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§0. Introduction

.
Inverse Galois problem (IGP)
..

......

Does every finite group occur as a quotient group of the absolute Galois
group Gal(Q/Q) ?

▶ Related to rationality problem

A finite group G↷ k(xg | g ∈ G): rational function field over k
by permutation

k(xg | g ∈ G)G is rational over k, i.e. k(xg | g ∈ G)G ≃ k(t1, . . . , tn)
(Noether’s problem has an affirmative answer)

=⇒ k(xg | g ∈ G)G is retract rational over k (weaker concept)

⇐⇒ ∃ generic extension (polynomial) for (G, k) (Saltman’s sense)

k:Hilbertian
=⇒ IGP for (k,G) has an affirmative answer
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Rationality problem for quasi-monomial actions

.
Definition (quasi-monomial action)
..

......

Let K/k be a finite field extension and G ≤ Autk(K(x1, . . . , xn)); finite
where K(x1, . . . , xn) is the rational function field of n variables over K.
The action of G on K(x1, . . . , xn) is called quasi-monomial if
(i) σ(K) ⊂ K for any σ ∈ G;
(ii) KG = k;
(iii) for any σ ∈ G, σ(xj) = cj(σ)

n∏
i=1

x
aij
i

where cj(σ) ∈ K×, 1 ≤ j ≤ n, [ai,j ]1≤i,j≤n ∈ GLn(Z).

.
Rationality problem
..

......

Under what situation the fixed field K(x1, . . . , xn)
G is rational over k,

i.e. K(x1, . . . , xn)
G ≃ k(t1, . . . , tn) (=purely transcendental over k),

if G acts on K(x1, . . . , xn) by quasi-monomial k-automorphisms.
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Rationality problem for quasi-monomial actions

.
Definition (quasi-monomial action)
..

......

Let K/k be a finite field extension and G ≤ Autk(K(x1, . . . , xn)); finite
where K(x1, . . . , xn) is the rational function field of n variables over K.
The action of G on K(x1, . . . , xn) is called quasi-monomial if
(i) σ(K) ⊂ K for any σ ∈ G;
(ii) KG = k;
(iii) for any σ ∈ G, σ(xj) = cj(σ)

n∏
i=1

x
aij
i

where cj(σ) ∈ K×, 1 ≤ j ≤ n, [ai,j ]1≤i,j≤n ∈ GLn(Z).

▶ When G↷ K; trivial (i.e. K = k), called (just) monomial action.

▶ When G↷ K; trivial and permutation ↔ Noether’s problem .

▶ When cj(σ) = 1 (∀σ ∈ G,∀j), called purely (quasi-)monomial.

▶ G = Gal(K/k) and purely ↔ Rationality problem for algebraic tori .
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Exercises (1/2): Noether’s problem

▶ Sn ↷ Q(x1, . . . , xn); permutation

Q. Is Q(x1, . . . , xn)
Sn rational over Q? 　 Ans. Yes!

Q(x1, . . . , xn)
Sn = Q(s1, . . . , sn); si, ith elementary symmetric

=⇒ IGP for (Q, Sn) has affirmative solution.

▶ An ↷ Q(x1, . . . , xn); permutation

Q. Is Q(x1, . . . , xn)
An rational over Q? 　 Ans. Yes? ?? ??

Q(x1, . . . , xn)
An = Q(s1, . . . , sn,∆); but ...

Open problem Is Q(x1, . . . , xn)
An rational over Q? (n ≥ 6)

▶ Q(x1, . . . , x5)
A5 is rational over Q (Maeda, 1989).
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Exercises (2/2): Noether’s problem

▶ Q(x1, x2, x3)
A3 = Q(x1, x2, x3)

C3 = Q(t1, t2, t3), Q. t1, t2, t3?
(C3 : x1 7→ x2 7→ x3 7→ x1)

▶ Ans. Q(x1, x2, x3)
C3 = Q(t1, t2, t3) where

t1 = x1 + x2 + x3,

t2 =
x1x

2
2 + x2x

2
3 + x3x

2
1 − 3x1x2x3

x21 + x22 + x23 − x1x2 − x2x3 − x3x1
,

t3 =
x21x2 + x22x3 + x23x1 − 3x1x2x3

x21 + x22 + x23 − x1x2 − x2x3 − x3x1
.

▶ Q(x1, x2, . . . , x8)
C8 = Q(t1, t2, . . . , t8), Q. t1, t2, . . . , t8?

(C8 : x1 7→ x2 7→ x3 7→ · · · 7→ x8 7→ x1)

▶ Ans. None: Q(x1, x2, . . . , x8)
C8 is not rational over Q!
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Today’s talk (1/2)

.
Definition (quasi-monomial action)
..

......

Let K/k be a finite field extension and G ≤ Autk(K(x1, . . . , xn)); finite
where K(x1, . . . , xn) is the rational function field of n variables over K.
The action of G on K(x1, . . . , xn) is called quasi-monomial if
(i) σ(K) ⊂ K for any σ ∈ G;
(ii) KG = k;
(iii) for any σ ∈ G, σ(xj) = cj(σ)

n∏
i=1

x
aij
i

where cj(σ) ∈ K×, 1 ≤ j ≤ n, [ai,j ]1≤i,j≤n ∈ GLn(Z).

§1. G↷ K; trivial: monomial action & Noether’s problem
§2. G↷ K; trivial and permutation: Noether’s problem over C
§3. (general) quasi-monomial actions (1-dim. and 2-dim. cases)
§4. G = Gal(K/k) and purely: rationality problem for algebraic tori
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Today’s talk (2/2)

§1. G↷ K; trivial: monomial action & Noether’s problem

Hoshi-Kitayama-Yamasaki, J. Algebra 341 (2011) 45–108.

§2. G↷ K; trivial and permutation: Noether’s problem over C

Hoshi-Kang-Kunyavskii, Asian J. Math. 17 (2013) 689–714.

Chu-Hoshi-Hu-Kang, J. Algebra 442 (2015) 233–259.

Hoshi, J. Algebra 445 (2016) 394–432.

Hoshi-Kang-Yamasaki, J. Algebra 458 (2016) 120–133.

Hoshi-Kang-Yamasaki, arXiv:1609.04142, 101 pages.

§3. (general) quasi-monomial actions (1-dim. and 2-dim. cases)

Hoshi-Kang-Kitayama, J. Algebra 403 (2014) 363–400.

§4. G = Gal(K/k) and purely: rationality problem for algebraic tori

Hoshi-Yamasaki, to appear in Mem. AMS, arXiv:1210.4525, 215 pages.
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Various rationalities: definitions

k ⊂ L; f.g. field extension, L is rational over k
def⇐⇒ L ≃ k(x1, . . . , xn).

.
Definition (stably rational)
..

......L is called stably rational over k
def⇐⇒ L(y1, . . . , ym) is rational over k.

.
Definition (retract rational)
..

......

L is retract rational over k
def⇐⇒ ∃k-algebra R ⊂ L such that

(i) L is the quotient field of R;
(ii) ∃f ∈ k[x1, . . . , xn] ∃k-algebra hom. φ : R→ k[x1, . . . , xn][1/f ] and
ψ : k[x1, . . . , xn][1/f ]→ R satisfying ψ ◦ φ = 1R.

.
Definition (unirational)
..

......L is unirational over k
def⇐⇒ L ⊂ k(t1, . . . , tn) .

▶ Assume L1(x1, . . . , xn) ≃ L2(y1, . . . , ym); stably isomorphic.
If L1 is retract rational over k, then so is L2 over k.

▶ “rational”=⇒“stably rational” =⇒“retract rational“=⇒“unirational”
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“rational”=⇒“stably rational” =⇒“retract rational“=⇒“unirational”

▶ The direction of the implication cannot be reversed.

▶ (Lüroth’s problem) “unirational”=⇒“rational” ? YES if trdeg= 1

▶ (Castelnuovo, 1894)
L is unirational over C and trdegCL = 2 =⇒ L is rational over C.

▶ (Zariski, 1958) Let k be an alg. closed field and k ⊂ L ⊂ k(x, y). If
k(x, y) is separable algebraic over L, then L is rational over k.

▶ (Zariski cancellation problem) V1 ×Pn ≈ V2 ×Pn =⇒ V1 ≈ V2?
In particular, “stably rational”=⇒“rational”?

▶ (Beauville, Colliot-Thélène, Sansuc, Swinnerton-Dyer, 1985,Ann. Math.)
L = Q(x, y, t) with x2 + 3y2 = t3 − 2 (Châtelet surface)
=⇒ L is not rational but stably rational over Q.
Indeed, L(y1, y2, y3) is rational over Q.

▶ L(y1, y2) is rational over Q (Shepherd-Barron, 2002, Fano Conf.).

▶ Q(x1, . . . , x47)
C47 is not stably but retract rational over Q.

▶ Q(x1, . . . , x8)
C8 is not retract but unirational over Q.
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Châtelet surface as an invariant field

▶ (Beauville, Colliot-Thélène, Sansuc, Swinnerton-Dyer, 1985,Ann. Math.)
L = Q(x, y, t) with x2 + 3y2 = t3 − 2 (Châtelet surface)
=⇒ L is not rational but stably rational over Q.

▶ L = Q(x, y, t) = Q(
√
−3)(X,Y )⟨σ⟩ where

σ :
√
−3 7→ −

√
−3, X 7→ X,Y 7→ X3 − 2

Y
.

Indeed, we have

x =
1

2

(
Y +

X3 − 2

Y

)
,

y =
1

2
√
−3

(
Y − X3 − 2

Y

)
,

t = X.
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Retract rationality and generic extension
.
Theorem (Saltman, 1982, DeMeyer)
..

......

Let k be an infinite field and G be a finite group.
The following are equivalent:
(i) k(xg | g ∈ G)G is retract rational over k.
(ii) There is a generic G-Galois extension over k;
(iii) There exists a generic G-polynomial over k.

▶ related to Inverse Galois Problem (IGP). (i) =⇒ IGP(G/k): true

.
Definition (generic polynomial)
..

......

A polynomial f(t1, . . . , tn;X) ∈ k(t1, . . . , tn)[X] is generic for G over k if
(1) Gal(f/k(t1, . . . , tn)) ≃ G;
(2) ∀L/M ⊃ k with Gal(L/M) ≃ G,
∃a1, . . . , an ∈M such that L =Spl(f(a1, . . . , an;X)/M).

▶ By Hilbert’s irreducibility theorem, ∃L/Q such that Gal(L/Q) ≃ G.
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§1. Monomial action & Noether’s problem

.
Definition (monomial action) G ↷ K; trivial, k = KG = K
..

......

An action of G on k(x1, . . . , xn) is monomial
def⇐⇒

σ(xj) = cj(σ)

n∏
i=1

x
ai,j
i , 1 ≤ j ≤ n,∀σ ∈ G

where [ai,j ]1≤i,j≤n ∈ GLn(Z), cj(σ) ∈ k× := k \ {0}.

If cj(σ) = 1 for any 1 ≤ j ≤ n then σ is called purely monomial.

▶ Application to Noether’s problem (permutation action)
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Noether’s problem (1/3) [G = A; abelian case]

▶ k; field, G; finite group
▶ G↷ k; trivial, G↷ k(xg | g ∈ G); permutation.
▶ k(G) := k(xg | g ∈ G)G; invariant field

.
Noether’s problem (Emmy Noether, 1913)
..
......Is k(G) rational over k?, i.e. k(G) ≃ k(t1, . . . , tn)?

▶ Is the quotient variety Pn/G rational over k?

▶ Assume G = A; abelian group.
▶ (Fisher, 1915) C(A) is rational over C.
▶ (Masuda, 1955, 1968) Q(Cp) is rational over Q for p ≤ 11.
▶ (Swan, 1969, Invent. Math.)
Q(C47),Q(C113),Q(C233) are not rational over Q.

▶ S. Endo and T. Miyata (1973), V.E. Voskresenskii (1973), ...
e.g. Q(C8) is not rational over Q.

▶ (Lenstra, 1974, Invent. Math.)

k(A) is rational over k ⇐⇒ some condition ;
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Noether’s problem (2/3) [G = A; abelian case]

▶ (Endo-Miyata, 1973) Q(Cpr) is rational over Q
⇐⇒ ∃α ∈ Z[ζφ(pr)] such that NQ(ζφ(pr))/Q(α) = ±p

▶ h(Q(ζm)) = 1 if m < 23
=⇒ Q(Cp) is rational over Q for p ≤ 43 and p = 61, 67, 71.

▶ (Endo-Miyata, 1973) For p = 47, 79, 113, 137, 167, . . . ,
Q(Cp) is not rational over Q.

▶ However, for p = 59, 83, 89, 97, 107, 163, . . ., unknown.
Under the GRH, Q(Cp) is not rational for the above primes.
But it is unknown for p = 251, 347, 587, 2459, . . .

▶ For p ≤ 20000, see speaker’s paper: Proc. Japan Acad. Ser. A 91
(2015) 39-44.

.
Theorem (Plans, arXiv:1605.09228, to appear in Proc. AMS)
..
......Q(Cp) is rational over Q ⇐⇒ p ≤ 43 or p = 61, 67, 71.

▶ Using lower bound of height, Q(Cp) is rational ⇒ p < 173.
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Noether’s problem (3/3) [G; non-abelian case]

.
Noether’s problem (Emmy Noether, 1913)
..
......Is k(G) rational over k?, i.e. k(G) ≃ k(t1, . . . , tn)?

▶ Assume G; non-abelian group.

▶ (Maeda, 1989) k(A5) is rational over k;

▶ (Rikuna, 2003; Plans, 2007)
k(GL2(F3)) and k(SL2(F3)) is rational over k;

▶ (Serre, 2003)
if 2-Sylow subgroup of G ≃ C8m, then Q(G) is not rational over Q;
if 2-Sylow subgroup of G ≃ Q16, then Q(G) is not rational over Q;
e.g. G = Q16, SL2(F7), SL2(F9),

SL2(Fq) with q ≡ 7 or 9 (mod 16).
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From Noether’s problem to monomial actions (1/2)

▶ k(G) := k(xg | g ∈ G)G; invariant field
.
Noether’s problem (Emmy Noether, 1913)
..
......Is k(G) rational over k?, i.e. k(G) ≃ k(t1, . . . , tn)?

By Hilbert 90, we have:
.
No-name lemma (e.g. Miyata, 1971, Remark 3)
..

......

Let G act faithfully on k-vector space V , W be a faithful k[G]-submodule
of V . Then K(V )G = K(W )G(t1, . . . , tm).

.
Rationality problem: linear action
..

......

Let G act on finite-dimensional k-vector space V and ρ : G→ GL(V ) be
a representation. Whether k(V )G is rational over k?

▶ the quotient variety V/G is rational over k?
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From Noether’s problem to monomial actions (2/2)

▶ For ρ : G→ GL(V ); monomial representation, i.e. matrix rep.
has exactly one non-zero entry in each row and each column,
G acts on k(P(V )) = k(w1

wn
, . . . , wn−1

wn
) by monomial action．

By Hilbert 90, we have:
.
Lemma (e.g. Miyata, 1971, Lemma)
..

......k(V )G = k(P(V ))G(t).

▶ V/G ≈ P(V )/G×P1 (birational)

▶ k(P(V ))G (monomial action) is rational over k
=⇒ k(V )G (linear action) is rational over k
=⇒ k(G) (permutation action) is rational over k
(Noether’s problem has an affirmative answer)
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Example: Noether’s problem for GL2(F3) and SL2(F3)

▶ G = GL2(F3) = ⟨A,B,C,D⟩ ⊂ GL4(Q), #G = 48,
▶ H = SL2(F3) = ⟨A,B,C⟩ ⊂ GL4(Q), #H = 24, where

A =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

, B =


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

, C =


0 0 1 0
−1 0 0 0
0 −1 0 0
0 0 0 1

, D =


1 0 0 0
0 −1 0 0
0 0 0 1
0 0 1 0

.

▶ G and H act on k(V ) = k(w1, w2, w3, w4) by

A : w1 7→ −w2 7→ −w1 7→ w2 7→ w1, w3 7→ −w4 7→ −w3 7→ w4 7→ w3,

B : w1 7→ −w3 7→ −w1 7→ w3 7→ w1, w2 7→ w4 7→ −w2 7→ −w4 7→ w2,

C : w1 7→ −w2 7→ w3 7→ w1, w4 7→ w4, D : w1 7→ w1, w2 7→ −w2, w3 ↔ w4.

▶ k(P(V )) = k(x, y, z), x = w1/w4, y = w2/w4, z = w3/w4.
▶ G and H act on k(x, y, z) as G/Z(G) ≃ S4 and H/Z(H) ≃ A4:

A : x 7→ y

z
, y 7→ −x

z
, z 7→ −1

z
, B : x 7→ −z

y
, y 7→ −1

y
, z 7→ x

y
,

C : x 7→ y 7→ z 7→ x, D : x 7→ x

z
, y 7→ −y

z
, z 7→ 1

z
.

▶ k(P(V ))G: rational =⇒ k(V )G: rational =⇒ k(G): rational.
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Monomial action (1/3) [3-dim. case]

.
Theorem (Hajja,1987) 2-dim. monomial action
..

......k(x1, x2)
G is rational over k.

.
Theorem (Hajja-Kang 1994, H-Rikuna 2008) 3-dim. purely monomial
..

......k(x1, x2, x3)
G is rational over k.

.
Theorem (Prokhorov, 2010) 3-dim. monomial action over k = C
..

......C(x1, x2, x3)
G is rational over C.

However,
Q(x1, x2, x3)

⟨σ⟩, σ : x1 7→ x2 7→ x3 7→ −1
x1x2x3

is not rational over Q

(Hajja,1983).
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Monomial action (2/3) [3-dim. case]

.
Theorem (Saltman, 2000) char k ̸= 2
..

......

If [k(
√
a1,
√
a2,
√
a3) : k] = 8, then k(x1, x2, x3)

⟨σ⟩,

σ : x1 7→
a1
x1
, x2 7→

a2
x2
, x3 7→

a3
x3

is not retract rational over k (hence not rational over k).

.
Theorem (Kang, 2004)
..

......

k(x1, x2, x3)
⟨σ⟩, σ: x1 7→ x2 7→ x3 7→

c

x1x2x3
7→ x1, is rational over k

⇐⇒ at least one of the following conditions is satisfied:
(i) char k = 2; (ii) c ∈ k2; (iii) −4c ∈ k4; (iv) −1 ∈ k2.
If k(x, y, z)⟨σ⟩ is not rational over k, then it is not retract rational over k.

Recall that

▶ “rational”=⇒“stably rational” =⇒“retract rational“=⇒“unirational”
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Monomial action (3/3) [3-dim. case]

.
Theorem (Yamasaki, 2012) 3-dim. monomial, char k ̸= 2
..

......

∃ 8 cases G ≤ GL3(Z) s.t k(x1, x2, x3)
G is not retract rational over k.

Moreover, the necessary and sufficient conditions are given.

▶ Two of 8 cases are Saltman’s and Kang’s cases.

▶ ∃G ≤ GL3(Z); 73 finite subgroups (up to conjugacy)

.
Theorem (H-Kitayama-Yamasaki, 2011) 3-dim. monomial, char k ̸= 2
..

......

k(x1, x2, x3)
G is rational over k except for the 8 cases and G = A4.

For G = A4, if [k(
√
a,
√
−1) : k] ≤ 2, then it is rational over k.

.
Corollary
..

......∃L = k(
√
a) such that L(x1, x2, x3)

G is rational over L.

▶ However, ∃4-dim. C(x1, x2, x3, x4)
C2×C2 is not retract rational.

Akinari Hoshi (Niigata University) Rationality problem for fields of invariants Mach 5, 2017 23 / 65



§2. Noether’s problem over C (1/3)

Let G be a p-group. C(G) := C(xg | g ∈ G)G.
▶ (Fisher, 1915) C(A) is rational over C if A; finite abelian group.

▶ (Saltman, 1984, Invent. Math.)
For ∀p; prime, ∃ meta-abelian p-group G of order p9

such that C(G) is not retract rational over C.

▶ (Bogomolov, 1988)
For ∀p; prime, ∃ p-group G of order p6

such that C(G) is not retract rational over C.

Indeed they showed Brnr(C(G)/C) ̸= 0; unramified Brauer group

▶ rational =⇒ stably rational =⇒retract rational =⇒ Brnr(C(G)) = 0.

not rational⇐not stably rational⇐not retract rational ⇐ Brnr(C(G)) ̸= 0.

▶ k(G); retract rational =⇒ IGP for (k,G) has an affirmative answer.
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Unramified Brauer group

.
Definition (Unramified Brauer group) Saltman (1984)
..

......

Let k ⊂ K be an extension of fields.
Brnr(K/k) = ∩RImage{Br(R)→ Br(K)} where Br(R)→ Br(K) is the
natural map of Brauer groups and R runs over all the discrete valuation
rings R such that k ⊂ R ⊂ K and K is the quotient field of R.

▶ If K is retract rational over k, then Br(k)
∼−→ Brnr(K/k).

In particular, if K is retract rational over C, then Brnr(K/C) = 0.

▶ For a smooth projective variety X over C with function field K,
Brnr(K/C) ≃ H3(X,Z)tors which is given by Artin-Mumford (1972).
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.
Theorem (Bogomolov 1988, Saltman 1990) Brnr(C(G)/C) ≃ B0(G)
..

......

Let G be a finite group. Then Brnr(C(G)/C) is isomorphic to

B0(G) =
∩
A

Ker{res : H2(G,Q/Z)→ H2(A,Q/Z)}

where A runs over all the bicyclic subgroups of G
(bicyclic = cyclic or direct product of two cyclic groups).

▶ C(G) : “retract rational” =⇒ B0(G) = 0.
B0(G) ̸= 0 =⇒ C(G) : not (retract) rational over k.

▶ B0(G) ≤ H2(G,µ) ≃ H2(G,Z); Schur multiplier.

▶ B0(G) is called Bogomolov multiplier.
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Noether’s problem over C (2/3)

▶ (Chu-Kang, 2001) G is p-group (#G ≤ p4) =⇒ C(G) is rational.
.
Theorem (Moravec, 2012, Amer. J. Math.)
..

......

Assume #G = 35 = 243．B0(G) ̸= 0 ⇐⇒ G = G(243, i), 28 ≤ i ≤ 30.
In particular, ∃3 groups G such that C(G) is not retract rational over C.

▶ ∃G: 67 groups such that #G = 243.

.
Theorem (H-Kang-Kunyavskii, 2013, Asian J. Math.)
..

......

Assume #G = p5 where p is odd prime．
B0(G) ̸= 0 ⇐⇒ G belongs to the isoclinism family Φ10.
In particular, ∃ gcd(4, p− 1)+ gcd(3, p− 1) + 1 (resp. ∃3) groups G of
order p5 (p ≥ 5) (resp. p = 3) s.t. C(G) is not retract rational over C.

▶ ∃2p+ 61+ gcd(4, p− 1) + 2 gcd(3, p− 1) groups
such that #G = p5(p ≥ 5). (∃Φ1, . . . ,Φ10)
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From the proof (1/3)

.
Definition (isoclinic)
..

......

p-groups G1 and G2 are isoclinic
def⇐⇒

isom. θ : G1/Z(G1)
∼→ G2/Z(G2), ϕ : [G1, G1]

∼→ [G2, G2] such that

G1/Z(G1)×G1/Z(G1)
(θ,θ)−−−→
≃

G2/Z(G2)×G2/Z(G2)

[ , ]

y ⟲
y[ , ]

[G1, G1]
ϕ−−−−−−−→
≃

[G2, G2]

Invariants

▶ lower central series

▶ # of conj. classes with precisely pi members

▶ # of irr. complex rep. of G of degree pi
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From the proof (2/3)

▶ #G = p4(p > 2). ∃15 groups (Φ1,Φ2,Φ3)

▶ #G = 24 = 16. ∃14 groups (Φ1,Φ2,Φ3)

▶ #G = p5(p > 3). ∃2p+ 61 + (4, p− 1) + 2× (3, p− 1) groups
(Φ1, . . . ,Φ10)

Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 Φ7 Φ8

# 7 15 13 p+ 8 2 p+ 7 5 1
(p = 3) 7

Φ9 Φ10

# 2 + (3, p− 1) 1 + (4, p− 1) + (3, p− 1)
(p = 3) 3
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From the proof (3/3)

.
[HKK, Question 1.11] (2013) (arXiv:1202.5812)
..

......

Let G1 and G2 be isoclinic p-groups.
Is it true that the fields k(G1) and k(G2) are stably isomorphic,
or, at least, that B0(G1) is isomorphic to B0(G2)?

.
Theorem (Moravec, 2013) (arXiv:1203.2422)
..
......G1 and G2 are isoclinic =⇒ B0(G1) ≃ B0(G2).

.
Theorem (Bogomolov-Böhning, 2013) (arXiv: 1204.4747)
..
......G1 and G2 are isoclinic =⇒ C(G1) and C(G2) are stably isomorphic.
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Proof (Φ10): B0(G) ̸= 0

.
Lemma 1. N �G.
..

......

(i) tr : H1(N,Q/Z)G → H2(G/N,Q/Z) is not surjective
where tr is the transgression map.
(ii) AN/N ≤ G/N is cyclic (∀A ≤ G; bicyclic).
=⇒ B0(G) ̸= 0.

Proof. Consider the Hochschild-Serre 5-term exact sequence

0→ H1(G/N,Q/Z)→ H1(G,Q/Z)→ H1(N,Q/Z)G

tr−→ H2(G/N,Q/Z)
ψ−→ H2(G,Q/Z)

where ψ is an inflation map.

(i) =⇒ ψ is not zero-map =⇒ Image(ψ) ̸= 0.

We will show that Image(ψ) ⊂ B0(G) by (ii).

It suffices to show that H2(G/N,Q/Z)
ψ−→ H2(G,Q/Z)

res−−→ H2(A,Q/Z)
is zero-map (∀A ≤ G: bicyclic).
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Consider the following commutative diagram:

H2(G/N,Q/Z)
ψ−→ H2(G,Q/Z)

res−−→ H2(A,Q/Z)

ψ0

y xψ1

H2(AN/N,Q/Z)
ψ̃
≃ H2(A/A ∩N,Q/Z)

where ψ0 is the restriction map, ψ1 is the inflation map, ψ̃ is the natural
isomorphism.

(ii) =⇒ AN/N ≃ Cm =⇒ H2(Cm,Q/Z) = 0.

=⇒ ψ0 is zero-map.

=⇒ res ◦ ψ : H2(G/N,Q/Z)→ H2(A,Q/Z) is zero-map.

∴ Image(ψ) ⊂ B0(G)

Image(ψ) ⊂ B0(G) and Image(ψ) ̸= 0 (by (i)) =⇒ B0(G) ̸= 0.
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Proof (Φ6): B0(G) = 0

▶ G = Φ6(211)a = ⟨f1, f2, f0, h1, f2⟩, fp1 = h1, f
p
2 = h2,

Z(G) = ⟨h1, h2⟩, fp0 = hp1 = hp2 = 1
[f1, f2] = f0, [f0, f1] = h1, [f0, f2] = h2

Hochschild-Serre 5-term exact sequence:

0 → H1(G/N,Q/Z) → H1(G,Q/Z) → H1(N,Q/Z)G
tr−→H2(G/N,Q/Z)

ψ−→ H2(G,Q/Z)
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Proof (Φ6): B0(G) = 0

▶ G = Φ6(211)a = ⟨f1, f2, f0, h1, f2⟩, fp1 = h1, f
p
2 = h2,

Z(G) = ⟨h1, h2⟩, fp0 = hp1 = hp2 = 1
[f1, f2] = f0, [f0, f1] = h1, [f0, f2] = h2

Hochschild-Serre 5-term exact sequence:

0 → H1(G/N,Q/Z) → H1(G,Q/Z) → H1(N,Q/Z)G
tr−→H2(G/N,Q/Z)

ψ−→ H2(G,Q/Z)

↓

Ker{H2(G,Q/Z)
res−−→ H2(N,Q/Z)} =: H2(G,Q/Z)1

↓

H1(G/N,H1(N,Q/Z))

λ ↓

H3(G/N,Q/Z)

▶ Explicit formula for λ is given
by Dekimpe-Hartl-Wauters (2012)

▶ N := ⟨f1, f0, h1, h2⟩ =⇒ G/N ≃ Cp =⇒ H2(G/N,Q/Z) = 0
▶ B0(G) ⊂ H2(G,Q/Z)1
▶ We should show H2(G,Q/Z)1 = 0 (⇐⇒ λ: injective)
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Noether’s problem over C (3/3)

.
Theorem (H-Kang-Kunyavskii, 2013, Asian J. Math.)
..

......

Assume #G = p5 where p is odd prime．
B0(G) ̸= 0 ⇐⇒ G belongs to the isoclinism family Φ10.

.
Theorem (Chu-H-Hu-Kang, 2015, J. Algebra) #G = 35 = 243
..
......If B0(G) = 0, then C(G) is rational over C except for Φ7.

▶ Rationality of Φ7 is unknown.
▶ Φ5 and Φ7 are very similar: C = 1 (Φ5), C = ω (Φ7).

C(G) is stably isomorphic to C(z1, z2, z3, z4, z5, z6, z7, z8, z9)
⟨f1,f2⟩

f1 : z1 7→ z2, z2 7→
1

z1z2
, z3 7→ z4, z4 7→

1

z3z4
,

z5 7→
z5

z21z3
, z6 7→

z1z6

z3
, z7 7→ z8, z8 7→

1

z7z8
, z9 7→

z4z9

z1
,

f2 : z1 7→ z3, z2 7→ z4, z3 7→
1

z1z3
, z4 7→

1

z2z4
,

z5 7→ z6, z6 7→
1

z5z6
, z7 7→ C

z4z7

z3
, z8 7→ C

z8

z3z
2
4

, z9 7→
z4z9

z1
.
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Unramified Brauer group: purely monomial case (1/2)

.
Theorem (H-Kang-Yamasaki, arXiv:1609.04142) purely monomial
..

......

Let G be a finite group and M be a faithful G-lattice.
(1) If rankZM ≤ 3, then Brnr(C(M)G) = 0.
(2) When rankZM = 4, ∃ 5 M ’s with Brnr(C(M)G) ̸= 0.
(3) When rankZM = 5, ∃ 46 M ’s with Brnr(C(M)G) ̸= 0.
(4) When rankZM = 6, ∃ 1073 M ’s with Brnr(C(M)G) ̸= 0.

rank # of G-lattices # of unramified Brauer groups ̸= 0
1 2 0
2 13 0
3 73 0
4 710 5
5 6079 46
6 85308 1073

▶ If M is of rank ≤ 6 and Brnr(C(M
G)) ̸= 0, then G is solvable and

non-abelian, and Brnr(C(M)G) ≃ Z/2Z, Z/3Z or Z/2Z⊕ Z/2Z.
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Unramified Brauer group: purely monomial case (2/2)

.
Theorem (H-Kang-Yamasaki, arXiv:1609.04142) G = A6: simple
..

......

Embed A6 ≃ PSL2(F9) ↪→ S10. Let N = ⊕1≤i≤10Z · xi be the S10-lattice
defined by σ · xi = xσ(i) for any σ ∈ S10; it becomes an A6-lattice by

restricting the action of S10 to A6. Define M = N/(Z ·
∑10

i=1 xi) with
rankZM = 9. ∃A6-lattices M =M1, M2, . . . ,M6 which are Q-conjugate
but not Z-conjugate to each other; in fact, all these Mi form a single
Q-class, but this Q-class consists of six Z-classes. Then we have

H2
nr(A6,M1) ≃ H2

nr(A6,M3) ≃ Z/2Z, H2
nr(A6,Mi) = 0 for i = 2, 4, 5, 6.

In particular, C(M1)
A6 and C(M3)

A6 are not retract C-rational.
Furthermore, M1 and M3 may be distinguished by Tate cohomologies:

H1(A6,M1) = 0, Ĥ−1(A6,M1) = Z/10Z,

H1(A6,M3) = Z/5Z, Ĥ−1(A6,M3) = Z/2Z.
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Unramified cohomology (1/3)

Colliot-Thélène and Ojanguren (1989) generalized the notion of the
unramified Brauer group Brnr(K/C) to the unramified cohomology
H i

nr(K/C, µ
⊗j
n ) of degree i ≥ 1:

.
Definition (Colliot-Thélène and Ojanguren, 1989, Invent. Math.)
..

......

Let K/C be a function field, that is finitely generated as a field over C.
The unramified cohomology group H i

nr(K/C, µ
⊗j
n ) of K over C of degree

i ≥ 1 is defined to be

H i
nr(K/C, µ

⊗j
n ) =

∩
R

Image{H i
ét(R,µ

⊗j
n )→ H i

ét(K,µ
⊗j
n )}

where R runs over all the discrete valuation rings R of rank one such that
C ⊂ R ⊂ K and K is the quotient field of R.

▶ Note that nBrnr(K/C) ≃ H2
nr(K/C, µn).
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.
Proposition (Colliot-Thélène and Ojanguren, 1989)
..

......

If K and L are stably C-isomorphic, then
H i

nr(K/C, µ
⊗j
n )

∼→ H i
nr(L/C, µ

⊗j
n ).

In particular, K is stably C-rational, then H i
nr(K/C, µ

⊗j
n ) = 0.

▶ Moreover, if K is retract C-rational, then H i
nr(K/C, µ

⊗j
n ) = 0.

▶ CTO (1989) ∃ C-unirational field K s.t. H3
nr(K/C, µ

⊗3
2 ) ̸= 0.

▶ Peyre (1993) gave a sufficient condition for H i
nr(K/C, µ

⊗i
p ) ̸= 0:

▶ ∃K s.t. H3
nr(K/C, µ

⊗3
p ) ̸= 0 and Brnr(K/C) = 0;

▶ ∃K s.t. H4
nr(K/C, µ

⊗4
2 ) ̸= 0 and Brnr(K/C) = 0.
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Unramified cohomology (2/3)

Take the direct limit with respect to n:

H i(K/C,Q/Z(j)) = lim
−→
n

H i(K/C, µ⊗jn )

and we also define the unramified cohomology group

H i
nr(K/C,Q/Z(j)) =

∩
R

Image{H i
ét(R,Q/Z(j))→ H i

ét(K,Q/Z(j))}.

Then we have Brnr(K/C) ≃ H2
nr(K/C,Q/Z(1)).

▶ The case K = C(G):

.
Theorem (Peyre, 2008, Invent. Math.)
..

......

Let p be odd prime.
∃ p-group G of order p12 such that B0(G) = 0 and H3

nr(C(G),Q/Z) ̸= 0.
In particular, C(G) is not (retract, stably) C-rational.
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▶ Asok (2013) generalized Peyre’s argument (1993):

.
Theorem (Asok, 2013, Compos. Math.)
..

......

(1) For any n > 0, ∃ a smooth projective complex variety X that is
C-unirational, for which H i

nr(C(X), µ⊗i2 ) = 0 for each i < n, yet
Hn

nr(C(X), µ⊗n2 ) ̸= 0, and so
X is not A1-connected, nor (retract, stably) C-rational;
(2) For any prime l and any n ≥ 2, ∃ a smooth projective rationally
connected complex variety Y such that Hn

nr(C(Y ), µ⊗nl ) ̸= 0.
In particular, Y is not A1-connected, nor (retract, stably) C-rational.

▶ Namely, the triviality of the unramified Brauer group or the
unramified cohomology of higher degree is just a necessary condition
of C-rationality of fields.

▶ It is interesting to consider an analog of above Theorem
for quotient varieties V/G, e.g. C(Vreg/G) = C(G).
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Unramified cohomology (3/3)

.
Theorem (Peyre, 2008, Invent. Math.)
..

......

Let p be odd prime.
∃ p-group G of order p12 such that B0(G) = 0 and H3

nr(C(G),Q/Z) ̸= 0.
In particular, C(G) is not (retract, stably) C-rational.

Using Peyre’s method, we improve this result:
.
Theorem (H-Kang-Yamasaki, 2016, J. Algebra)
..

......

Let p be odd prime.
∃ p-group G of order p9 such that B0(G) = 0 and H3

nr(C(G),Q/Z) ̸= 0.
In particular, C(G) is not (retract, stably) C-rational.

On the other hand, CT and Voisin proved: (↔ integral Hodge conjecture)
.
Theorem (Colliot-Thélène and Voisin, 2012, Duke Math. J.) X: RC
..

......H
3
nr(X,Q/Z) ≃ Hdg4(X,Z)/Hdg4(X,Z)alg.
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Noether’s problem over C for 2-groups

▶ (Chu-Kang, 2001) G is p-group (#G ≤ p4) =⇒ C(G) is rational.

▶ (Chu-Hu-Kang-Prokhorov, 2008)
#G = 32 = 25 =⇒ C(G) is rational.

▶ ∃267 groups G of order 64 = 26 which are classified into
27 isoclinism families Φ1, . . . ,Φ27.

.
Theorem (Chu-Hu-Kang-Kunyavskii, 2010) #G = 64 = 26
..

......

(1) B0(G) ̸= 0 ⇐⇒ G belongs to Φ16. (∃9 such G’s)
Moreover, if B0(G) ̸= 0, then B0(G) ≃ C2.
(2) If B0(G) = 0, then C(G) is rational except for Φ13. (∃5 such G’s)

▶ ([CHKK10], [HY14]) (B0(G) = 0, but rationality unknown)

If G belongs to Φ13, then C(G) is stably C-isomorphic to L
(0)
C .

▶ ([CHKK10], [HKK14]) (B0(G) ≃ C2, not retract rational)

If G belongs to Φ16, then C(G) is stably C-isomorphic to L
(1)
C .
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▶ ([CHKK10], [HY14]) (B0(G) = 0, but rationality unknown)

If G belongs to Φ13, then C(G) is stably C-isomorphic to L
(0)
C .

▶ ([CHKK10], [HKK14]) (B0(G) ≃ C2, not retract rational)

If G belongs to Φ16, then C(G) is stably C-isomorphic to L
(1)
C .

.
Definition (The fields L

(0)
C and L

(1)
C )

..

......

(i) The field L
(0)
C is defined to be C(X1, X2, X3, X4, X5, X6)

H where
H = ⟨σ1, σ2⟩ ≃ C2 × C2 act on C(X1, X2, X3, X4, X5, X6) by

σ1 : X1 7→ X3, X2 7→ 1

X1X2X3
, X3 7→ X1, X4 7→ X6, X5 7→ 1

X4X5X6
, X6 7→ X4,

σ2 : X1 7→ X2, X2 7→ X1, X3 7→ 1

X1X2X3
, X4 7→ X5, X5 7→ X4, X6 7→ 1

X4X5X6
.

(ii) The field L
(1)
C is defined to be C(X1, X2, X3, X4)

⟨τ⟩ where ⟨τ⟩ ≃ C2

acts on C(X1, X2, X3, X4) by

τ : X1 7→ −X1, X2 7→ X4

X2
, X3 7→ (X4 − 1)(X4 −X2

1 )

X3
, X4 7→ X4.
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▶ ([CHKK10], [HY14]) (B0(G) = 0, but rationality unknown)

If G belongs to Φ13, then C(G) is stably C-isomorphic to L
(0)
C .

▶ ([CHKK10], [HKK14]) (B0(G) ≃ C2, not retract rational)

If G belongs to Φ16, then C(G) is stably C-isomorphic to L
(1)
C .

▶ L
(0)
C = C(z1, z2, z3, z4, u4, u5, u6) where

(z21 − a)(z24 − d) = (z22 − b)(z23 − c),
a = u4(u4 − 1), b = u4 − 1, c = u4(u4 − u26), d = u25(u4 − u26).

▶ L
(0)
C = C(u, v, t, w3, w4, w5, w6) where

u2 − tv2 = −
(
w2
4(w

2
5 − 1)t2 + (w2

3 − w2
3w

2
5 + 1)t− w2

5

)
·
(
w2
4w

2
6t

2 − (w2
4 + w2

3w
2
6)t+ w2

3 − w2
6 + 1

)
.

▶ L
(0)
C = C(m0, . . . ,m6) where

m2
0 = (4m3+m3m

2
4+m

2
4)(m3−m2

5+1)

· (m2
1m3+m

2
6−1)(4m3+m

2
1m

2
2m3+m

2
2m

2
6).

▶ L
(1)
C = C(u, v, t, w3, w4) where

u2 − tv2 = (tw2
4 − w2

3 + 1)(t+ tw2
4 − w2

3).
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▶ ∃2328 groups G of order 128 = 27 which are classified into
115 isoclinism families Φ1, . . . ,Φ115.

.
Theorem (Moravec, 2012, Amer. J. Math.) #G = 128 = 27
..

......

B0(G) ̸= 0 if and only if G belongs to the isoclinism family Φ16, Φ30, Φ31,
Φ37, Φ39, Φ43, Φ58, Φ60, Φ80, Φ106 or Φ114. If B0(G) ̸= 0, then

B0(G) ≃

{
C2 (Φ16,Φ31,Φ37,Φ39,Φ43,Φ58,Φ60,Φ80,Φ106,Φ114)

C2 × C2 (Φ30).

In particular, C(G) is not (retract, stably) C-rational.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) Total
Family Φ16 Φ31 Φ37 Φ39 Φ43 Φ58 Φ60 Φ80 Φ106 Φ114 Φ30

B0(G) C2 C2 × C2

# G’s 48 55 18 6 26 20 10 9 2 2 34 220

▶ Q. Birational classification of C(G)?
In particular, what happens when B0(G) ̸= 0?
How many C(G)’s exist up to stably C-isomorphism?
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.
Theorem (H, 2016, J. Algebra) #G = 128 = 27
..

......

Assume that B0(G) ̸= 0.

Then C(G) and L
(m)
C are stably C-isomorphic where

m =


1 if G belongs to Φ16,Φ31,Φ37,Φ39,Φ43,Φ58,Φ60 or Φ80,

2 if G belongs to Φ106 or Φ114,

3 if G belongs to Φ30.

In particular, Brnr(L
(1)
C ) ≃ Brnr(L

(2)
C ) ≃ C2 and Brnr(L

(3)
C ) ≃ C2×C2 and

hence the fields L
(1)
C , L

(2)
C and L

(3)
C are not (retract, stably) C-rational.

▶ L
(1)
C ≁ L

(3)
C , L

(2)
C ≁ L

(3)
C (not stably C-isomorphic)

because their unramified Brauer groups are not isomorphic.

▶ However, we do not know whether L
(1)
C ∼ L

(2)
C .

▶ If not, evaluate the higher unramified cohomologies H i
nr(i ≥ 3)?

▶ BUT, a useful formula like Bogomolov’s formula for B0(G)
is unknown for higher unramified cohomologies.
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.
Definition (The fields L

(2)
C and L

(3)
C )

..

......

(i) The field L
(2)
C is defined to be C(X1, X2, X3, X4, X5, X6)

⟨ρ⟩ where
⟨ρ⟩ ≃ C4 acts on C(X1, X2, X3, X4, X5, X6) by

ρ : X1 7→ X2, X2 7→ −X1, X3 7→ X4, X4 7→ X3,

X5 7→ X6, X6 7→ (X2
1X

2
2 − 1)(X2

1X
2
3 +X2

2 −X2
3 − 1)

X5
.

(ii) The field L
(3)
C is defined to be C(X1, X2, X3, X4, X5, X6, X7)

⟨λ1,λ2⟩

where ⟨λ1, λ2⟩ ≃ C2 × C2 acts on C(X1, X2, X3, X4, X5, X6, X7) by

λ1 : X1 7→ X1,X2 7→ X1

X2
, X3 7→ 1

X1X3
, X4 7→ X2X4

X1X3
,

X5 7→ −X1X
2
6 − 1

X5
, X6 7→ −X6, X7 7→ X7,

λ2 : X1 7→ 1

X1
,X2 7→ X3, X3 7→ X2, X4 7→ (X1X

2
6 − 1)(X1X

2
7 − 1)

X4
,

X5 7→ −X5, X6 7→ −X1X6, X7 7→ −X1X7.
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§3. (general) quasi-monomial actions

Notion of ”quasi-monomial” action is defined in [HKK] J. Algebra (2014).
.
Theorem (H-Kang-Kitayama) 1-dim. quasi-monomial action
..

......

(1) purely quasi-monomial action =⇒ K(x)G is rational over k.
(2) K(x)G is rational over k excpet for the case: ∃N ≤ G such that
(i) G/N = ⟨σ⟩ ≃ C2;
(ii) K(x)N = k(α)(y), α2 = a ∈ K×, σ(α) = −α (if char k ̸= 2),
α2 + α = a ∈ K, σ(α) = α+ 1 (if char k = 2);
(iii) σ · y = b/y for some b ∈ k×.
For the exceptional case, K(x)G = k(α)(y)G/N is rational over k ⇐⇒
Hilbert symbol (a, b)k = 0 (if char k ̸= 2), [a, b)k = 0 (if char k = 2).
Moreover, K(x)G is not rational over k =⇒ not unirational over k.
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.
Theorem (H-Kang-Kitayama) 2-dim. purely quasi-monomial action
..

......

N = {σ ∈ G | σ(x) = x, σ(y) = y}, H = {σ ∈ G | σ(α) = α(∀α ∈ K)}.
K(x, y)G is rational over k except for:
(1) char k ̸= 2 and (2) (i) (G/N,HN/N) ≃ (C4, C2) or (ii) (D4, C2).
For the exceptional case, we have k(x, y) = k(u, v):
(i) (G/N,HN/N) ≃ (C4, C2)，
KN = k(

√
a), G/N = ⟨σ⟩ ≃ C4, σ :

√
a 7→ −

√
a, u 7→ 1

u , v 7→ −
1
v ;

(ii) (G/N,HN/N) ≃ (D4, C2);
KN = k(

√
a,
√
b), G/N = ⟨σ, τ⟩ ≃ D4，σ :

√
a 7→ −

√
a,
√
b 7→
√
b,

u 7→ 1
u , v 7→ −

1
v , τ :

√
a 7→

√
a,
√
b 7→ −

√
b, u 7→ u, v 7→ −v.

Case (i)，K(x, y)G is rational over k ⇐⇒ Hilbert symbol (a,−1)k = 0.
Case (ii)，K(x, y)G is rational over k ⇐⇒ Hilbert symbol (a,−b)k = 0.
Moreover, K(x, y)G is not rational over k =⇒
Br(k) ̸= 0 and K(x, y)G is not unirational over k．

Galois-theoretic interpretation:
(i) rational over k ⇐⇒ k(

√
a) may be embedded into C4-ext. of k.

(ii) rational over k ⇐⇒ k(
√
a,
√
b) may be embedded into D4-ext. of k.
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Application to purely monomial action (1/2)

.
Theorem (H-Kang-Kitayama), 4-dim. purely monomial
..

......

Let M be a G-lattice with rankZM = 4 and G act on k(M) by purely
monomial k-automorphisms. If M is decomposable,
i.e. M =M1 ⊕M2 as Z[G]-modules where 1 ≤ rankZM1 ≤ 3,
then k(M)G is rational over k.

▶ When rankZM1 = 1, rankZM2 = 3,
it is easy to see k(M)G is rational.

▶ When rankZM1 = rankZM2 = 2, we may apply Theorem of 2-dim.
to k(M) = k(x1, x2, y1, y2) = k(x1, x2)(y1, y2) = K(y1, y2).
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.
Theorem (H-Kang-Kitayama) char k ̸= 2
..

......

Let C2 = ⟨τ⟩ act on the rational function field k(x1, x2, x3, x4) by
k-automorphisms defined as

τ : x1 7→ −x1, x2 7→ x4
x2
, x3 7→

(x4−1)(x4−x21)
x3

, x4 7→ x4.

Then k(x1, x2, x3, x4)
C2 is not retract rational over k.

In particular, it is not rational over k.

.
Theorem A (H-Kang-Kitayama) char k ̸= 2, 5-dim. purely monomial
..

......

Let D4 = ⟨ρ, τ⟩ act on the rational function field k(x1, x2, x3, x4, x5) by
k-automorphisms defined as

ρ : x1 7→ x2, x2 7→ x1, x3 7→ 1
x1x2x3

, x4 7→ x5, x5 7→ 1
x4
,

τ : x1 7→ x3, x2 7→ 1
x1x2x3

, x3 7→ x1, x4 7→ x5, x5 7→ x4.

Then k(x1, x2, x3, x4, x5)
D4 is not retract rational over k.

In particular, it is not rational over k.
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Application to purely monomial action (2/2)

.
Theorem (H-Kang-Kitayama), 5-dim. purely monomial
..

......

Let M be a G-lattice and G act on k(M) by purely monomial
k-automorphisms. Assume that
(i) M =M1 ⊕M2 as Z[G]-modules where rankZM1 = 3 and
rankZM2 = 2,
(ii) either M1 or M2 is a faithful G-lattice.
Then k(M)G is rational over k except for the case as in Theorem A.

▶ we may apply Theorem of 2-dim. to
k(M) = k(x1, x2, x3, y1, y2) = k(x1, x2, x3)(y1, y2) = K(y1, y2).
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§4. Rationality problem for algebraic tori (2-dim., 3-dim.)

G ≃ Gal(K/k) ↷ K(x1, . . . , xn): purely quasi-monomial，
K(x1, . . . , xn)

G may be regarded as the function field of
algebraic torus T over k which splits over K (T ⊗k K ≃ Gn

m).

▶ T is unirational over k, i.e. K(x1, . . . , xn)
G ⊂ k(t1, . . . , tn).

▶ ∃13 Z-coujugacy subgroups G ≤ GL2(Z).

.
Theorem (Voskresenskii, 1967) 2-dim. algebraic tori T
..
......T is rational over k.

▶ ∃73 Z-coujugacy subgroups G ≤ GL3(Z).

.
Theorem (Kunyavskii, 1990) 3-dim. algebraic tori T
..

......

(i) T is rational over k ⇐⇒ T is stably rational over k
⇐⇒ T is retract rational over k ⇐⇒ ∃G: 58 groups;
(ii) T is not rational over k ⇐⇒ T is not stably rational over k
⇐⇒ T is not retract rational over k ⇐⇒ ∃G: 15 groups.
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Rationality of algebraic tori (4-dim., 5-dim.)

▶ ∃710 Z-coujugacy subgroups G ≤ GL4(Z).

.
Theorem (H-Yamasaki, to appear in Mem. AMS) 4-dim. alg. tori T
..

......

(i) T is stably rational over k ⇐⇒ ∃G: 487 groups;
(ii) T is not stably but retract rational over k ⇐⇒ ∃G: 7 groups;
(iii) T is not retract rational over k ⇐⇒ ∃G: 216 groups.

▶ ∃6079 Z-coujugacy subgroups G ≤ GL5(Z).

.
Theorem (H-Yamasaki, to appear in Mem. AMS) 5-dim. alg. tori T
..

......

(i) T is stably rational over k ⇐⇒ ∃G: 3051 groups;
(ii) T is not stably but retract rational over k ⇐⇒ ∃G: 25 groups;
(iii) T is not retract rational over k ⇐⇒ ∃G: 3003 groups.

▶ (Voskresenskii’s conjecture) any stably rational torus is rational.
▶ ∃85308 Z-coujugacy subgroups G ≤ GL6(Z)!
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Proof: Flabby (Flasque) resolution (1/2)

▶ The function field of n-dim. T
identified←→ L(M)G, G ≤ GL(n,Z)

▶ M : G-lattice, i.e. f.g. Z-free Z[G]-module.
.
Definition
..

......

(i) M is permutation
def⇐⇒ M ≃ ⊕1≤i≤mZ[G/Hi].

(ii) M is stably permutation
def⇐⇒ M ⊕ ∃P ≃ P ′, P, P ′: permutation.

(iii) M is invertible
def⇐⇒ M ⊕ ∃M ′ ≃ P : permutation.

(iv) M is coflabby
def⇐⇒ H1(H,M) = 0 (∀H ≤ G).

(v) M is flabby
def⇐⇒ Ĥ−1(H,M) = 0 (∀H ≤ G). (Ĥ: Tate cohomology)

▶ “permutation”
=⇒ “stably permutation”
=⇒ “invertible”
=⇒ “flabby and coflabby”.
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Proof: Flabby (Flasque) resolution (2/2)

.
Commutative monoidM
..

......

M1 ∼M2
def⇐⇒ M1 ⊕ P1 ≃M2 ⊕ P2 (∃P1, ∃P2: permutation).

=⇒ commutative monoidM: [M1] + [M2] := [M1 ⊕M2], 0 = [P ].

.
Theorem (Endo-Miyata, 1974, Colliot-Thélène-Sansuc, 1977)
..

......

∃P : permutation, ∃F : flabby such that

0→M → P → F → 0: flabby resolution of M .

[M ]fl := [F ], [M ]fl is invertible
def⇐⇒ [M ]fl = [E] (∃E: invertible).

.
Theorem (Endo-Miyata, 1973, Voskresenskii, 1974, Saltman, 1984)
..

......

(EM73) [M ]fl = 0 ⇐⇒ L(M)G is stably rational over k.
(Vos74) [M ]fl = [M ′]fl ⇐⇒ L(M)G(x1, . . . , xm) ≃ L(M ′)G(y1, . . . , yn).
(Sal84) [M ]fl is invertible ⇐⇒ L(M)G is retract rational over k.
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Our contribution

▶ We give a procedure to compute a flabby resolution of M , in
particular [M ]fl = [F ], effectively (with smaller rank after base
change) by computer software GAP.

▶ The function IsFlabby (resp. IsCoflabby) may determine whether
M is flabby (resp. coflabby).

▶ The function IsInvertibleF may determine whether [M ]fl = [F ] is
invertible (↔ whether L(M)G (resp. T ) is retract rational).

▶ We provide some functions for checking a possibility of isomorphism(
r⊕
i=1

aiZ[G/Hi]

)
⊕ ar+1F ≃

r⊕
i=1

b′iZ[G/Hi] (*)

by computing some invariants (e.g. trace, Ẑ0, Ĥ0) of both sides.
▶ [HY, Example 10.7]. G ≃ S5 ≤ GL(5,Z) with number (5, 946, 4)

=⇒ rank(F ) = 17 and rank(*) = 88 holds
=⇒ [F ] = 0 =⇒ L(M)G (resp. T ) is stably rational over k.
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Application
.
Corollary ([F ] = [M ]fl: invertible case, G ≃ S5, F20)
..

......

∃T , T ′; 4-dim. not stably rational algebraic tori over k such that
T ̸∼ T ′ (birational) and T × T ′: 8-dim. stably rational over k.
∵ −[M ]fl = [M ′]fl ̸= 0.

.
Prop. ([HY], Krull-Schmidt fails for permutation D6-lattices)
..

......

{1}, C(1)
2 , C

(2)
2 , C

(3)
2 , C3, C

2
2 , C6, S

(1)
3 , S

(2)
3 , D6: conj. subgroups of D6．

Z[D6]⊕ Z[D6/C
2
2 ]

⊕2 ⊕ Z[D6/C6]⊕ Z[D6/S
(1)
3 ]⊕ Z[D6/S

(2)
3 ]

≃ Z[D6/C
(1)
2 ]⊕ Z[D6/C

(2)
2 ]⊕ Z[D6/C

(3)
2 ]⊕ Z[D6/C3]⊕ Z⊕2.

▶ D6 is the smallest example exhibiting the failure of K-S:
.
Theorem (Dress, 1973)
..

......

Krull-Schmidt holds for permutation G-lattices ⇐⇒ G/Op(G) is cyclic
where Op(G) is the maximal normal p-subgroup of G.
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Krull-Schmidt and Direct sum cancelation

.
Theorem (Hindman-Klingler-Odenthal, 1998) Assume G ̸= D8
..

......

Krull-Schmidt holds for G-lattices ⇐⇒ (i) G = Cp (p ≤ 19; prime),
(ii) G = Cn (n = 1, 4, 8, 9), (iii) G = V4 or (iv) G = D4.

.
Theorem (Endo-Hironaka, 1979)
..

......

Direct sum cancellation holds, i.e. M1 ⊕N ≃M2 ⊕N =⇒M1 ≃M2,
=⇒ G is abelian, dihedral, A4, S4 or A5 (*).

▶ via projective class group (see Swan (1988) Corollary 1.3, Section 7).

▶ Except for (*) =⇒ Direct sum cancelation fails =⇒ K-S fails
.
Theorem ([HY]) G ≤ GL(n,Z) (up to conjugacy)
..

......

(i) n ≤ 4 =⇒ K-S holds.
(ii) n = 5. K-S fails ⇐⇒ 11 groups G (among 6079 groups).
(iii) n = 6. K-S fails ⇐⇒ 131 groups G (among 85308 groups).
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Special case: T = R
(1)
K/k(Gm); norm one tori (1/5)

▶ Rationality problem for T = R
(1)
K/k(Gm) is investigated by S. Endo,

Colliot-Thélène and Sansuc, W. Hürlimann, L. Le Bruyn, A. Cortella
and B. Kunyavskii, N. Lemire and M. Lorenz, M. Florence, etc.

.
Theorem (Endo-Miyata, 1974), (Saltman, 1984)
..

......

Let K/k be a finite Galois field extension and G = Gal(K/k).
(i) T is retract k-rational ⇐⇒ all the Sylow subgroups of G are cyclic;
(ii) T is stably k-rational ⇐⇒ G is a cyclic group, or a direct product of

a cyclic group of order m and a group ⟨σ, τ |σn = τ2
d
= 1, τστ−1 = σ−1⟩,

where d,m ≥ 1, n ≥ 3,m, n: odd, and (m,n) = 1.

.
Theorem (Endo, 2011)
..

......

Let K/k be a finite non-Galois, separable field extension and L/k be the
Galois closure of K/k. Assume that the Galois group of L/k is nilpotent.

Then the norm one torus T = R
(1)
K/k(Gm) is not retract k-rational.
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Special case: T = R
(1)
K/k(Gm); norm one tori (2/5)

▶ Let K/k be a finite non-Galois, separable field extension

▶ Let L/k be the Galois closure of K/k.

▶ Let G = Gal(L/k) and H = Gal(L/K) ≤ G.

.
Theorem (Endo, 2011)
..

......

Assume that all the Sylow subgroups of G are cyclic.
Then T is retract k-rational.
T = R

(1)
K/k(Gm) is stably k-rational ⇐⇒ G = Dn, n odd (n ≥ 3) or

Cm ×Dn, m,n odd (m,n ≥ 3), (m,n) = 1, H ≤ Dn with #H = 2.
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Special case: T = R
(1)
K/k(Gm); norm one tori (3/5)

.
Theorem (Endo, 2011) dim T = n− 1
..

......

Assume that Gal(L/k) = Sn, n ≥ 3, and Gal(L/K) = Sn−1 is the
stabilizer of one of the letters in Sn.
(i) R

(1)
K/k(Gm) is retract k-rational ⇐⇒ n is a prime;

(ii) R
(1)
K/k(Gm) is (stably) k-rational ⇐⇒ n = 3.

.
Theorem (Endo, 2011) dim T = n− 1
..

......

Assume that Gal(L/k) = An, n ≥ 4, and Gal(L/K) = An−1 is the
stabilizer of one of the letters in An.
(i) R

(1)
K/k(Gm) is retract k-rational ⇐⇒ n is a prime;

(ii) ∃t ∈ N s.t. [R
(1)
K/k(Gm)]

(t) is stably k-rational ⇐⇒ n = 5.

▶ [R
(1)
K/k(Gm)]

(t): the product of t copies of R
(1)
K/k(Gm).
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Special case: T = R
(1)
K/k(Gm); norm one tori (4/5)

.
Theorem ([HY], Rationality for R

(1)
K/k(Gm) (dim. 4, [K : k] = 5))

..

......

Let K/k be a separable field extension of degree 5 and L/k be the Galois
closure of K/k. Assume that G = Gal(L/k) is a transitive subgroup of S5
and H = Gal(L/K) is the stabilizer of one of the letters in G. Then the

rationality of R
(1)
K/k(Gm) is given by

G L(M) = L(x1, x2, x3, x4)
G

5T1 C5 stably k-rational
5T2 D5 stably k-rational
5T3 F20 not stably but retract k-rational
5T4 A5 stably k-rational
5T5 S5 not stably but retract k-rational

▶ This theorem is already known except for the case of A5 (Endo).

▶ Stably k-rationality for the case A5 is asked by S. Endo (2011).
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Special case: T = R
(1)
K/k(Gm); norm one tori (5/5)

By combining this theorem with Endo’s theorem, we obtain:
.
Corollary
..

......

Assume that Gal(L/k) = An, n ≥ 4, and Gal(L/K) = An−1 is the
stabilizer of one of the letters in An. Then
R

(1)
K/k(Gm) is stably k-rational ⇐⇒ n = 5.
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