Norm one tori and Hasse norm principle

Akinari Hoshi (joint work with Kazuki Kanai and Aiichi Yamasaki)

Niigata University, Japan
September 1, 2023

Table of contents

(1) Introduction \& Main theorems 1,2,3,4
(2) Rationality problem for algebraic tori
(3) Proof of Theorem 3
(4) Applications: R-equivalence \& Tamagawa number
A. Hoshi, K. Kanai, A. Yamasaki, [HKY22] Norm one tori and Hasse norm principle, Math. Comp. (2022). [HKY23] Norm one tori and Hasse norm principle, II: Degree 12 case, JNT (2023). [HKY] Hasse norm principle for M_{11} and J_{1} extensions, arXiv:2210.09119.

We use GAP. The related algorithms/functions are available from https://www.math.kyoto-u.ac.jp/~yamasaki/Algorithm/Norm1ToriHNP/

§1 Introduction \& Main theorems 1,2,3,4

- k : a global field, i.e. a number field or a finite extension of $\mathbb{F}_{q}(t)$.

Definition (Hasse norm principle)

Let k be a global field. K / k be a finite extension and \mathbb{A}_{K}^{\times}be the idele group of K. We say that the Hasse norm principle holds for K / k if

$$
\operatorname{Obs}(K / k):=\left(N_{K / k}\left(\mathbb{A}_{K}^{\times}\right) \cap k^{\times}\right) / N_{K / k}\left(K^{\times}\right)=1
$$

where $N_{K / k}$ is the norm map.

Theorem (Hasse's norm theorem 1931)

If K / k is a cyclic extension of a number field, then

$$
\operatorname{Obs}(K / k)=1
$$

Example (Hasse $[\operatorname{Has} 31]): \operatorname{Obs}(\mathbb{Q}(\sqrt{-39}, \sqrt{-3}) / \mathbb{Q}) \simeq \mathbb{Z} / 2 \mathbb{Z}$.
$\operatorname{Obs}(\mathbb{Q}(\sqrt{2}, \sqrt{-1}) / \mathbb{Q})=1$.
In both cases, Galois group $G \simeq V_{4}$ (Klein four-group).

Tate's theorem (1967)

For any Galois extension K / k, Tate gave:

Theorem (Tate 1967, in Alg. Num. Th. ed. by Cassels and Fröhlich)

Let K / k be a finite Galois extension with Galois $\operatorname{group} \operatorname{Gal}(K / k) \simeq G$. Let V_{k} be the set of all places of k and G_{v} be the decomposition group of G at $v \in V_{k}$. Then

$$
\operatorname{Obs}(K / k) \simeq \operatorname{Coker}\left\{\bigoplus_{v \in V_{k}} \widehat{H}^{-3}\left(G_{v}, \mathbb{Z}\right) \xrightarrow{\text { cores }} \widehat{H}^{-3}(G, \mathbb{Z})\right\}
$$

where \widehat{H} is the Tate cohomology. In particular, In particular, the Hasse norm principle holds for K / k if and only if the restriction map $H^{3}(G, \mathbb{Z}) \xrightarrow{\text { res }} \bigoplus_{v \in V_{k}} H^{3}\left(G_{v}, \mathbb{Z}\right)$ is injective.

- If $G \simeq C_{n}$ is cyclic, then $H^{3}\left(C_{n}, \mathbb{Z}\right) \simeq H^{1}\left(C_{n}, \mathbb{Z}\right)=0$ and hence the Hasse's original theorem follows.
- If $G \simeq V_{4}$, then $\operatorname{Obs}(K / k)=0 \Longleftrightarrow{ }^{\exists} v \in V_{k}$ such that $G_{v}=V_{4}$ $\left(H^{3}\left(V_{4}, \mathbb{Z}\right)=\mathbb{Z} / 2 \mathbb{Z}\right)$ (v : should be ramified).

Known results for HNP (1/2)

The HNP for Galois extensions K / k was investigated by Gerth [Ger77], [Ger78], Gurak [Gur78a], [Gur78b], [Gur80], Morishita [Mor90], Horie [Hor93], Takeuchi [Tak94], Kagawa [Kag95], etc.

- (Gurak 1978; Endo-Miyata 1975 + Ono 1963) If all the Sylow subgroups of $\operatorname{Gal}(K / k)$ is cyclic, then $\operatorname{Obs}(K / k)=0$.

However, for non-Galois extensions K / k, very little is known whether the Hasse norm principle holds:

- (Bartels 1981) $[K: k]=p$; prime \Rightarrow HNP for K / k holds.
- (Bartels 1981) $[K: k]=n$ and Galois closure $\operatorname{Gal}(L / k) \simeq D_{n}$.
- (Voskresenskii-Kunyavskii 1984) $[K: k]=n$ and $\operatorname{Gal}(L / k) \simeq S_{n}$ \Rightarrow HNP for K / k holds.
- (Macedo 2020) $[K: k]=n$ and $\operatorname{Gal}(L / k) \simeq A_{n}$ \Rightarrow HNP for K / k holds if $n \geq 5 ; n=6$ using Hoshi-Yamasaki [HY17].

Ono's theorem (1963)

- T : algebraic k-torus, i.e. $T \times_{k} \bar{k} \simeq\left(\mathbb{G}_{m, \bar{k}}\right)^{n}$.
- $\amalg(T):=\operatorname{Ker}\left\{H^{1}(k, T) \xrightarrow{\text { res }} \bigoplus_{v \in V^{\prime}} H^{1}\left(k_{v}, T\right)\right\}$: Shafarevich-Tate gp.
- The norm one torus $R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ of K / k :

$$
1 \longrightarrow R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right) \longrightarrow R_{K / k}\left(\mathbb{G}_{m, K}\right) \xrightarrow{\mathrm{N}_{K / k}} \mathbb{G}_{m, k} \longrightarrow 1
$$

where $R_{K / k}$ is the Weil restriction.

- $R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ is biregularly isomorphic to the norm hyper surface $f\left(x_{1}, \ldots, x_{n}\right)=1$ where $f \in k\left[x_{1}, \ldots, x_{n}\right]$ is the norm form of K / k.

Theorem (Ono 1963, Ann. of Math.)

Let K / k be a finite extension and $T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$. Then

$$
\amalg(T) \simeq \operatorname{Obs}(K / k)
$$

Known results for HNP (2/2)

- $T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$.
- $\amalg(T) \simeq \operatorname{Obs}(K / k)$.

Theorem (Kunyavskii 1984)

Let $[K: k]=4, G=\operatorname{Gal}(L / k) \simeq 4 T m(1 \leq m \leq 5)$.
Then $\amalg(T)=0$ except for $4 T 2$ and $4 T 4$. For $4 T 2 \simeq V_{4}, 4 T 4 \simeq A_{4}$,
(i) $\amalg(T) \leq \mathbb{Z} / 2 \mathbb{Z}$;
(ii) $\amalg(T)=0 \Leftrightarrow{ }^{\exists} v \in V_{k}$ such that $V_{4} \leq G_{v}$.

Theorem (Drakokhrust-Platonov 1987)

Let $[K: k]=6, G=\operatorname{Gal}(L / k) \simeq 6 T m(1 \leq m \leq 16)$.
Then $\amalg(T)=0$ except for $6 T 4$ and $6 T 12$. For $6 T 4 \simeq A_{4}, 6 T 12 \simeq A_{5}$,
(i) $\amalg(T) \leq \mathbb{Z} / 2 \mathbb{Z}$;
(ii) $\amalg(T)=0 \Leftrightarrow{ }^{\exists} v \in V_{k}$ such that $V_{4} \leq G_{v}$.

Main theorems 1,2,3,4 (1/3)

- $\exists 2,13,73,710,6079$ cases of alg. k-tori T of $\operatorname{dim}(T)=1,2,3,4,5$.
- X : a smooth k-compactification of $T, \bar{X}=X \times_{k} \bar{k}$.

Theorem 1 ([HKY22, Theorem 1.5 and Theorem 1.6])

(i) $\operatorname{dim}(T)=4$. Among the 216 cases (of 710) of not retract rational T,

$$
H^{1}(k, \operatorname{Pic} \bar{X}) \simeq \begin{cases}0 & (\text { 194 of } 216) \\ \mathbb{Z} / 2 \mathbb{Z} & (20 \text { of } 216) \\ (\mathbb{Z} / 2 \mathbb{Z})^{\oplus 2} & (2 \text { of } 216)\end{cases}
$$

(ii) $\operatorname{dim}(T)=5$. Among 3003 cases (of 6079) of not retract rational T,

$$
H^{1}(k, \operatorname{Pic} \bar{X}) \simeq \begin{cases}0 & (2729 \text { of } 3003) \\ \mathbb{Z} / 2 \mathbb{Z} & (263 \text { of } 3003) \\ (\mathbb{Z} / 2 \mathbb{Z})^{\oplus 2} & (11 \text { of } 3003)\end{cases}
$$

- Kunyavskii (1984) showed that among the 15 cases (of 73) of not retract ratinal T of $\operatorname{dim}(T)=3, H^{1}(k, \operatorname{Pic} \bar{X})=0(13$ of 15$)$, $H^{1}(k, \operatorname{Pic} \bar{X}) \simeq \mathbb{Z} / 2 \mathbb{Z}(2$ of 15$)$.

Main theorems 1,2,3,4 (2/3)

- k : a field, K / k : a separable field extension of $[K: k]=n$.
- $T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ with $\operatorname{dim}(T)=n-1$.
- X : a smooth k-compactification of T.
- L / k : Galois closure of $K / k, G:=\operatorname{Gal}(L / k)$ and $H=\operatorname{Gal}(L / K)$ with $[G: H]=n \Longrightarrow G=n T m \leq S_{n}$: transitive.
- The number of transitive subgroups $n T m$ of $S_{n}(2 \leq n \leq 15)$ up to conjugacy is given as follows:

n	2	3	4	5	6	7	8	9	10	11	12	13	14	15
\# of $n T m$	1	2	5	5	16	7	50	34	45	8	301	9	63	104

Theorem 2 ([HKY22, Theorem 1.5], [HKY23, Theorem 1.1])

Let $2 \leq n \leq 15$ be an integer. Then $H^{1}(k, \operatorname{Pic} \bar{X}) \neq 0 \Longleftrightarrow G=n T m$ is given as in [HKY22, Table 1] $(n \neq 12)$ or [HKY23,Table 1] $(n=12)$.
[HKY22, Table 1]: $H^{1}(k, \operatorname{Pic} \bar{X}) \simeq H^{1}\left(G,\left[J_{G / H}\right]^{f l}\right) \neq 0$ where $G=n T m$ with $2 \leq n \leq 15$ and $n \neq 12$

G	$H^{1}(k, \operatorname{Pic} \bar{X}) \simeq H^{1}\left(G,\left[J_{G / H}\right]^{f l}\right)$
$4 T 2 \simeq V_{4}$	$\mathbb{Z} / 2 \mathbb{Z}$
$4 T 4 \simeq A_{4}$	$\mathbb{Z} / 2 \mathbb{Z}$
$6 T 4 \simeq A_{4}$	$\mathbb{Z} / 2 \mathbb{Z}$
$6 T 12 \simeq A_{5}$	$\mathbb{Z} / 2 \mathbb{Z}$
$8 T 2 \simeq C_{4} \times C_{2}$	$\mathbb{Z} / 2 \mathbb{Z}$
$8 T 3 \simeq\left(C_{2}\right)^{3}$	$\left(\mathbb{Z} / 2 \mathbb{Z} \oplus^{\oplus 3}\right.$
$8 T 4 \simeq D_{4}$	$\mathbb{Z} / 2 \mathbb{Z}$
$8 T 9 \simeq D_{4} \times C_{2}$	$\mathbb{Z} / 2 \mathbb{Z}$
$8 T 11 \simeq\left(C_{4} \times C_{2}\right) \rtimes C_{2}$	$\mathbb{Z} / 2 \mathbb{Z}$
$8 T 13 \simeq A_{4} \times C_{2}$	$\mathbb{Z} / 2 \mathbb{Z}$
$8 T 14 \simeq S_{4}$	$\mathbb{Z} / 2 \mathbb{Z}$
$8 T 15 \simeq C_{8} \rtimes V_{4}$	$\mathbb{Z} / 2 \mathbb{Z}$
$8 T 19 \simeq\left(C_{2}\right)^{3} \rtimes C_{4}$	$\mathbb{Z} / 2 \mathbb{Z}$
$8 T 21 \simeq\left(C_{2}\right)^{3} \rtimes C_{4}$	$\mathbb{Z} / 2 \mathbb{Z}$
$8 T 22 \simeq\left(C_{2}\right)^{3} \rtimes V_{4}$	$\mathbb{Z} / 2 \mathbb{Z}$
$8 T 31 \simeq\left(\left(C_{2}\right)^{4} \rtimes C_{2}\right) \rtimes C_{2}$	$\mathbb{Z} / 2 \mathbb{Z}$
$8 T 32 \simeq\left(\left(C_{2}\right)^{3} \rtimes V_{4}\right) \rtimes C_{3}$	$\mathbb{Z} / 2 \mathbb{Z}$
$8 T 37 \simeq \mathrm{PSL}_{3}\left(\mathbb{F}_{2}\right) \simeq \mathrm{PSL}_{2}\left(\mathbb{F}_{7}\right)$	$\mathbb{Z} / 2 \mathbb{Z}$
$8 T 38 \simeq\left(\left(\left(C_{2}\right)^{4} \rtimes C_{2}\right) \rtimes C_{2}\right) \rtimes C_{3}$	$\mathbb{Z} / 2 \mathbb{Z}$

[HKY22, Table 1]: $H^{1}(k, \operatorname{Pic} \bar{X}) \simeq H^{1}\left(G,\left[J_{G / H}\right]^{f l}\right) \neq 0$ where $G=n T m$ with $2 \leq n \leq 15$ and $n \neq 12$

G	$H^{1}(k$, Pic $\bar{X}) \simeq H^{1}\left(G,\left[J_{G / H}\right]^{f l}\right)$
$9 T 2 \simeq\left(C_{3}\right)^{2}$	$\mathbb{Z} / 3 \mathbb{Z}$
$9 T 5 \simeq\left(C_{3}\right)^{2} \rtimes C_{2}$	$\mathbb{Z} / 3 \mathbb{Z}$
$9 T 7 \simeq\left(C_{3}\right)^{2} \rtimes C_{3}$	$\mathbb{Z} / 3 \mathbb{Z}$
$9 T 9 \simeq\left(C_{3}\right)^{2} \rtimes C_{4}$	$\mathbb{Z} / 3 \mathbb{Z}$
$9 T 11 \simeq\left(C_{3}\right)^{2} \rtimes C_{6}$	$\mathbb{Z} / 3 \mathbb{Z}$
$9 T 14 \simeq\left(C_{3}\right)^{2} \rtimes Q_{8}$	$\mathbb{Z} / 3 \mathbb{Z}$
$9 T 23 \simeq\left(\left(C_{3}\right)^{2} \rtimes Q_{8}\right) \rtimes C_{3}$	$\mathbb{Z} / 3 \mathbb{Z}$
$10 T 7 \simeq A_{5}$	$\mathbb{Z} / 2 \mathbb{Z}$
$10 T 26 \simeq \operatorname{PSL}_{2}\left(\mathbb{F}_{9}\right) \simeq A_{6}$	$\mathbb{Z} / 2 \mathbb{Z}$
$10 T 32 \simeq S_{6}$	$\mathbb{Z} / 2 \mathbb{Z}$
$14 T 30 \simeq \operatorname{PSL}_{2}\left(\mathbb{F}_{13}\right)$	$\mathbb{Z} / 2 \mathbb{Z}$
$15 T 9 \simeq\left(C_{5}\right)^{2} \rtimes C_{3}$	$\mathbb{Z} / 5 \mathbb{Z}$
$15 T 14 \simeq\left(C_{5}\right)^{2} \rtimes S_{3}$	$\mathbb{Z} / 5 \mathbb{Z}$

Main theorems 1,2,3,4 (3/3)

- k : a number field, K / k : a separable field extension of $[K: k]=n$.
- $T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right), X$: a smooth k-compactification of T.

Theorem 3 ([HKY22, Theorem 1.18], [HKY23, Theorem 1.3])

Let $2 \leq n \leq 15$ be an integer. For the cases in [HKY22, Table 1] $(n \neq 12)$ or [HKY23,Table 1] ($n=12$),

$$
\amalg(T)=0 \Longleftrightarrow G=n T m \text { satisfies some conditions of } G_{v}
$$

where G_{v} is the decomposition group of G at v.

- By Ono's theorem $\amalg(T) \simeq \operatorname{Obs}(K / k)$, Theorem 3 gives a necessary and sufficient condition for HNP for K / k with $[K: k] \leq 15$.

Theorem 4 ([HKY22, Theorem 1.17])

Assume that $G=M_{n} \leq S_{n}(n=11,12,22,23,24)$ is the Mathieu group of degree n. Then $H^{1}(k, \operatorname{Pic} \bar{X})=0$. In particular, $\amalg(T)=0$.

Examples of Theorem 3

Example $\left(G=8 T 4 \simeq D_{4}, 8 T 13 \simeq A_{4} \times C_{2}, 8 T 14 \simeq S_{4}\right.$, $\left.8 T 37 \simeq \mathrm{PSL}_{2}\left(\mathbb{F}_{7}\right), 10 T 7 \simeq A_{5}, 14 T 30 \simeq \mathrm{PSL}_{2}\left(\mathbb{F}_{13}\right)\right)$
$\amalg(T)=0 \Longleftrightarrow{ }^{\exists} v \in V_{k}$ such that $V_{4} \leq G_{v}$.
Example $\left(G=10 T 26 \simeq \operatorname{PSL}_{2}\left(\mathbb{F}_{9}\right)\right)$
$\amalg(T)=0 \Longleftrightarrow{ }^{\exists} v \in V_{k}$ such that $D_{4} \leq G_{v}$.
Example $\left(G=10 T 32 \simeq S_{6} \leq S_{10}\right)$
$Ш(T)=0 \Longleftrightarrow{ }^{\exists} v \in V_{k}$ such that
(i) $V_{4} \leq G_{v}$ where $N_{\widetilde{G}}\left(V_{4}\right) \simeq C_{8} \rtimes\left(C_{2} \times C_{2}\right)$ for the normalizer $N_{\widetilde{G}}\left(V_{4}\right)$
of V_{4} in \widetilde{G} with the normalizer $\widetilde{G}=N_{S_{10}}(G) \simeq \operatorname{Aut}(G)$ of G in S_{10} or
(ii) $D_{4} \leq G_{v}$ where $D_{4} \leq[G, G] \simeq A_{6}$.

- $45 / 165$ subgroups $V_{4} \leq G$ satisfy (i).
- $45 / 180$ subgroups $D_{4} \leq G$ satisfy (ii).

Definition of some rationalities

- L / k : f.g. field extension. L is k-rational $\stackrel{\text { def }}{\Longleftrightarrow} L \simeq k\left(x_{1}, \ldots, x_{n}\right)$.

Definition (stably rational)

L is called stably k-rational if $L\left(y_{i}, \ldots, y_{m}\right)$ is k-rational.

Definition (retract rational)

Let k be an infinite field.
L is called retract k-rational if $\exists k$-algebra $R \subset L$ such that
(i) L is the quotient field of R;
(ii) $\exists f \in k\left[x_{1}, \ldots, x_{n}\right], \exists k$-algebra hom. $\varphi: R \rightarrow k\left[x_{1}, \ldots, x_{n}\right][1 / f]$ and
$\psi: k\left[x_{1}, \ldots, x_{n}\right][1 / f] \rightarrow R$ satisfying $\psi \circ \varphi=1_{R}$.

Definition (unirational)

L is called k-unirational if $L \subset k\left(t_{1}, \ldots, t_{n}\right)$.

- "rational" \Rightarrow "stably rational" \Rightarrow "retract rational" \Rightarrow "unirational".
- algebraic k-torus T is k-unirational.

$\S 2$ Rationality problem for algebraic tori $(1 / 3)$

Problem (Rationality problem for algebraic tori)

Whether an algebraic torus T is k-rational?

- $\exists 2$ algebraic tori with $\operatorname{dim}(T)=1$; the trivial torus \mathbb{G}_{m} and $R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ with $[K: k]=2$, which are k-rational.
- $\exists 13$ algebraic tori with $\operatorname{dim}(T)=2$;

Theorem (Voskresenskii 1967)

All the algebraic tori T with $\operatorname{dim}(T)=2$ are k-rational.

- $\exists 73$ algebraic tori with $\operatorname{dim}(T)=3$;

Theorem (Kunyavskii 1990)

(i) $\exists 58$ algebraic tori T with $\operatorname{dim}(T)=3$ which are k-rational;
(ii) $\exists 15$ algebraic tori T with $\operatorname{dim}(T)=3$ which are not k-rational;
(iii) T is k-rational $\Leftrightarrow T$ is stably k-rational $\Leftrightarrow T$ is retract k-rational.

- $\exists 710$ algebraic tori with $\operatorname{dim}(T)=4$;

Theorem (Hoshi-Yamasaki 2017)

(i) $\exists 487$ algebraic tori T with $\operatorname{dim}(T)=4$ which are stably k-rational;
(ii) $\exists 7$ algebraic tori T with $\operatorname{dim}(T)=4$ which are not stably k-rational but retract k-rational;
(iii) $\exists 216$ algebraic tori T with $\operatorname{dim}(T)=4$ which are not retract k-rational.

- $\exists 6079$ algebraic tori with $\operatorname{dim}(T)=5$;

Theorem (Hoshi-Yamasaki 2017)

(i) $\exists 3051$ algebraic tori T with $\operatorname{dim}(T)=5$ which are stably k-rational; (ii) $\exists 25$ algebraic tori T with $\operatorname{dim}(T)=5$ which are not stably k-rational but retract k-rational;
(iii) $\exists 3003$ algebraic tori T with $\operatorname{dim}(T)=5$ which are not retract k-rational.

- We do not know " k-rationality".
- Voskresenskii's conjecture: any stably k-rational torus is k-rational (Zariski problem).

Rationality problem for algebraic tori $T(2 / 3)$

- T: algebraic k-torus
$\Longrightarrow \exists$ finite Galois extension L / k such that $T \times_{k} L \simeq\left(\mathbb{G}_{m, L}\right)^{n}$.
- $G=\operatorname{Gal}(L / k)$ where L is the minimal splitting field.

Category of algebraic k-tori which split $/ L \stackrel{\text { duality }}{\longleftrightarrow}$ Category of G-lattices (i.e. finitely generated \mathbb{Z}-free $\mathbb{Z}[G]$-module)

- $T \mapsto$ the character group $X(T)=\operatorname{Hom}\left(T, \mathbb{G}_{m}\right): G$-lattice.
- $T=\operatorname{Spec}\left(L[M]^{G}\right)$ which splits $/ L$ with $X(T) \simeq M \longleftrightarrow M: G$-lattice.
- Tori of dimension $n \stackrel{1: 1}{\longleftrightarrow}$ elements of the set $H^{1}(\mathcal{G}, \mathrm{GL}(n, \mathbb{Z}))$ where $\mathcal{G}=\operatorname{Gal}(\bar{k} / k)$ since $\operatorname{Aut}\left(\mathbb{G}_{m}^{n}\right)=\operatorname{GL}(n, \mathbb{Z})$.
- k-torus T of dimension n is determined uniquely by the integral representation $h: \mathcal{G} \rightarrow \mathrm{GL}(n, \mathbb{Z})$ up to conjugacy, and the group $h(\mathcal{G})$ is a finite subgroup of $\mathrm{GL}(n, \mathbb{Z})$.
- The function field of $T \stackrel{\text { identified }}{\longleftrightarrow} L(M)^{G}$: invariant field.

Rationality problem for algebraic tori $T(3 / 3)$

- L / k : Galois extension with $G=\operatorname{Gal}(L / k)$.
- $M=\bigoplus_{1 \leq j \leq n} \mathbb{Z} \cdot u_{j}: G$-lattice with a \mathbb{Z}-basis $\left\{u_{1}, \ldots, u_{n}\right\}$.
- G acts on $L\left(x_{1}, \ldots, x_{n}\right)$ by

$$
\sigma\left(x_{i}\right)=\prod_{j=1}^{n} x_{j}^{a_{i, j}}, \quad 1 \leq i \leq n
$$

for any $\sigma \in G$, when $\sigma\left(u_{i}\right)=\sum_{j=1}^{n} a_{i, j} u_{j}, a_{i, j} \in \mathbb{Z}$.

- $L(M):=L\left(x_{1}, \ldots, x_{n}\right)$ with this action of G.
- The function field of algebraic k-torus $T \stackrel{\text { identified }}{\longleftrightarrow} L(M)^{G}$

Rationality problem for algebraic tori T (2nd form)

Whether $L(M)^{G}$ is k-rational?
(= purely transcendental over k ?; $L(M)^{G}=k\left(\exists t_{1}, \ldots, \exists t_{n}\right)$?)

Flabby (Flasque) resolution (1/3)

- M : G-lattice, i.e. f.g. \mathbb{Z}-free $\mathbb{Z}[G]$-module.

Definition

(i) M is permutation $\stackrel{\text { def }}{\Longleftrightarrow} M \simeq \oplus_{1 \leq i \leq m} \mathbb{Z}\left[G / H_{i}\right]$;
(ii) M is stably permutation $\stackrel{\text { def }}{\Longleftrightarrow} M \oplus \exists P \simeq P^{\prime}, P, P^{\prime}$: permutation;
(iii) M is invertible $\stackrel{\text { def }}{\Longleftrightarrow} M \oplus \exists M^{\prime} \simeq P$: permutation;
(iv) M is coflabby $\stackrel{\text { def }}{\Longleftrightarrow} H^{1}(H, M)=0(\forall H \leq G)$;
(v) M is flabby $\stackrel{\text { def }}{\Longleftrightarrow} \widehat{H}^{-1}(H, F)=0(\forall H \leq G)$.

- "permutation" \Rightarrow "stably permutationl" \Rightarrow "invertible" \Rightarrow "flabby and coflabby".

Definition (Commutative monoid of G-lattices mod. permutation)

$M_{1} \sim M_{2} \stackrel{\text { def }}{\Longleftrightarrow} M_{1} \oplus P_{1} \simeq M_{2} \oplus P_{2}\left(\exists P_{1}, \exists P_{2}\right.$: permutation $)$ \Longrightarrow commutative monoid $\mathcal{L}:\left[M_{1}\right]+\left[M_{2}\right]:=\left[M_{1} \oplus M_{2}\right], 0=[P]$.

Flabby (Flasque) resolution (2/3)

Theorem (Endo-Miyata 1975, Colliot-Thélène and Sansuc 1977)

For any G-lattice M, there exists a short exact sequence of G-lattices

$$
0 \rightarrow M \rightarrow P \rightarrow F \rightarrow 0
$$

where P is permutation and F is flabby.

- called a flabby resolution of the G-lattice M.
- $[M]^{f l}:=[F]$: flabby class of M (well-defined).

Theorem (Endo-Miyata 1973, Voskresenskii 1974, Saltman 1984)

(EM73) $[M]^{f l}=0 \Longleftrightarrow L(M)^{G}$ is stably k-rational.
$\left(\right.$ Vos74) $[M]^{f l}=\left[M^{\prime}\right]^{f l} \Longleftrightarrow L(M)^{G}\left(x_{1}, \ldots, x_{m}\right) \simeq L\left(M^{\prime}\right)^{G}\left(y_{1}, \ldots, y_{n}\right)$.
(Sal84) $[M]^{f l}$ is invertible $\Longleftrightarrow L(M)^{G}$ is retract k-rational.

Flabby (Flasque) resolution (3/3)

Theorem (Voskresenskii 1969)

Let k be a field and $\mathcal{G}=\operatorname{Gal}(\bar{k} / k)$. Let T be an algebraic k-torus, X be a smooth k-compactification of T and $\bar{X}=X \times_{k} \bar{k}$. Then

$$
0 \rightarrow \widehat{T} \rightarrow \widehat{Q} \rightarrow \operatorname{Pic} \bar{X} \rightarrow 0
$$

is an exact seq. of \mathcal{G}-lattice where \widehat{Q} is permutation and $\operatorname{Pic} \bar{X}$ is flabby.

- $[\widehat{T}]^{f l}=[\operatorname{Pic} \bar{X}]$; flabby class of \widehat{T}.

Theorem (Endo-Miyata 1973, Voskresenskii 1974, Saltman 1984)

(EM73) $[\operatorname{Pic} \bar{X}]=0 \Longleftrightarrow T$ is stably k-rational.
(Vos74) $[\operatorname{Pic} \bar{X}]=\left[\operatorname{Pic} \overline{X^{\prime}}\right] \Longleftrightarrow T$ and T^{\prime} are stably bir. k-equivalent.
(Sal84) $[\operatorname{Pic} \bar{X}]$ is invertible $\Longleftrightarrow T$ is retract k-rational.

Voskresenskii's theorem (1969) (1/2)

Theorem (Voskresenskii 1969)

Let k be a global field, T be an algebraic k-torus and X be a smooth k-compactification of T. Then there exists an exact sequence

$$
0 \rightarrow A(T) \rightarrow H^{1}(k, \operatorname{Pic} \bar{X})^{\vee} \rightarrow \amalg(T) \rightarrow 0
$$

where $M^{\vee}=\operatorname{Hom}(M, \mathbb{Q} / \mathbb{Z})$ is the Pontryagin dual of M.

- The group $A(T):=\left(\prod_{v \in V_{k}} T\left(k_{v}\right)\right) / \overline{T(k)}$ is called the kernel of the weak approximation of T.
- T : retract rational $\Longleftrightarrow[\widehat{T}]^{f l}=[\operatorname{Pic} \bar{X}]$ is invertible
$\Longrightarrow \operatorname{Pic} \bar{X}$ is flabby and coflabby

$$
\Longrightarrow H^{1}(k, \operatorname{Pic} \bar{X})^{\vee}=0 \quad \Longrightarrow \quad A(T)=\amalg(T)=0 .
$$

- when $T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$, by Ono's theorem $\amalg(T) \simeq \operatorname{Obs}(K / k)$, T : retract k-rational $\Longrightarrow \operatorname{Obs}(K / k)=0$ (HNP for K / k holds).

Voskresenskii's theorem (1969) (2/2)

- when $T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$, by Ono's theorem $\amalg(T) \simeq \operatorname{Obs}(K / k)$, $T:$ retract k-rational $\Longrightarrow \operatorname{Obs}(K / k)=0$ (HNP for K / k holds).
- when $T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right), \widehat{T}=J_{G / H}$ where $J_{G / H}=\left(I_{G / H}\right)^{\circ}=\operatorname{Hom}\left(I_{G / H}, \mathbb{Z}\right)$ is the dual lattice of $I_{G / H}=\operatorname{Ker}(\varepsilon)$ and $\varepsilon: \mathbb{Z}[G / H] \rightarrow \mathbb{Z}$ is the augmentation map.
- (Hoshi-Yamasaki, 2018, Hasegawa-Hoshi-Yamasaki, 2020) For $[K: k]=n \leq 15$ except $9 T 27 \simeq \operatorname{PSL}_{2}\left(\mathbb{F}_{8}\right)$, the classificasion of stably/retract rational $R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ was given.
- when $T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right), T$: retract k-rational $\Longrightarrow H^{1}(k, \operatorname{Pic} \bar{X})=0$ (use this to get Theorem 2).
- $H^{1}(k, \operatorname{Pic} \bar{X}) \simeq \operatorname{Br}(X) / \operatorname{Br}(k) \simeq \operatorname{Br} r_{\mathrm{nr}}(k(X) / k) / \operatorname{Br}(k)$ where $\operatorname{Br}(X)$ is the étale cohomological/Azumaya Brauer group of X by Colliot-Thélène-Sansuc 1987.

$\S 3$ Proof of Theorem 3

- We use Drakokhrust-Platonov's method:

Definition (first obstruction to the HNP)

Let $L \supset K \supset k$ be a tower of finite extensions where L is normal over k. We call the group

$$
\operatorname{Obs}_{1}(L / K / k)=\left(N_{K / k}\left(\mathbb{A}_{K}^{\times}\right) \cap k^{\times}\right) /\left(\left(N_{L / k}\left(\mathbb{A}_{L}^{\times}\right) \cap k^{\times}\right) N_{K / k}\left(K^{\times}\right)\right)
$$

the first obstruction to the HNP for K / k corresponding to the tower $L \supset K \supset k$.

- $\operatorname{Obs}_{1}(L / K / k)=\operatorname{Obs}(K / k) /\left(N_{L / k}\left(\mathbb{A}_{L}^{\times}\right) \cap k^{\times}\right)$.
- $\operatorname{Obs}_{1}(L / K / k)$ is easier than $\operatorname{Obs}(K / k)$.
- We use GAP. The related algorithms/functions we made are available from
https://www.math.kyoto-u.ac.jp/~yamasaki/Algorithm/Norm1ToriHNP/

Drakokhrust-Platonov's method (1/3)

Theorem (Drakokhrust-Platonov 1987)

Let $L \supset K \supset k$ be a tower of finite extensions where L is Galois over k. Let $G=\operatorname{Gal}(L / k)$ and $H=\operatorname{Gal}(L / K)$. Then

$$
\operatorname{Obs}_{1}(L / K / k) \simeq \operatorname{Ker} \psi_{1} / \varphi_{1}\left(\operatorname{Ker} \psi_{2}\right)
$$

where

$$
\begin{array}{ccc}
H /[H, H] & \xrightarrow{\psi_{1}: H \hookrightarrow G} & G /[G, G] \\
\uparrow \varphi_{1}: H_{w} \hookrightarrow H
\end{array} r \begin{array}{r}
\uparrow \varphi_{2}: G_{v} \hookrightarrow G
\end{array} \bigoplus_{v \in V_{k}}\left(\bigoplus_{w \mid v} H_{w} /\left[H_{w}, H_{w}\right]\right) \stackrel{\psi_{2}}{\longrightarrow} \bigoplus_{v \in V_{k}} G_{v} /\left[G_{v}, G_{v}\right]
$$

and ψ_{2} is defined by

$$
\psi_{2}\left(h\left[H_{w}, H_{w}\right]\right)=x_{i}^{-1} h x_{i}\left[G_{v}, G_{v}\right]
$$

for $h \in H_{w}=H \cap x_{i}^{-1} h x_{i}\left[G_{v}, G_{v}\right]\left(x_{i} \in G\right)$.

Drakokhrust-Platonov's method (2/3)

- ψ_{2}^{v} : the restriction of the map ψ_{2} to $\bigoplus_{w \mid v} H_{w} /\left[H_{w}, H_{w}\right]$.
- $\operatorname{Obs}_{1}(L / K / k)=\operatorname{Ker} \psi_{1} / \varphi_{1}\left(\operatorname{Ker} \psi_{2}^{\mathrm{nr}}\right) \varphi_{1}\left(\operatorname{Ker} \psi_{2}^{r}\right)$.

Proposition (Drakokhrust-Platonov 1987)

(i) $G_{v_{1}} \leq G_{v_{2}} \Longrightarrow \varphi_{1}\left(\operatorname{Ker} \psi_{2}^{v_{1}}\right) \subset \varphi_{1}\left(\operatorname{Ker} \psi_{2}^{v_{2}}\right)$;
(ii) $\varphi_{1}\left(\operatorname{Ker} \psi_{2}^{\mathrm{nr}}\right)=\left\langle[h, x] \mid h \in H \cap x H x^{-1}, x \in G\right\rangle /[H, H]$;
(iii) Let $H_{i} \leq G_{i} \leq G(1 \leq i \leq m), H_{i} \leq H \cap G_{i}, k_{i}=L^{G_{i}}$ and
$K_{i}=L^{H_{i}}$. If $\operatorname{Obs}\left(K_{i} / k_{i}\right)=1$ for any $1 \leq i \leq m$ and

$$
\bigoplus_{i=1}^{m} \widehat{H}^{-3}\left(G_{i}, \mathbb{Z}\right) \xrightarrow{\text { cores }} \widehat{H}^{-3}(G, \mathbb{Z})
$$

is surjective, then $\operatorname{Obs}(K / k)=\operatorname{Obs}_{1}(L / K / k)$. In particular,

$$
[K: k]=n \text { is square-free } \Longrightarrow \operatorname{Obs}(K / k)=\operatorname{Obs}_{1}(L / K / k) .
$$

Drakokhrust-Platonov's method (3/3)

Theorem (Drakokhrust 1989; Opolka 1980)

Let $\widetilde{L} \supset L \supset k$ be a tower of Galois extensions with $\widetilde{G}=\operatorname{Gal}(\widetilde{L} / k)$ and $\widetilde{H}=\operatorname{Gal}(\widetilde{L} / K)$ which correspond to a central extension

$$
1 \rightarrow A \rightarrow \widetilde{G} \rightarrow G \rightarrow 1 \text { with } A \cap[\widetilde{G}, \widetilde{G}] \simeq M(G)=H^{2}\left(G, \mathbb{C}^{\times}\right) ;
$$

the Schur multiplier of G. Then

$$
\operatorname{Obs}(K / k)=\operatorname{Obs}_{1}(\widetilde{L} / K / k) .
$$

In particular, if \widetilde{G} is a Schur cover of G, i.e. $A \simeq M(G)$, then $\operatorname{Obs}(K / k)=\operatorname{Obs}_{1}(\widetilde{L} / K / k)$.

- This theorem is useful, but \widetilde{G} may become large!
- We use GAP. The related algorithms/functions we made are available from https://www.math.kyoto-u.ac.jp/~yamasaki/Algorithm/Norm1ToriHNP/

Example : $G=12 T 261 \simeq\left(S_{3}\right)^{4} \rtimes V_{4} \simeq S_{3}\left\langle V_{4}(1 / 2)\right.$

Example $\left(G=12 T 261 \simeq\left(S_{3}\right)^{4} \rtimes V_{4} \simeq S_{3}\right.$ 乙 $\left.V_{4}\right)$

$Ш(T)=0 \Longleftrightarrow$ there exists a place v of k such that
(i) $V_{4} \leq G_{v}$ where $V_{4} \cap D(G)=1$ for the unique characteristic subgroup
$D(G) \simeq\left(C_{3}\right)^{4} \rtimes\left(C_{2}\right)^{3} \triangleleft G$,
(ii) $C_{4} \times C_{2} \leq G_{v}$ where $\left(C_{4} \times C_{2}\right) \cap D(G 1) \simeq C_{2}$ with
$D(G) \simeq\left(C_{3}\right)^{4} \rtimes\left(C_{2}\right)^{3} \triangleleft G$,
(iii) $D_{4} \leq G_{v}$ where $D_{4} \cap\left(S_{3}\right)^{4} \simeq C_{2}$ with $\left(S_{3}\right)^{4} \triangleleft G$,
(iv) $Q_{8} \leq G_{v}$, or
(v) $\left(C_{2}\right)^{3} \rtimes C_{3} \leq G_{v}$.

- $H^{1}(k, \operatorname{Pic} \bar{X}) \simeq \mathbb{Z} / 2 \mathbb{Z}$.
- $|G|=6^{4} \times 4=5184$.
- $H^{3}(G, \mathbb{Z}) \simeq M(G) \simeq(\mathbb{Z} / 2 \mathbb{Z})^{\oplus 4}$: Schur multiplier of G.
$\widetilde{G} \leftarrow$ too large ! $|\widetilde{G}|=6^{4} \times 4 \times 2^{4}=82944$.

Example: $G=12 T 261 \simeq\left(S_{3}\right)^{4} \rtimes V_{4} \simeq S_{3}$ 々 $V_{4}(2 / 2)$

We can take a minimal stem ext. $\bar{G}=\widetilde{G} / A^{\prime}$ (i.e. $\bar{A} \leq Z(\bar{G}) \cap[\bar{G}, \bar{G}]$) of G in the commutative diagram

with $\bar{A} \simeq \mathbb{Z} / 2 \mathbb{Z}$. There exists 15 minimal stem extensions. Then we can find exactly one $(1 / 15)$ minimal stem extension which satisfies that

$$
\oplus_{i=1}^{m^{\prime}} \widehat{H}^{-3}\left(G_{i}, \mathbb{Z}\right) \xrightarrow{\text { cores }} \widehat{H}^{-3}(\bar{G}, \mathbb{Z})
$$

is surjective. By Drakorust-Platonov's Proposition (iii), we have

$$
\operatorname{Obs}(K / k)=\operatorname{Obs}_{1}\left(\bar{L}_{j} / K / k\right)
$$

- $\operatorname{Ker} \psi_{1}=(\mathbb{Z} / 2 \mathbb{Z})^{\oplus 4}$.
- $\varphi_{1}^{\mathrm{nr}}\left(\operatorname{Ker} \psi_{2}^{\mathrm{nr}}\right)=(\mathbb{Z} / 2 \mathbb{Z})^{\oplus 3}$.
- $\varphi_{1}^{\mathrm{r}}\left(\operatorname{Ker} \psi_{2}^{\mathrm{r}}\right)=\mathbb{Z} / 2 \mathbb{Z}$ (819/891 cases) or 0 ($72 / 891$ cases).

Sketch of the proof of Theorem $3(1 / 2)$

Step 1

- For $G=\operatorname{Gal}(L / k)=n T m \leq S_{n}$ and $H=\operatorname{Gal}(L / K) \leq G$ with $[G: H]=n$, determine $T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ satisfying $H^{1}(k, \operatorname{Pic} \bar{X}) \neq 0$.
(Make Table 1)
- We shoud treat $n=(4,6), 8,9,10,12,14,15$ because $H^{1}(k, \operatorname{Pic} \bar{X})=0$ when $n=p$: prime.

Step 2

- For the cases in Table1, determine $\amalg(T) \simeq \operatorname{Obs}(K / k)$.
(a) $n=p q(p \neq q$: primes $) \longrightarrow \operatorname{Obs}(\underset{\sim}{K} / k) \simeq \operatorname{Obs}_{1}(L / K / k)$.
(b) otherwise \longrightarrow Find a Schur cover \widetilde{G}.
Then we get \widetilde{L} / k s.t. $\operatorname{Obs}(K / k) \simeq \operatorname{Obs}_{1}(\widetilde{L} / K / k)$.
(2-2) Calculation $\mathrm{Obs}_{1}(\bar{L} / K / k)$ for suitable $\bar{L} \subset \widetilde{L}$.

Sketch of the proof of Theorem $3(2 / 2)$

(2-2) Calculation $\mathrm{Obs}_{1}(\bar{L} / K / k)$.
By Drakokhrust-Platonov's Thmeorem, $\operatorname{Obs}_{1}(\bar{L} / K / k) \simeq \operatorname{Ker} \psi_{1} / \varphi_{1}\left(\operatorname{Ker} \psi_{2}^{\mathrm{nr}}\right) \varphi_{1}\left(\operatorname{Ker} \psi_{2}^{\mathrm{r}}\right)$,

We compute the following:
(i) $\operatorname{Ker} \psi_{1}$;
(ii) $\varphi_{1}\left(\operatorname{Ker} \psi_{2}^{\mathrm{nr}}\right)=\left\langle[h, x] \mid h \in H \cap x H x^{-1}, x \in G\right\rangle /[H, H]$;
(by Drakokhrust-Platonov's Proposition (ii))
(iii) $\varphi_{1}\left(\operatorname{Ker} \psi_{2}^{\mathrm{r}}\right)$ (in terms of G_{v}).

$\S 4$ Application 1: R-equivalence in algebraic k-tori ($1 / 2$)

Definition (R-equivalence, Manin 1974, in Cubic Forms)

- $f: Z \rightarrow X$: rational map of k-varieties covers a point $x \in X(k)$. $\stackrel{\text { def }}{\Longleftrightarrow}$ there exists a point $z \in Z(k)$ such that f is defined at z and $f(z)=x$.
- $x, y \in X(k)$ are R-equivalent.
$\stackrel{\text { def }}{\Longleftrightarrow}$ there exist a fin. seq. of points $x=x_{1}, \ldots, x_{r}=y$ and rational maps $f_{i}: \mathbb{P}^{1} \rightarrow X(1 \leq i \leq r-1)$ such that f_{i} covers x_{i}, x_{i+1}.

Theorem (Colliot-Thélène and Sansuc 1977)

Let k be a field, T be an algebraic k-torus and $1 \rightarrow S \rightarrow Q \rightarrow T \rightarrow 1$ be a flabby resolution of T. Then $T(k)=H^{0}(k, T) \xrightarrow{\delta} H^{1}(k, S)$ induces

$$
T(k) / R \simeq H^{1}(k, S)
$$

Application 1: R-equivalence in algebraic k-tori (2/2)

- Let k be a local field. Using Tate-Nakayama duality, we have

$$
T(k) / R \simeq H^{1}(k, S) \simeq H^{1}(k, \widehat{S}) \simeq H^{1}(k, \operatorname{Pic} \bar{X})
$$

for norm one tori $T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ where $[K: k]=n \leq 15$.

Theorem ([HKY22], [HKY23])

Let $2 \leq n \leq 15$ be an integer. Let k be a local field, K / k be a separable field extension of degree n, and $T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ be the norm one torus of K / k. Then, $T(k) / R \simeq H^{1}(k, \operatorname{Pic} \bar{X}) \neq 0 \Longleftrightarrow G$ is given as in [HKY22, Table 1] of [HKY23, Table 1].

Application 2: Tamagawa number of k-tori (1/2)

Theorem (Ono 1963)

Let k be a global field, T be an algebraic k-torus and $\tau(T)$ be the Tamagawa number of T. Then

$$
\tau(T)=\frac{\left|H^{1}(k, \widehat{T})\right|}{|Ш(T)|}
$$

In particular, if T is retract k-rational, then $\tau(T)=\left|H^{1}(k, \widehat{T})\right|$.

- Let k be a number field, K / k be a field extension of degree n, $T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ be the norm one torus of K / k. By Ono's formula, we can calculate Tamagawa number of T explicitly.
- Example. $G=15 T 9 \Rightarrow \tau(T)=\frac{3}{5}$ or 3 because $\amalg(T) \leq \mathbb{Z} / 5 \mathbb{Z}$.

Application 2: Tamagawa number of k-tori (2/2)

$$
\tau(T)=\left|H^{1}(k, \widehat{T})\right| /|\amalg(T)| \text {. }
$$

Theorem ([HKY22, Theorem 8.2])

Let k be a global field and T be an algebraic k-torus of dimension 4 (resp. 5). Among 710 (reps. 6079) cases of algebraic k-tori T, if T is one of the 688 (resp. 5805) cases with $H^{1}(k, \operatorname{Pic} \bar{X})=0$, then $\tau(T)=\left|H^{1}(k, \widehat{T})\right|$.

Theorem ([HKY22, Theorem 8.3], [HKY23, Remark 1.4])

Let $2 \leq n \leq 15$ be an integer. Let k be a number field, K / k be a field extension of degree $n, L / k$ be the Galois closure of K / k, and $T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ be the norm one torus of K / k. Then $\tau(T)=\left|H^{1}(k, \widehat{T})\right|$ except for the cases in [HKY22, Table 1] and [HKY23, Table 1]. For the exceptional cases, we have $\tau(T)=\left|H^{1}\left(G, J_{G / H}\right)\right| /|\amalg(T)|$.

Sporadic simple group cases: M_{11} and $J_{1}(1 / 3)$

- k : a numberl field.
- K / k : a separable field extension of $[K: k]=n$ (not fixed).
- L / k : Galois closure of K / k with $G=\operatorname{Gal}(L / k)$ and
$H=\operatorname{Gal}(L / K) \lesseqgtr G$ with $[G: H]=n$.
- $T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ with $\operatorname{dim}(T)=n-1$.
- X : a smooth k-compactification of T.
- $G \simeq M_{11}$ with $|G|=7920=2^{4} \cdot 3^{2} \cdot 5 \cdot 11$ or
$G \simeq J_{1}$ with $|G|=175560=2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 19$
$\Rightarrow M(G) \simeq H^{3}(G, \mathbb{Z})=0$: Schur multiplier of G.

Theorem $\left(\left[\mathrm{HKY}\right.\right.$, Theorem 1.6]) $G \simeq M_{11}$

Asume that $G \simeq M_{11}$ and $H=\operatorname{Gal}(L / K) \lesseqgtr G$.

$$
H^{1}(k, \operatorname{Pic} \bar{X})= \begin{cases}0 & \text { if } \operatorname{Syl}_{2}(H) \nsucceq C_{2}, C_{4}, C_{8} \\ \mathbb{Z} / 2 \mathbb{Z} & \text { if } \operatorname{Syl}_{2}(H) \simeq C_{2}, C_{4}, C_{8}\end{cases}
$$

Sporadic simple group cases: M_{11} and $J_{1}(2 / 3)$

Theorem ([HKY, Theorem 1.8]) $G \simeq M_{11}$

Asume that $G \simeq M_{11}$ and $H=\operatorname{Gal}(L / K) \lesseqgtr G$.
(1) If $\operatorname{Syl}_{2}(H) \nsucceq C_{2}, C_{4}, C_{8}$, then $A(T) \simeq \amalg(T) \simeq H^{1}(k$, $\operatorname{Pic} \bar{X})=0$.
(2) If $\operatorname{Syl}_{2}(H) \simeq C_{2}, C_{4}, C_{8}$, then either
(a) $A(T)=0$ and $\amalg(T) \simeq H^{1}(k, \operatorname{Pic} \bar{X}) \simeq \mathbb{Z} / 2 \mathbb{Z}$ or
(b) $A(T) \simeq H^{1}(k, \operatorname{Pic} \bar{X}) \simeq \mathbb{Z} / 2 \mathbb{Z}$ and $\amalg(T)=0$,
and the condition (b) is equivalent to:
(c) there exists a place v of k such that

$$
\begin{cases}V_{4} \leq G_{v} \text { or } Q_{8} \leq G_{v} & \text { if } \operatorname{Syl}_{2}(H) \simeq C_{2}, \\ D_{4} \leq G_{v} \text { or } Q_{8} \leq G_{v} & \text { if } \operatorname{Syl}_{2}(H) \simeq C_{4}, \\ Q D_{8} \leq G_{v} & \text { if } \operatorname{Syl}_{2}(H) \simeq C_{8}\end{cases}
$$

where G_{v} is the decomposition group of G at a place v of k.

- $0 \rightarrow A(T) \rightarrow H^{1}(k, \operatorname{Pic} \bar{X})^{\vee} \rightarrow \amalg(T) \rightarrow 0$ (Voskresenskii 1969).

Sporadic simple group cases: M_{11} and $J_{1}(3 / 3)$

Theorem ([HKY, Theorem 1.7]) $G \simeq J_{1}$

Asume that $G \simeq J_{1}$ and $H=\operatorname{Gal}(L / K) \lesseqgtr G$.

$$
H^{1}(k, \operatorname{Pic} \bar{X})= \begin{cases}0 & \text { if } \quad \operatorname{Syl}_{2}(H) \nsucceq C_{2} \\ \mathbb{Z} / 2 \mathbb{Z} & \text { if } \quad \operatorname{Syl}_{2}(H) \simeq C_{2}\end{cases}
$$

Theorem ([HKY, Theorem 1.9]) $G \simeq J_{1}$

Asume that $G \simeq J_{1}$ and $H=\operatorname{Gal}(L / K) \lesseqgtr G$.
(1) If $\operatorname{Syl}_{2}(H) \nsucceq C_{2}$, then $A(T) \simeq \amalg(T) \simeq H^{1}(k, \operatorname{Pic} \bar{X})=0$.
(2) If $\operatorname{Syl}_{2}(H) \simeq C_{2}$, then either
(a) $A(T)=0$ and $\amalg(T) \simeq H^{1}(k, \operatorname{Pic} \bar{X}) \simeq \mathbb{Z} / 2 \mathbb{Z}$ or
(b) $A(T) \simeq H^{1}(k, \operatorname{Pic} \bar{X}) \simeq \mathbb{Z} / 2 \mathbb{Z}$ and $\amalg(T)=0$,
and the condition (b) is equivalent to:
(c) there exists a place v of k such that $V_{4} \leq G_{v}$ where G_{v} is the decomposition group of G at a place v of k.

