Norm one tori and Hasse norm principle

Akinari Hoshi (joint work with Kazuki Kanai and Aiichi Yamasaki)

Niigata University, Japan

September 1, 2023

Table of contents

- Introduction & Main theorems 1,2,3,4
- 2 Rationality problem for algebraic tori
- Proof of Theorem 3
- lack4 Applications: R-equivalence & Tamagawa number

A. Hoshi, K. Kanai, A. Yamasaki, [HKY22] Norm one tori and Hasse norm principle, Math. Comp. (2022). [HKY23] Norm one tori and Hasse norm principle, II: Degree 12 case, JNT (2023). [HKY] Hasse norm principle for M_{11} and J_1 extensions, arXiv:2210.09119.

We use GAP. The related algorithms/functions are available from

https://www.math.kyoto-u.ac.jp/~yamasaki/Algorithm/Norm1ToriHNP/

§1 Introduction & Main theorems 1,2,3,4

lacksquare k : a global field, i.e. a number field or a finite extension of $\mathbb{F}_q(t)$.

Definition (Hasse norm principle)

Let k be a global field. K/k be a finite extension and \mathbb{A}_K^{\times} be the idele group of K. We say that the Hasse norm principle holds for K/k if

$$\mathrm{Obs}(K/k) := (N_{K/k}(\mathbb{A}_K^{\times}) \cap k^{\times})/N_{K/k}(K^{\times}) = 1$$

where $N_{K/k}$ is the norm map.

Theorem (Hasse's norm theorem 1931)

If K/k is a cyclic extension of a number field, then

$$Obs(K/k) = 1.$$

Example (Hasse [Has31]):
$$Obs(\mathbb{Q}(\sqrt{-39},\sqrt{-3})/\mathbb{Q}) \simeq \mathbb{Z}/2\mathbb{Z}$$
. $Obs(\mathbb{Q}(\sqrt{2},\sqrt{-1})/\mathbb{Q}) = 1$.

In both cases, Galois group $G \simeq V_4$ (Klein four-group).

Tate's theorem (1967)

For any Galois extension K/k, Tate gave:

Theorem (Tate 1967, in Alg. Num. Th. ed. by Cassels and Fröhlich)

Let K/k be a finite Galois extension with Galois group $\operatorname{Gal}(K/k) \simeq G$. Let V_k be the set of all places of k and G_v be the decomposition group of G at $v \in V_k$. Then

$$\operatorname{Obs}(K/k) \simeq \operatorname{Coker} \{ \bigoplus_{v \in V_k} \widehat{H}^{-3}(G_v, \mathbb{Z}) \xrightarrow{\operatorname{cores}} \widehat{H}^{-3}(G, \mathbb{Z}) \}$$

where \widehat{H} is the Tate cohomology. In particular, In particular, the Hasse norm principle holds for K/k if and only if the restriction map $H^3(G,\mathbb{Z}) \xrightarrow{\mathrm{res}} \bigoplus_{v \in V_k} H^3(G_v,\mathbb{Z})$ is injective.

- ▶ If $G \simeq C_n$ is cyclic, then $H^3(C_n, \mathbb{Z}) \simeq H^1(C_n, \mathbb{Z}) = 0$ and hence the Hasse's original theorem follows.
- ▶ If $G \simeq V_4$, then $\mathrm{Obs}(K/k) = 0 \iff \exists v \in V_k$ such that $G_v = V_4$ $(H^3(V_4, \mathbb{Z}) = \mathbb{Z}/2\mathbb{Z})$ (v: should be ramified).

Known results for HNP (1/2)

The HNP for Galois extensions K/k was investigated by Gerth [Ger77], [Ger78], Gurak [Gur78a], [Gur78b], [Gur80], Morishita [Mor90], Horie [Hor93], Takeuchi [Tak94], Kagawa [Kag95], etc.

▶ (Gurak 1978; Endo-Miyata 1975 + Ono 1963) If all the Sylow subgroups of Gal(K/k) is cyclic, then Obs(K/k) = 0.

However, for non-Galois extensions K/k, very little is known whether the Hasse norm principle holds:

- ▶ (Bartels 1981) [K:k] = p; prime \Rightarrow HNP for K/k holds.
- ▶ (Bartels 1981) [K:k] = n and Galois closure $Gal(L/k) \simeq D_n$.
- ▶ (Voskresenskii-Kunyavskii 1984) [K:k] = n and $Gal(L/k) \simeq S_n$ \Rightarrow HNP for K/k holds.
- ► (Macedo 2020) [K:k] = n and $\operatorname{Gal}(L/k) \simeq A_n$ \Rightarrow HNP for K/k holds if $n \geq 5$; n = 6 using Hoshi-Yamasaki [HY17].

Ono's theorem (1963)

- ▶ T : algebraic k-torus, i.e. $T \times_k \overline{k} \simeq (\mathbb{G}_{m,\overline{k}})^n$.
- $\blacksquare \operatorname{III}(T) := \operatorname{Ker}\{H^1(k,T) \xrightarrow{\operatorname{res}} \bigoplus_{v \in V_k} H^1(k_v,T)\} : \operatorname{Shafarevich-Tate gp}.$
- ▶ The norm one torus $R^{(1)}_{K/k}(\mathbb{G}_m)$ of K/k:

$$1 \longrightarrow R_{K/k}^{(1)}(\mathbb{G}_m) \longrightarrow R_{K/k}(\mathbb{G}_{m,K}) \stackrel{\mathrm{N}_{K/k}}{\longrightarrow} \mathbb{G}_{m,k} \longrightarrow 1$$

where $R_{K/k}$ is the Weil restriction.

▶ $R_{K/k}^{(1)}(\mathbb{G}_m)$ is biregularly isomorphic to the norm hyper surface $f(x_1,\ldots,x_n)=1$ where $f\in k[x_1,\ldots,x_n]$ is the norm form of K/k.

Theorem (Ono 1963, Ann. of Math.)

Let K/k be a finite extension and $T=R_{K/k}^{(1)}(\mathbb{G}_m)$. Then

$$\coprod(T) \simeq \mathrm{Obs}(K/k).$$

Known results for HNP (2/2)

- $T = R_{K/k}^{(1)}(\mathbb{G}_m).$
- ightharpoonup III $(T) \simeq \mathrm{Obs}(K/k)$.

Theorem (Kunyavskii 1984)

Let [K:k] = 4, $G = Gal(L/k) \simeq 4Tm \ (1 \le m \le 5)$.

Then $\coprod(T)=0$ except for 4T2 and 4T4. For $4T2\simeq V_4$, $4T4\simeq A_4$,

- (i) $\coprod (T) \leq \mathbb{Z}/2\mathbb{Z}$;
- (ii) $\coprod (T) = 0 \Leftrightarrow \exists v \in V_k \text{ such that } V_4 \leq G_v.$

Theorem (Drakokhrust-Platonov 1987)

Let [K:k] = 6, $G = Gal(L/k) \simeq 6Tm \ (1 \le m \le 16)$.

Then $\mathrm{III}(T)=0$ except for 6T4 and 6T12. For $6T4\simeq A_4$, $6T12\simeq A_5$,

- (i) $\coprod(T) \leq \mathbb{Z}/2\mathbb{Z}$;
- (ii) $\coprod (T) = 0 \Leftrightarrow \exists v \in V_k \text{ such that } V_4 \leq G_v.$

Main theorems 1,2,3,4 (1/3)

- ▶ $\exists 2, 13, 73, 710, 6079$ cases of alg. k-tori T of $\dim(T) = 1, 2, 3, 4, 5$.
- ▶ X: a smooth k-compactification of T, $\overline{X} = X \times_k \overline{k}$.

Theorem 1 ([HKY22, Theorem 1.5 and Theorem 1.6])

(i) $\dim(T)=4$. Among the 216 cases (of 710) of not retract rational T,

$$H^1(k, \operatorname{Pic} \overline{X}) \simeq egin{cases} 0 & (194 \text{ of } 216), \\ \mathbb{Z}/2\mathbb{Z} & (20 \text{ of } 216), \\ (\mathbb{Z}/2\mathbb{Z})^{\oplus 2} & (2 \text{ of } 216). \end{cases}$$

(ii) $\dim(T) = 5$. Among 3003 cases (of 6079) of not retract rational T,

$$H^1(k, \operatorname{Pic} \overline{X}) \simeq \begin{cases} 0 & (2729 \text{ of } 3003), \\ \mathbb{Z}/2\mathbb{Z} & (263 \text{ of } 3003), \\ (\mathbb{Z}/2\mathbb{Z})^{\oplus 2} & (11 \text{ of } 3003). \end{cases}$$

▶ Kunyavskii (1984) showed that among the 15 cases (of 73) of not retract ratinal T of $\dim(T) = 3$, $H^1(k, \operatorname{Pic} \overline{X}) = 0$ (13 of 15), $H^1(k, \operatorname{Pic} \overline{X}) \simeq \mathbb{Z}/2\mathbb{Z}$ (2 of 15).

8 / 38

Main theorems 1,2,3,4 (2/3)

- ▶ k: a field, K/k: a separable field extension of [K:k] = n.
- ▶ $T = R_{K/k}^{(1)}(\mathbb{G}_m)$ with $\dim(T) = n 1$.
- ightharpoonup X: a smooth k-compactification of T.
- ▶ L/k: Galois closure of K/k, $G := \operatorname{Gal}(L/k)$ and $H = \operatorname{Gal}(L/K)$ with $[G:H] = n \Longrightarrow G = nTm \leq S_n$: transitive.
- ▶ The number of transitive subgroups nTm of S_n $(2 \le n \le 15)$ up to conjugacy is given as follows:

Theorem 2 ([HKY22, Theorem 1.5], [HKY23, Theorem 1.1])

Let $2 \le n \le 15$ be an integer. Then $H^1(k,\operatorname{Pic} \overline{X}) \ne 0 \iff G = nTm$ is given as in [HKY22, Table 1] $(n \ne 12)$ or [HKY23, Table 1] (n = 12).

[HKY22, Table 1]: $H^1(k,\operatorname{Pic}\overline{X})\simeq H^1(G,[J_{G/H}]^{fl})\neq 0$ where G=nTm with $2\leq n\leq 15$ and $n\neq 12$

G	$H^1(k, \operatorname{Pic} \overline{X}) \simeq H^1(G, [J_{G/H}]^{fl})$
$4T2 \simeq V_4$	$\mathbb{Z}/2\mathbb{Z}$
$4T4 \simeq A_4$	$\mathbb{Z}/2\mathbb{Z}$
$6T4 \simeq A_4$	$\mathbb{Z}/2\mathbb{Z}$
$6T12 \simeq A_5$	$\mathbb{Z}/2\mathbb{Z}$
$8T2 \simeq C_4 \times C_2$	$\mathbb{Z}/2\mathbb{Z}$
$8T3 \simeq (C_2)^3$	$(\mathbb{Z}/2\mathbb{Z})^{\oplus 3}$
$8T4 \simeq D_4$	$\mathbb{Z}/2\mathbb{Z}$
$8T9 \simeq D_4 \times C_2$	$\mathbb{Z}/2\mathbb{Z}$
$8T11 \simeq (C_4 \times C_2) \rtimes C_2$	$\mathbb{Z}/2\mathbb{Z}$
$8T13 \simeq A_4 \times C_2$	$\mathbb{Z}/2\mathbb{Z}$
$8T14 \simeq S_4$	$\mathbb{Z}/2\mathbb{Z}$
$8T15 \simeq C_8 \rtimes V_4$	$\mathbb{Z}/2\mathbb{Z}$
$8T19 \simeq (C_2)^3 \rtimes C_4$	$\mathbb{Z}/2\mathbb{Z}$
$8T21 \simeq (C_2)^3 \rtimes C_4$	$\mathbb{Z}/2\mathbb{Z}$
$8T22 \simeq (C_2)^3 \rtimes V_4$	$\mathbb{Z}/2\mathbb{Z}$
$8T31 \simeq ((C_2)^4 \rtimes C_2) \rtimes C_2$	$\mathbb{Z}/2\mathbb{Z}$
$8T32 \simeq ((C_2)^3 \rtimes V_4) \rtimes C_3$	$\mathbb{Z}/2\mathbb{Z}$
$8T37 \simeq \mathrm{PSL}_3(\mathbb{F}_2) \simeq \mathrm{PSL}_2(\mathbb{F}_7)$	$\mathbb{Z}/2\mathbb{Z}$
$8T38 \simeq (((C_2)^4 \rtimes C_2) \rtimes C_2) \rtimes C_3$	$\mathbb{Z}/2\mathbb{Z}$

[HKY22, Table 1]: $H^1(k, {\rm Pic}\,\overline{X}) \simeq H^1(G, [J_{G/H}]^{fl}) \neq 0$ where G=nTm with $2\leq n\leq 15$ and $n\neq 12$

G	$H^1(k, \operatorname{Pic} \overline{X}) \simeq H^1(G, [J_{G/H}]^{fl})$
$9T2 \simeq (C_3)^2$	$\mathbb{Z}/3\mathbb{Z}$
$9T5 \simeq (C_3)^2 \rtimes C_2$	$\mathbb{Z}/3\mathbb{Z}$
$9T7 \simeq (C_3)^2 \rtimes C_3$	$\mathbb{Z}/3\mathbb{Z}$
$9T9 \simeq (C_3)^2 \rtimes C_4$	$\mathbb{Z}/3\mathbb{Z}$
$9T11 \simeq (C_3)^2 \rtimes C_6$	$\mathbb{Z}/3\mathbb{Z}$
$9T14 \simeq (C_3)^2 \rtimes Q_8$	$\mathbb{Z}/3\mathbb{Z}$
$9T23 \simeq ((C_3)^2 \rtimes Q_8) \rtimes C_3$	$\mathbb{Z}/3\mathbb{Z}$
$10T7 \simeq A_5$	$\mathbb{Z}/2\mathbb{Z}$
$10T26 \simeq \mathrm{PSL}_2(\mathbb{F}_9) \simeq A_6$	$\mathbb{Z}/2\mathbb{Z}$
$10T32 \simeq S_6$	$\mathbb{Z}/2\mathbb{Z}$
$14T30 \simeq \mathrm{PSL}_2(\mathbb{F}_{13})$	$\mathbb{Z}/2\mathbb{Z}$
$15T9 \simeq (C_5)^2 \rtimes C_3$	$\mathbb{Z}/5\mathbb{Z}$
$15T14 \simeq (C_5)^2 \rtimes S_3$	$\mathbb{Z}/5\mathbb{Z}$

Main theorems 1,2,3,4 (3/3)

- ightharpoonup k : a number field, K/k : a separable field extension of [K:k]=n.
- ▶ $T = R_{K/k}^{(1)}(\mathbb{G}_m)$, X: a smooth k-compactification of T.

Theorem 3 ([HKY22, Theorem 1.18], [HKY23, Theorem 1.3])

Let $2 \le n \le 15$ be an integer. For the cases in [HKY22, Table $1]~(n \ne 12)$ or [HKY23,Table 1]~(n=12),

 $\mathrm{III}(T) = 0 \Longleftrightarrow G = nTm$ satisfies some conditions of G_v

where G_v is the decomposition group of G at v.

▶ By Ono's theorem $\mathrm{III}(T) \simeq \mathrm{Obs}(K/k)$, Theorem 3 gives a necessary and sufficient condition for HNP for K/k with $[K:k] \leq 15$.

Theorem 4 ([HKY22, Theorem 1.17])

Assume that $G=M_n \leq S_n$ (n=11,12,22,23,24) is the Mathieu group of degree n. Then $H^1(k,\operatorname{Pic} \overline{X})=0$. In particular, $\operatorname{III}(T)=0$.

Examples of Theorem 3

Example (
$$G = 8T4 \simeq D_4$$
, $8T13 \simeq A_4 \times C_2$, $8T14 \simeq S_4$, $8T37 \simeq \mathrm{PSL}_2(\mathbb{F}_7)$, $10T7 \simeq A_5$, $14T30 \simeq \mathrm{PSL}_2(\mathbb{F}_{13})$)

$$\coprod (T) = 0 \iff \exists v \in V_k \text{ such that } V_4 \leq G_v.$$

Example ($G = 10T26 \simeq \mathrm{PSL}_2(\mathbb{F}_9)$)

$$\coprod (T) = 0 \iff \exists v \in V_k \text{ such that } D_4 \leq G_v.$$

Example $(G = 10T32 \simeq S_6 \leq S_{10})$

$$\coprod(T) = 0 \iff \exists v \in V_k \text{ such that}$$

(i)
$$V_4 \leq G_v$$
 where $N_{\widetilde{G}}(V_4) \simeq C_8 \rtimes (C_2 \times C_2)$ for the normalizer $N_{\widetilde{G}}(V_4)$ of V_4 in \widetilde{G} with the normalizer $\widetilde{G} = N_{S_{10}}(G) \simeq \operatorname{Aut}(G)$ of G in S_{10} or (ii) $D_4 \leq G_v$ where $D_4 \leq [G,G] \simeq A_6$.

- ▶ 45/165 subgroups $V_4 \le G$ satisfy (i).
- ▶ 45/180 subgroups $D_4 \le G$ satisfy (ii).

Definition of some rationalities

▶ L/k: f.g. field extension. L is k-rational $\stackrel{\text{def}}{\Longleftrightarrow} L \simeq k(x_1, \dots, x_n)$.

Definition (stably rational)

L is called stably k-rational if $L(y_i, \ldots, y_m)$ is k-rational.

Definition (retract rational)

Let k be an infinite field.

L is called retract k-rational if $\exists k$ -algebra $R \subset L$ such that

- (i) L is the quotient field of R;
- (i) T is the quotient field of T
- (ii) $\exists f \in k[x_1,\ldots,x_n]$, $\exists k$ -algebra hom. $\varphi: R \to k[x_1,\ldots,x_n][1/f]$ and $\psi: k[x_1,\ldots,x_n][1/f] \to R$ satisfying $\psi \circ \varphi = 1_R$.

Definition (unirational)

L is called k-unirational if $L \subset k(t_1, \ldots, t_n)$.

- "rational" \Rightarrow "stably rational" \Rightarrow "retract rational" \Rightarrow "unirational".
- ightharpoonup algebraic k-torus T is k-unirational.

$\S 2$ Rationality problem for algebraic tori (1/3)

Problem (Rationality problem for algebraic tori)

Whether an algebraic torus T is k-rational?

- ▶ $\exists 2$ algebraic tori with $\dim(T) = 1$; the trivial torus \mathbb{G}_m and $R_{K/k}^{(1)}(\mathbb{G}_m)$ with [K:k] = 2, which are k-rational.
- ▶ $\exists 13$ algebraic tori with $\dim(T) = 2$;

Theorem (Voskresenskii 1967)

All the algebraic tori T with dim(T) = 2 are k-rational.

▶ $\exists 73$ algebraic tori with $\dim(T) = 3$;

Theorem (Kunyavskii 1990)

- (i) $\exists 58$ algebraic tori T with $\dim(T) = 3$ which are k-rational;
- (ii) $\exists 15$ algebraic tori T with $\dim(T) = 3$ which are not k-rational;
- (iii) T is k-rational $\Leftrightarrow T$ is stably k-rational $\Leftrightarrow T$ is retract k-rational.

▶ $\exists 710$ algebraic tori with $\dim(T) = 4$;

Theorem (Hoshi-Yamasaki 2017)

- (i) $\exists 487$ algebraic tori T with $\dim(T) = 4$ which are stably k-rational;
- (ii) $\exists 7$ algebraic tori T with $\dim(T) = 4$ which are not stably k-rational but retract k-rational;
- (iii) $\exists 216$ algebraic tori T with $\dim(T) = 4$ which are not retract k-rational.
 - ▶ $\exists 6079$ algebraic tori with $\dim(T) = 5$;

Theorem (Hoshi-Yamasaki 2017)

- (i) $\exists 3051$ algebraic tori T with $\dim(T) = 5$ which are stably k-rational;
- (ii) $\exists 25$ algebraic tori T with $\dim(T)=5$ which are not stably k-rational but retract k-rational;
- (iii) $\exists 3003$ algebraic tori T with $\dim(T) = 5$ which are not retract k-rational.
 - ▶ We do not know "k-rationality".
 - ► Voskresenskii's conjecture: any stably *k*-rational torus is *k*-rational (Zariski problem).

16/38

Rationality problem for algebraic tori T (2/3)

- ▶ T: algebraic k-torus $\Longrightarrow \exists$ finite Galois extension L/k such that $T \times_k L \simeq (\mathbb{G}_{m,L})^n$.
- ▶ $G = \operatorname{Gal}(L/k)$ where L is the minimal splitting field.

Category of algebraic k-tori which $\mathrm{split}/L \overset{\mathrm{duality}}{\longleftrightarrow}$ Category of G-lattices (i.e. finitely generated \mathbb{Z} -free $\mathbb{Z}[G]$ -module)

- ▶ $T \mapsto$ the character group $X(T) = \text{Hom}(T, \mathbb{G}_m)$: G-lattice.
- ▶ $T = \operatorname{Spec}(L[M]^G)$ which splits/L with $X(T) \simeq M \longleftrightarrow M$: G-lattice.
- ▶ Tori of dimension $n \stackrel{1:1}{\longleftrightarrow}$ elements of the set $H^1(\mathcal{G}, \mathrm{GL}(n, \mathbb{Z}))$ where $\mathcal{G} = \mathrm{Gal}(\overline{k}/k)$ since $\mathrm{Aut}(\mathbb{G}_m^n) = \mathrm{GL}(n, \mathbb{Z})$.
- ▶ k-torus T of dimension n is determined uniquely by the integral representation $h: \mathcal{G} \to \mathrm{GL}(n,\mathbb{Z})$ up to conjugacy, and the group $h(\mathcal{G})$ is a finite subgroup of $\mathrm{GL}(n,\mathbb{Z})$.
- ▶ The function field of $T \overset{\text{identified}}{\longleftrightarrow} L(M)^G$: invariant field.

Rationality problem for algebraic tori T (3/3)

- ▶ L/k: Galois extension with G = Gal(L/k).
- ▶ $M = \bigoplus_{1 < j < n} \mathbb{Z} \cdot u_j$: G-lattice with a \mathbb{Z} -basis $\{u_1, \dots, u_n\}$.
- ▶ G acts on $L(x_1, ..., x_n)$ by

$$\sigma(x_i) = \prod_{j=1}^n x_j^{a_{i,j}}, \quad 1 \le i \le n$$

for any $\sigma \in G$, when $\sigma(u_i) = \sum_{j=1}^n a_{i,j}u_j$, $a_{i,j} \in \mathbb{Z}$.

- ▶ $L(M) := L(x_1, ..., x_n)$ with this action of G.
- ▶ The function field of algebraic k-torus $T \overset{\text{identified}}{\longleftrightarrow} L(M)^G$

Rationality problem for algebraic tori T (2nd form)

Whether $L(M)^G$ is k-rational? (= purely transcendental over k?; $L(M)^G = k(\exists t_1, \dots, \exists t_n)$?)

Flabby (Flasque) resolution (1/3)

lacktriangledown M: G-lattice, i.e. f.g. \mathbb{Z} -free $\mathbb{Z}[G]$ -module.

Definition

- (i) M is permutation $\stackrel{\text{def}}{\Longleftrightarrow} M \simeq \bigoplus_{1 \leq i \leq m} \mathbb{Z}[G/H_i]$;
- (ii) M is stably permutation $\stackrel{\text{def}}{\Longleftrightarrow} M \oplus \exists P \simeq P'$, P, P': permutation;
- (iii) M is invertible $\stackrel{\text{def}}{\Longleftrightarrow} M \oplus \exists M' \simeq P$: permutation;
- (iv) M is coflabby $\stackrel{\text{def}}{\Longleftrightarrow} H^1(H,M) = 0 \ (\forall H \leq G);$
- (v) M is flabby $\stackrel{\text{def}}{\iff} \widehat{H}^{-1}(H, F) = 0 \ (\forall H \leq G).$
 - permutation" ⇒ "stably permutation!" ⇒ "invertible" ⇒ "flabby and coflabby".

Definition (Commutative monoid of G-lattices mod. permutation)

$$M_1 \sim M_2 \stackrel{\mathrm{def}}{\Longleftrightarrow} M_1 \oplus P_1 \simeq M_2 \oplus P_2 \ \big(\exists P_1, \exists P_2 : \mathsf{permutation}\big)$$

 $\Longrightarrow \mathsf{commutative} \ \mathsf{monoid} \ \mathcal{L} : [M_1] + [M_2] := [M_1 \oplus M_2], 0 = [P].$

Flabby (Flasque) resolution (2/3)

Theorem (Endo-Miyata 1975, Colliot-Thélène and Sansuc 1977)

For any G-lattice M, there exists a short exact sequence of G-lattices

$$0 \to M \to P \to F \to 0$$

where P is permutation and F is flabby.

- ▶ called a flabby resolution of the *G*-lattice *M*.
- ▶ $[M]^{fl} := [F]$: flabby class of M (well-defined).

Theorem (Endo-Miyata 1973, Voskresenskii 1974, Saltman 1984)

(EM73)
$$[M]^{fl} = 0 \iff L(M)^G$$
 is stably k -rational.
(Vos74) $[M]^{fl} = [M']^{fl} \iff L(M)^G(x_1, \dots, x_m) \simeq L(M')^G(y_1, \dots, y_n)$.
(Sal84) $[M]^{fl}$ is invertible $\iff L(M)^G$ is retract k -rational.

Flabby (Flasque) resolution (3/3)

Theorem (Voskresenskii 1969)

Let k be a field and $\mathcal{G}=\operatorname{Gal}(\overline{k}/k)$. Let T be an algebraic k-torus, X be a smooth k-compactification of T and $\overline{X}=X\times_k\overline{k}$. Then

$$0 \to \widehat{T} \to \widehat{Q} \to \operatorname{Pic} \overline{X} \to 0$$

is an exact seq. of ${\mathcal G}$ -lattice where $\widehat Q$ is permutation and ${
m Pic}\ \overline X$ is flabby.

 $\blacktriangleright \ [\widehat{T}]^{fl} = [\operatorname{Pic} \overline{X}]; \text{ flabby class of } \widehat{T}.$

Theorem (Endo-Miyata 1973, Voskresenskii 1974, Saltman 1984)

(EM73) $[\operatorname{Pic} \overline{X}] = 0 \Longleftrightarrow T$ is stably k-rational.

(Vos74) $[\operatorname{Pic} \overline{X}] = [\operatorname{Pic} \overline{X'}] \Longleftrightarrow T$ and T' are stably bir. k-equivalent.

(Sal84) $[\operatorname{Pic} \overline{X}]$ is invertible \iff T is retract k-rational.

Voskresenskii's theorem (1969) (1/2)

Theorem (Voskresenskii 1969)

Let k be a global field, T be an algebraic k-torus and X be a smooth k-compactification of T. Then there exists an exact sequence

$$0 \to A(T) \to H^1(k, \operatorname{Pic} \overline{X})^{\vee} \to \coprod (T) \to 0$$

where $M^{\vee} = \operatorname{Hom}(M, \mathbb{Q}/\mathbb{Z})$ is the Pontryagin dual of M.

- ▶ The group $A(T) := \left(\prod_{v \in V_k} T(k_v)\right) \Big/ \overline{T(k)}$ is called the kernel of the weak approximation of T.
- ► T: retract rational $\iff [\widehat{T}]^{fl} = [\operatorname{Pic} \overline{X}]$ is invertible $\implies \operatorname{Pic} \overline{X}$ is flabby and coflabby $\implies H^1(k,\operatorname{Pic} \overline{X})^\vee = 0 \implies A(T) = \coprod (T) = 0.$
- ▶ when $T = R_{K/k}^{(1)}(\mathbb{G}_m)$, by Ono's theorem $\coprod(T) \simeq \operatorname{Obs}(K/k)$, $T : \operatorname{retract} k$ -rational $\Longrightarrow \operatorname{Obs}(K/k) = 0$ (HNP for K/k holds).

Voskresenskii's theorem (1969) (2/2)

- ▶ when $T = R_{K/k}^{(1)}(\mathbb{G}_m)$, by Ono's theorem $\mathrm{III}(T) \simeq \mathrm{Obs}(K/k)$, $T : \mathrm{retract}\ k\text{-rational} \Longrightarrow \mathrm{Obs}(K/k) = 0$ (HNP for K/k holds).
- ▶ when $T = R^{(1)}_{K/k}(\mathbb{G}_m)$, $\widehat{T} = J_{G/H}$ where $J_{G/H} = (I_{G/H})^\circ = \operatorname{Hom}(I_{G/H}, \mathbb{Z})$ is the dual lattice of $I_{G/H} = \operatorname{Ker}(\varepsilon)$ and $\varepsilon : \mathbb{Z}[G/H] \to \mathbb{Z}$ is the augmentation map.
- ▶ (Hoshi-Yamasaki, 2018, Hasegawa-Hoshi-Yamasaki, 2020) For $[K:k]=n \le 15$ except $9T27 \simeq \mathrm{PSL}_2(\mathbb{F}_8)$, the classification of stably/retract rational $R_{K/k}^{(1)}(\mathbb{G}_m)$ was given.
- when $T = R_{K/k}^{(1)}(\mathbb{G}_m)$, T: retract k-rational $\Longrightarrow H^1(k, \operatorname{Pic} \overline{X}) = 0$ (use this to get Theorem 2).
- ▶ $H^1(k,\operatorname{Pic}\overline{X})\simeq\operatorname{Br}(X)/\operatorname{Br}(k)\simeq\operatorname{Br}_{\operatorname{nr}}(k(X)/k)/\operatorname{Br}(k)$ where $\operatorname{Br}(X)$ is the étale cohomological/Azumaya Brauer group of X by Colliot-Thélène-Sansuc 1987.

§3 Proof of Theorem 3

▶ We use Drakokhrust-Platonov's method :

Definition (first obstruction to the HNP)

Let $L\supset K\supset k$ be a tower of finite extensions where L is normal over k. We call the group

$$\mathrm{Obs}_1(L/K/k) = \left(N_{K/k}(\mathbb{A}_K^{\times}) \cap k^{\times}\right) / \left(\left(N_{L/k}(\mathbb{A}_L^{\times}) \cap k^{\times}\right) N_{K/k}(K^{\times})\right)$$

the first obstruction to the HNP for K/k corresponding to the tower $L\supset K\supset k$.

- ▶ $Obs_1(L/K/k)$ is easier than Obs(K/k).
- We use GAP. The related algorithms/functions we made are available from

https://www.math.kyoto-u.ac.jp/~yamasaki/Algorithm/Norm1ToriHNP/

Drakokhrust-Platonov's method (1/3)

Theorem (Drakokhrust-Platonov 1987)

Let $L\supset K\supset k$ be a tower of finite extensions where L is Galois over k. Let $G=\mathrm{Gal}(L/k)$ and $H=\mathrm{Gal}(L/K)$. Then

$$\mathrm{Obs}_1(L/K/k) \simeq \mathrm{Ker}\,\psi_1/\varphi_1(\mathrm{Ker}\,\psi_2)$$

where

$$H/[H,H] \xrightarrow{\psi_1:H\hookrightarrow G} G/[G,G]$$

$$\uparrow \varphi_1:H_w\hookrightarrow H \qquad \qquad \uparrow \varphi_2:G_v\hookrightarrow G$$

$$\bigoplus_{v\in V_k} \left(\bigoplus_{w|v} H_w/[H_w,H_w]\right) \xrightarrow{\psi_2} \bigoplus_{v\in V_k} G_v/[G_v,G_v]$$

and ψ_2 is defined by

$$\psi_2(h[H_w, H_w]) = x_i^{-1} h x_i [G_v, G_v]$$

for
$$h \in H_w = H \cap x_i^{-1} h x_i [G_v, G_v] \ (x_i \in G).$$

Drakokhrust-Platonov's method (2/3)

- lacksquare ψ_2^v : the restriction of the map ψ_2 to $\bigoplus_{w|v} H_w/[H_w,H_w]$.

Proposition (Drakokhrust-Platonov 1987)

- (i) $G_{v_1} \leq G_{v_2} \Longrightarrow \varphi_1(\operatorname{Ker} \psi_2^{v_1}) \subset \varphi_1(\operatorname{Ker} \psi_2^{v_2});$
- (ii) $\varphi_1(\operatorname{Ker}\psi_2^{\operatorname{nr}}) = \langle [h,x] \mid h \in H \cap xHx^{-1}, x \in G \rangle / [H,H];$
- (iii) Let $H_i \leq G_i \leq G$ $(1 \leq i \leq m)$, $H_i \leq H \cap G_i$, $k_i = L^{G_i}$ and $K_i = L^{H_i}$. If $\mathrm{Obs}(K_i/k_i) = 1$ for any $1 \leq i \leq m$ and

$$\bigoplus_{i=1}^{m} \widehat{H}^{-3}(G_i, \mathbb{Z}) \xrightarrow{\text{cores}} \widehat{H}^{-3}(G, \mathbb{Z})$$

is surjective, then $\mathrm{Obs}(K/k) = \mathrm{Obs}_1(L/K/k)$. In particular,

$$[K:k]=n$$
 is square-free $\Longrightarrow \mathrm{Obs}(K/k)=\mathrm{Obs}_1(L/K/k).$

Drakokhrust-Platonov's method (3/3)

Theorem (Drakokhrust 1989; Opolka 1980)

Let $\widetilde{L}\supset L\supset k$ be a tower of Galois extensions with $\widetilde{G}=\mathrm{Gal}(\widetilde{L}/k)$ and $\widetilde{H}=\mathrm{Gal}(\widetilde{L}/K)$ which correspond to a central extension

$$1 \to A \to \widetilde{G} \to G \to 1 \text{ with } A \cap [\widetilde{G}, \widetilde{G}] \simeq M(G) = H^2(G, \mathbb{C}^{\times});$$

the Schur multiplier of G. Then

$$\mathrm{Obs}(K/k) = \mathrm{Obs}_1(\widetilde{L}/K/k).$$

In particular, if \widetilde{G} is a Schur cover of G, i.e. $A \simeq M(G)$, then $\mathrm{Obs}(K/k) = \mathrm{Obs}_1(\widetilde{L}/K/k)$.

- ▶ This theorem is useful, but \widetilde{G} may become large!
- We use GAP. The related algorithms/functions we made are available from

https://www.math.kyoto-u.ac.jp/~yamasaki/Algorithm/Norm1ToriHNP/

Example : $G = 12T261 \simeq (S_3)^4 \rtimes V_4 \simeq S_3 \wr V_4$ (1/2)

Example $(G = 12T261 \simeq (S_3)^4 \rtimes V_4 \simeq S_3 \wr V_4)$

- \coprod $(T) = 0 \iff$ there exists a place v of k such that
- (i) $V_4 \leq G_v$ where $V_4 \cap D(G) = 1$ for the unique characteristic subgroup $D(G) \simeq (C_3)^4 \rtimes (C_2)^3 \lhd G$,
- (ii) $C_4 \times C_2 \leq G_v$ where $(C_4 \times C_2) \cap D(G1) \simeq C_2$ with
- $D(G) \simeq (C_3)^4 \rtimes (C_2)^3 \lhd G$, (iii) $D_4 \leq G_v$ where $D_4 \cap (S_3)^4 \simeq C_2$ with $(S_3)^4 \lhd G$.
- (iii) $D_4 \leq G_v$ where $D_4 \cap (S_3)^2 \simeq C_2$ with $(S_3)^2 \triangleleft G$
- (iv) $Q_8 \leq G_v$, or
- $(v) (C_2)^3 \rtimes C_3 \leq G_v.$
 - $ightharpoonup H^1(k,\operatorname{Pic}\overline{X})\simeq \mathbb{Z}/2\mathbb{Z}.$
 - $|G| = 6^4 \times 4 = 5184.$
 - ▶ $H^3(G,\mathbb{Z}) \simeq M(G) \simeq (\mathbb{Z}/2\mathbb{Z})^{\oplus 4}$: Schur multiplier of G.

$$\widetilde{G} \leftarrow \text{too large ! } |\widetilde{G}| = 6^4 \times 4 \times 2^4 = 82944.$$

Example : $G = 12T261 \simeq (S_3)^4 \rtimes V_4 \simeq S_3 \wr V_4$ (2/2)

We can take a minimal stem ext. $\overline{G}=\widetilde{G}/A'$ (i.e. $\overline{A}\leq Z(\overline{G})\cap [\overline{G},\overline{G}]$) of G in the commutative diagram

$$1 \longrightarrow A = M(G) \longrightarrow \widetilde{G} \xrightarrow{\pi} G \longrightarrow 1$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \parallel$$

$$1 \longrightarrow \overline{A} = A/A' \longrightarrow \overline{G} = \widetilde{G}/A' \xrightarrow{\overline{\pi}} G \longrightarrow 1$$

with $\overline{A}\simeq \mathbb{Z}/2\mathbb{Z}$. There exists 15 minimal stem extensions. Then we can find exactly one (1/15) minimal stem extension which satisfies that

$$\bigoplus_{i=1}^{m'} \widehat{H}^{-3}(G_i, \mathbb{Z}) \xrightarrow{\text{cores}} \widehat{H}^{-3}(\overline{G}, \mathbb{Z})$$

is surjective. By Drakorust-Platonov's Proposition (iii), we have

$$\operatorname{Obs}(K/k) = \operatorname{Obs}_1(\overline{L}_j/K/k).$$

- $\ker \psi_1 = (\mathbb{Z}/2\mathbb{Z})^{\oplus 4}.$
- $\varphi_1^{\rm r}({\rm Ker}\,\psi_2^{\rm r})=\mathbb{Z}/2\mathbb{Z}$ (819/891 cases) or 0 (72/891 cases).

Sketch of the proof of Theorem 3 (1/2)

$\mathsf{Step}\ 1$

- For $G = \operatorname{Gal}(L/k) = nTm \leq S_n$ and $H = \operatorname{Gal}(L/K) \leq G$ with [G:H] = n, determine $T = R_{K/k}^{(1)}(\mathbb{G}_m)$ satisfying $H^1(k,\operatorname{Pic} \overline{X}) \neq 0$. (Make Table 1)
 - ▶ We shoud treat n = (4, 6), 8, 9, 10, 12, 14, 15 because $H^1(k, \operatorname{Pic} \overline{X}) = 0$ when n = p: prime.

Step 2

- \bullet For the cases in Table1, determine $\mathrm{III}(T)\simeq \mathrm{Obs}(K/k).$ (2-1)
 - (a) $n = pq \ (p \neq q : primes) \longrightarrow Obs(K/k) \simeq Obs_1(L/K/k)$.
 - (b) otherwise \longrightarrow Find a Schur cover \widetilde{G} .

Then we get L/k s.t. $Obs(K/k) \simeq Obs_1(L/K/k)$.

(2-2) Calculation $\mathrm{Obs}_1(\overline{L}/K/k)$ for suitable $\overline{L} \subset \widetilde{L}$.

Sketch of the proof of Theorem 3 (2/2)

(2-2) Calculation $\mathrm{Obs}_1(\overline{L}/K/k)$. By Drakokhrust-Platonov's Thmeorem,

$$\begin{aligned} \operatorname{Obs}_{1}(\overline{L}/K/k) &\simeq \operatorname{Ker} \psi_{1}/\varphi_{1}(\operatorname{Ker} \psi_{2}^{\operatorname{nr}}) \varphi_{1}(\operatorname{Ker} \psi_{2}^{\operatorname{r}}), \\ H/[H,H] &\xrightarrow{\psi_{1}} & G/[G,G] \\ &\uparrow^{\varphi_{1}} & \uparrow^{\varphi_{2}} \\ \bigoplus_{v \in V_{t}} \left(\bigoplus_{w \mid v} H_{w}/[H_{w},H_{w}] \right) \xrightarrow{\psi_{2}} \bigoplus_{v \in V_{t}} G_{v}/[G_{v},G_{v}]. \end{aligned}$$

We compute the following:

- (i) Ker ψ_1 ;
- (ii) $\varphi_1(\operatorname{Ker} \psi_2^{\operatorname{nr}}) = \langle [h, x] \mid h \in H \cap xHx^{-1}, x \in G \rangle / [H, H];$ (by Drakokhrust-Platonov's Proposition (ii))
- (iii) $\varphi_1(\operatorname{Ker} \psi_2^r)$ (in terms of G_v).

$\S 4$ Application 1: R-equivalence in algebraic k-tori (1/2)

Definition (R-equivalence, Manin 1974, in Cubic Forms)

- ▶ $f: Z \to X$: rational map of k-varieties covers a point $x \in X(k)$. $\stackrel{\text{def}}{\Longleftrightarrow}$ there exists a point $z \in Z(k)$ such that f is defined at z and f(z) = x.
- lacksquare $x,y\in X(k)$ are R-equivalent. $\stackrel{\mathrm{def}}{\Longleftrightarrow}$ there exist a fin. seq. of points $x=x_1,\ldots,x_r=y$ and rational maps $f_i:\mathbb{P}^1\to X\ (1\leq i\leq r-1)$ such that f_i covers $x_i,\ x_{i+1}$.

Theorem (Colliot-Thélène and Sansuc 1977)

Let k be a field, T be an algebraic k-torus and $1\to S\to Q\to T\to 1$ be a flabby resolution of T. Then $T(k)=H^0(k,T)\stackrel{\delta}\to H^1(k,S)$ induces

$$T(k)/R \simeq H^1(k,S)$$
.

Application 1: R-equivalence in algebraic k-tori (2/2)

▶ Let *k* be a local field. Using Tate-Nakayama duality, we have

$$T(k)/R \simeq H^1(k,S) \simeq H^1(k,\widehat{S}) \simeq H^1(k,\mathrm{Pic}\,\overline{X})$$

for norm one tori $T=R_{K/k}^{(1)}(\mathbb{G}_m)$ where $[K:k]=n\leq 15.$

Theorem ([HKY22], [HKY23])

Let $2 \leq n \leq 15$ be an integer. Let k be a local field, K/k be a separable field extension of degree n, and $T = R_{K/k}^{(1)}(\mathbb{G}_m)$ be the norm one torus of K/k. Then, $T(k)/R \simeq H^1(k,\operatorname{Pic} \overline{X}) \neq 0 \iff G$ is given as in [HKY22, Table 1] of [HKY23, Table 1].

Application 2: Tamagawa number of k-tori (1/2)

Theorem (Ono 1963)

Let k be a global field, T be an algebraic k-torus and $\tau(T)$ be the Tamagawa number of T. Then

$$\tau(T) = \frac{|H^1(k,\widehat{T})|}{|\mathrm{III}(T)|}.$$

In particular, if T is retract k-rational, then $\tau(T) = |H^1(k, \widehat{T})|$.

- ▶ Let k be a number field, K/k be a field extension of degree n, $T = R_{K/k}^{(1)}(\mathbb{G}_m)$ be the norm one torus of K/k. By Ono's formula, we can calculate Tamagawa number of T explicitly.
- ▶ Example. $G = 15T9 \Rightarrow \tau(T) = \frac{3}{5}$ or 3 because $III(T) \leq \mathbb{Z}/5\mathbb{Z}$.

Application 2: Tamagawa number of k-tori (2/2)

 $\qquad \qquad \tau(T) = |H^1(k,\widehat{T})|/|\mathrm{III}(T)|.$

Theorem ([HKY22, Theorem 8.2])

Let k be a global field and T be an algebraic k-torus of dimension 4 (resp. 5). Among 710 (reps. 6079) cases of algebraic k-tori T, if T is one of the 688 (resp. 5805) cases with $H^1(k,\operatorname{Pic}\overline{X})=0$, then $\tau(T)=|H^1(k,\widehat{T})|$.

Theorem ([HKY22, Theorem 8.3], [HKY23, Remark 1.4])

Let $2 \leq n \leq 15$ be an integer. Let k be a number field, K/k be a field extension of degree n, L/k be the Galois closure of K/k, and $T = R_{K/k}^{(1)}(\mathbb{G}_m)$ be the norm one torus of K/k. Then $\tau(T) = |H^1(k,\widehat{T})|$ except for the cases in [HKY22, Table 1] and [HKY23, Table 1]. For the exceptional cases, we have $\tau(T) = |H^1(G,J_{G/H})|/|\mathrm{III}(T)|$.

Sporadic simple group cases: M_{11} and J_1 (1/3)

- ▶ k : a numberl field.
- ▶ K/k: a separable field extension of [K:k] = n (not fixed).
- ▶ L/k : Galois closure of K/k with $G = \operatorname{Gal}(L/k)$ and $H = \operatorname{Gal}(L/K) \lneq G$ with [G:H] = n.
- $T = R_{K/k}^{(1)}(\mathbb{G}_m) \text{ with } \dim(T) = n 1.$
- ightharpoonup X: a smooth k-compactification of T.
- ▶ $G \simeq M_{11}$ with $|G| = 7920 = 2^4 \cdot 3^2 \cdot 5 \cdot 11$ or $G \simeq J_1$ with $|G| = 175560 = 2^3 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 19$ $\Rightarrow M(G) \simeq H^3(G, \mathbb{Z}) = 0$: Schur multiplier of G.

Theorem ([HKY, Theorem 1.6]) $G \simeq M_{11}$

Asume that $G \simeq M_{11}$ and $H = \operatorname{Gal}(L/K) \lneq G$.

$$H^{1}(k,\operatorname{Pic}\overline{X}) = \begin{cases} 0 & \text{if } \operatorname{Syl}_{2}(H) \not\simeq C_{2}, C_{4}, C_{8}, \\ \mathbb{Z}/2\mathbb{Z} & \text{if } \operatorname{Syl}_{2}(H) \simeq C_{2}, C_{4}, C_{8}. \end{cases}$$

Sporadic simple group cases: M_{11} and J_1 (2/3)

Theorem ([HKY, Theorem 1.8]) $G \simeq M_{11}$

Asume that $G \simeq M_{11}$ and $H = \operatorname{Gal}(L/K) \lneq G$.

- (1) If $\operatorname{Syl}_2(H) \not\simeq C_2, C_4, C_8$, then $A(T) \simeq \operatorname{III}(T) \simeq H^1(k, \operatorname{Pic} \overline{X}) = 0$.
- (2) If $\operatorname{Syl}_2(H) \simeq C_2, C_4, C_8$, then either
- (a) A(T) = 0 and $\coprod (T) \simeq H^1(k, \operatorname{Pic} \overline{X}) \simeq \mathbb{Z}/2\mathbb{Z}$ or
- (b) $A(T) \simeq H^1(k, \operatorname{Pic} \overline{X}) \simeq \mathbb{Z}/2\mathbb{Z}$ and $\operatorname{III}(T) = 0$, and the condition (b) is equivalent to:
- (c) there exists a place v of k such that

$$\begin{cases} V_4 \leq G_v \text{ or } Q_8 \leq G_v & \text{if } \operatorname{Syl}_2(H) \simeq C_2, \\ D_4 \leq G_v \text{ or } Q_8 \leq G_v & \text{if } \operatorname{Syl}_2(H) \simeq C_4, \\ QD_8 \leq G_v & \text{if } \operatorname{Syl}_2(H) \simeq C_8 \end{cases}$$

where G_v is the decomposition group of G at a place v of k.

▶ $0 \to A(T) \to H^1(k, \operatorname{Pic} \overline{X})^{\vee} \to \coprod(T) \to 0$ (Voskresenskii 1969).

Sporadic simple group cases: M_{11} and J_1 (3/3)

Theorem ([HKY, Theorem 1.7]) $G \simeq J_1$

Asume that $G \simeq J_1$ and $H = \operatorname{Gal}(L/K) \lneq G$.

$$H^{1}(k, \operatorname{Pic} \overline{X}) = \begin{cases} 0 & \text{if } \operatorname{Syl}_{2}(H) \not\simeq C_{2}, \\ \mathbb{Z}/2\mathbb{Z} & \text{if } \operatorname{Syl}_{2}(H) \simeq C_{2}. \end{cases}$$

Theorem ([HKY, Theorem 1.9]) $G \simeq J_1$

Asume that $G \simeq J_1$ and $H = \operatorname{Gal}(L/K) \lneq G$.

- (1) If $\operatorname{Syl}_2(H) \not\simeq C_2$, then $A(T) \simeq \operatorname{III}(T) \simeq H^1(k, \operatorname{Pic} \overline{X}) = 0$.
- (2) If $\operatorname{Syl}_2(H) \simeq C_2$, then either
- (a) A(T)=0 and $\mathrm{III}(T)\simeq H^1(k,\operatorname{Pic}\overline{X})\simeq \mathbb{Z}/2\mathbb{Z}$ or
- (b) $A(T) \simeq H^1(k, \operatorname{Pic} \overline{X}) \simeq \mathbb{Z}/2\mathbb{Z}$ and $\operatorname{III}(T) = 0$,
- and the condition (b) is equivalent to:
- (c) there exists a place v of k such that $V_4 \leq G_v$ where G_v is the decomposition group of G at a place v of k.