$ is a prime;
(ii) $\exists t \in \mathbb{N}$ s.t. $\left[R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)\right]^{(t)}$ is stably k-rational $\Longleftrightarrow n=5$.

- $\left[R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)\right]^{(t)}:$ the product of t copies of $R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$.

Special case: $T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right) ;$ norm one tori $(4 / 5)$

Theorem ([HY17], Rationality for $R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)(\operatorname{dim} .4,[K: k]=5)$)

Let K / k be a separable field extension of degree 5 and L / k be the Galois closure of K / k. Assume that $G=\operatorname{Gal}(L / k)$ is a transitive subgroup of S_{5} and $H=\operatorname{Gal}(L / K)$ is the stabilizer of one of the letters in G. Then the rationality of $R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ is given by

G		$L(M)=L\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{G}$
$5 T 1$	C_{5}	stably k-rational
$5 T 2$	D_{5}	stably k-rational
$5 T 3$	F_{20}	not stably but retract k-rational
$5 T 4$	A_{5}	stably k-rational
$5 T 5$	S_{5}	not stably but retract k-rational

- This theorem is already known except for the case of A_{5} (Endo).
- Stably k-rationality for the case A_{5} is asked by S. Endo (2011).

Special case: $T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right) ;$ norm one tori $(5 / 5)$

Corollary of (Endo 2011) and [HY17]

Assume that $\operatorname{Gal}(L / k)=A_{n}, n \geq 4$, and $\operatorname{Gal}(L / K)=A_{n-1}$ is the stabilizer of one of the letters in A_{n}. Then
$R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ is stably k-rational $\Longleftrightarrow n=5$.

More recent results on stably/retract k-rational classification for T

- $G \leq S_{n}(n \leq 10)$ and $G \neq 9 T 27 \simeq P S L_{2}\left(\mathbb{F}_{8}\right)$, $G \leq S_{p}$ and $G \neq P S L_{2}\left(\mathbb{F}_{2^{e}}\right)\left(p=2^{e}+1 \geq 17\right.$; Fermat prime) (Hoshi-Yamasaki [HY21] Israel J. Math.)
- $G \leq S_{n}(n=12,14,15)\left(n=2^{e}\right)$
(Hasegawa-Hoshi-Yamasaki [HHY20] Math. Comp.)
$\amalg(T)$ and Hasse norm principle over number fields k (see next slides)
- (Hoshi-Kanai-Yamasaki [HKY22] Math. Comp., [HKY23] JNT)

$Ш(T)$ and HNP for K / k : Ono's theorem (1963)

- T : algebraic k-torus, i.e. $T \times_{k} \bar{k} \simeq\left(\mathbb{G}_{m, \bar{k}}\right)^{n}$.
- $\amalg(T):=\operatorname{Ker}\left\{H^{1}(k, T) \xrightarrow{\text { res }} \bigoplus_{v \in V_{k}} H^{1}\left(k_{v}, T\right)\right\}$: Shafarevich-Tate gp.
- $T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ is biregularly isomorphic to the norm hyper surface $f\left(x_{1}, \ldots, x_{n}\right)=1$ where $f \in k\left[x_{1}, \ldots, x_{n}\right]$ is the norm form of K / k.

Theorem (Ono 1963, Ann. of Math.)

Let K / k be a finite extension of number fields and $T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$. Then

$$
\amalg(T) \simeq\left(N_{K / k}\left(\mathbb{A}_{K}^{\times}\right) \cap k^{\times}\right) / N_{K / k}\left(K^{\times}\right)
$$

where \mathbb{A}_{K}^{\times}is the idele group of K. In particular,
$Ш(T)=0 \Longleftrightarrow$ Hasse norm principle holds for K / k.

