
• Return to BCAlgTori

FlabbyResolutionBC.gap

Definition of 

Let  be a finite subgroup of . The -lattice  of rank  is
defined to be the -lattice with a -basis  on which  acts
by

for any .

Hminus1

‣ Hminus1(G)

returns the Tate cohomology group  for a finite subgroup
.

H0

‣ H0(G)

returns the Tate cohomology group  for a finite subgroup
.

H1

‣ H1(G)

returns the cohomology group  for a finite subgroup
.

Sha1Omega

‣ Sha1Omega(G)

returns .

Sha1OmegaTr

‣ Sha1OmegaTr(G)

MG

G GL(n, Z) G MG n
G Z {u1, … , un} G

σ(ui) =
n

∑
j=1

ai,juj (1)

σ = [ai,j] ∈ G

Ĥ
−1

(G, MG)
G ≤ GL(n, Z)

Ĥ
0
(G, MG)

G ≤ GL(n, Z)

H 1(G, MG)
G ≤ GL(n, Z)

Sha1
w(G, MG)
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returns .

ShaOmega

‣ ShaOmega(G,n)

returns  for -lattice .
This function needs HAP package in GAP.

ShaOmegaFromGroup

‣ ShaOmegaFromGroup(M,n,G)

returns  for -lattice .
This function needs HAP package in GAP.

TorusInvariants

‣ TorusInvariants(G)

returns  where

,

,

 via the command H1(G).

TorusInvariantsHAP

‣ TorusInvariantsHap(G)

returns  where

,

,

 via the command ShaOmegaFromGroup(

).
This function needs HAP package in GAP.

ConjugacyClassesSubgroups2TorusInvariants

Sha1
w(G, (MG)∘)

Shan
w(G, MG) G MG

Shan
w(G, M) G M

TIG = [l1, l2, l3, l4]

l1 =
⎧⎪⎨⎪⎩

0 if  [MG]fl = 0,
1 if  [MG]fl ≠ 0 but is invertible,
2 if  [MG]fl is not invertible,

l2 = H 1(G, [MG]fl) ≃ Sha1
w(G, [MG]fl)

l3 = Sha1
w(G, (MG)∘) ≃ Sha2

w(G, ([MG]fl)∘)
l4 = H 1(G, ([MG]fl)fl) ≃ Sha2

w(G, [MG]fl)

TIG = [l1, l2, l3, l4]

l1 =
⎧⎪⎨⎪⎩

0 if  [MG]fl = 0,
1 if  [MG]fl ≠ 0 but is invertible,
2 if  [MG]fl is not invertible,

l2 = H 1(G, [MG]fl) ≃ Sha1
w(G, [MG]fl)

l3 = Sha1
w(G, (MG)∘) ≃ Sha2

w(G, ([MG]fl)∘)
l4 = Sha2

w(G, [MG]fl)
[MG]fl, 2, G



‣ ConjugacyClassesSubgroups2TorusInvariants(G)

returns the records ConjugacyClassesSubgroups2 and TorusInvariants where
ConjugacyClassesSubgroups2 is the list  of conjugacy classes of
subgroups of  with the fixed ordering via the function
ConjugacyClassesSubgroups2(G) ( [HY17, Section 4.1]) and
TorusInvariants is the list [TorusInvariants( ) TorusInvariants( )] via the
function TorusInvariants(G).

PossibilityOfStablyEquivalentSubdirectProducts

‣ PossibilityOfStablyEquivalentSubdirectProducts(G,G',
ConjugacyClassesSubgroups2TorusInvariants(G),
ConjugacyClassesSubgroups2TorusInvariants(G'))

returns the list  of the subdirect products  of  and  up to
-conjugacy which satisfy  for

any  where  is a subdirect product of  and  which

acts on  and  through the surjections  and

 respectively (indeed, this function computes it for  up to
conjugacy for the sake of saving time). In particular, if the length of the list  is
zero, then we find that  and  are not weak stably -equivalent.

FlabbyResolutionLowRank

‣ FlabbyResolutionLowRank(G).actionF

returns the matrix representation of the action of  on  where  is a suitable
flabby class of  ( ) with low rank by using backtracking
techniques (see [HY17, Chapter 5], see also [HHY Algorithm 4.1 (3)]).

Each isomorphism class of irreducible permutation -lattices corresponds

to a conjugacy class of subgroup  of  by . Let

 be all conjugacy classes of subgroups of  whose

ordering corresponds to the GAP function ConjugacyClassesSubgroups2( )
(see [HY17, Section 4.1, page 42]).

[g1, … , gm]
G ≤ GL(n, Z)

g1 , … , gm

l H̃ ≤ G × G′ G G′

(GL(n1, Z) × GL(n2, Z)) TIφ1(H) = TIφ2(H)

H ≤ H̃ H̃ ≤ G × G′ G G′

MG MG′ φ1 : H̃ → G

φ2 : H̃ → G′ H
l

[MG]fl [MG′ ]fl k

G F F
MG F ] = [MG]fl

H̃

H H̃ H ↔ Z[H̃ /H]
H1 = {1}, … , Hr = H̃ H̃

H̃



We suppose that  as -lattices. Then we have

where . We write the equation  as

formally where . Then we may consider " " formally
in the sene of . By computing some -conjugacy class invariants,
we will give a necessary condition for .

Let  be a set of complete representatives of the conjugacy

classes of . Let  be the matrix representation of the factor coset

action of  on  and  be the matrix representation of the

action of  on .

By , for each , we have

where  is the trace of the matrix . Similarly, we consider the rank of

. For each , we get

Finally, we compute . Let  be a -Sylow subgroup of an abelian
group .  can be written as a direct product of cyclic groups uniquely.
Let  be the number of direct summands of cyclic groups of order

. For each , we get

By the equalities ,  and , we may get a system of linear equations in

 over . Namely, we have that  as -lattices 
there exist  and  which satisfy  this system of
linear equations has an integer solution in  with .

[F ] = [F ′] H̃

( r

⨁
i=1

Z[H̃ /Hi]⊕xi) ⊕ F ⊕b1   ≃   ( r

⨁
i=1

Z[H̃ /Hi]⊕yi) ⊕ F ′ ⊕b1 (2)

b1 = 1 (2)

r

⨁
i=1

Z[H̃ /Hi]⊕ai   ≃  (F − F ′)⊕(−b1) (3)

ai = xi − yi ∈ Z F − F ′

(2) GL(n, Z)
[F ] = [F ′]

{c1, … , cr}
H̃ Ai(cj)

cj ∈ H̃ Z[H̃ /Hi] B(cj)
cj ∈ H̃ F − F ′

(3) cj ∈ H̃

r

∑
i=1

ai tr Ai(cj) + b1 tr B(cj) = 0 (4)

tr A A

H 0 = Ẑ
0

Hj

r

∑
i=1

ai rank Ẑ
0
(Hj, Z[H̃ /Hi]) + b1 rank Ẑ

0
(Hj, F − F ′) = 0. (5)

Ĥ
0

Syp(A) p
A Syp(A)

np,e(Syp(A))
pe Hj, p, e

r

∑
i=1

ai np,e(Syp(Ĥ
0
(Hj, Z[H̃ /Hi]))) + b1 np,e(Syp(Ĥ

0
(Hj, F − F ′))) = 0.

(4) (5) (6)
a1, … , ar, b1 Z [F ] = [F ′] H̃ ⟹

a1, … , ar ∈ Z b1 = ±1 (3) ⟹
a1, … , ar b1 = ±1



In particular, if this system of linear equations has no integer solutions, then

we conclude that  as -lattices.

PossibilityOfStablyEquivalentFSubdirectProduct

‣ PossibilityOfStablyEquivalentFSubdirectProduct(H~)

returns a basis  of the solution space
 of the system of linear equations which is

obtained by the equalities ,  and  and gives all possibilities that

establish the equation  for a subdirect product  of  and .

PossibilityOfStablyEquivalentMSubdirectProduct

‣ PossibilityOfStablyEquivalentMSubdirectProduct(H~)

returns the same as PossibilityOfStablyEquivalentFSubdirectProduct(H~) but
with respect to  and  instead of  and .

PossibilityOfStablyEquivalentFSubdirectProduct with "H2"
option

‣ PossibilityOfStablyEquivalentFSubdirectProduct(H~:H2)

returns the same as PossibilityOfStablyEquivalentFSubdirectProduct(H~) but
using also the additional equality

and the equalities ,  and .

PossibilityOfStablyEquivalentMSubdirectProduct with "H2"
option

‣ PossibilityOfStablyEquivalentMSubdirectProduct(H~:H2)

returns the same as PossibilityOfStablyEquivalentFSubdirectProduct(H~:H2)
but with respect to  and  instead of  and .

In general, we will provide a method in order to confirm the isomorphism

with , , although it is needed by trial and error.

[F ] ≠ [F ′] H̃

L = {l1, … , ls}
{[a1, … , ar, b1] ∣ ai, b1 ∈ Z}

(4) (5) (6)
(3) H̃ ≤ G × G′ G G′

MG MG′ F F ′

r

∑
i=1

ai np,e(Syp(H 2(H̃ , Z[H̃ /Hi]))) + b1 np,e(Syp(H 2(H̃ , F − F ′))) = 0

(4) (5) (6)

MG MG′ F F ′

( r

⨁
i=1

Z[H̃ /Hi]⊕ai) ⊕ F ⊕b1 ≃ ( r

⨁
i=1

Z[H̃ /Hi]⊕a′
i) ⊕ F ′ ⊕b′

1 (8)

ai, a′
i ≥ 0 b1, b′

1 ≥ 1



Let  (resp. ) be the matrix representation group of the action of  on

the left-hand side  (resp. the right-hand side

) of the isomorphism . Let 
be a basis of the solution space of  where 

. Our aim is to find the matrix 
which satisfies  by using computer effectively. If we can get a
matrix  with det , then  and  are -conjugate where 
is the rank of both sides of  and hence the isomorphism  established.

This implies that the flabby class  as -lattices.

StablyEquivalentFCheckPSubdirectProduct

‣ StablyEquivalentFCheckPSubdirectProduct(H~,l1,l2)

returns a basis  of the solution space of 
where  and  (resp. ) is the matrix

representation group of the action of  on 

(resp. ) with the isomorphism  for a subdirect

product  of  and , and lists ,
, if  exists. If such  does not exist, this returns [ ].

StablyEquivalentMCheckPSubdirectProduct

‣ StablyEquivalentMCheckPSubdirectProduct(H~,l1,l2)

returns the same as StablyEquivalentFCheckPSubdirectProduct(H~,l1,l2) but
with respect to  and  instead of  and .

StablyEquivalentFCheckMatSubdirectProduct

‣ StablyEquivalentFCheckMatSubdirectProduct(H~,l1,l2,P)

returns true if  and det  where  (resp. ) is the

matrix representation group of the action of  on

 (resp. ) with the

isomorphism  for a subdirect product  of  and , and lists
, . If not, this returns false.

StablyEquivalentMCheckMatSubdirectProduct

‣ StablyEquivalentMCheckMatSubdirectProduct(H~,l1,l2,P)

returns the same as StablyEquivalentFCheckMatSubdirectProduct(H~,l1,l2,P)
but with respect to  and  instead of  and .

StablyEquivalentFCheckGenSubdirectProduct

G1 G2 H̃

(⊕r
i=1Z[H̃ /Hi]⊕ai) ⊕ F ⊕b1

(⊕r
i=1Z[H̃ /Hi]⊕a′

i) ⊕ F ⊕b′
1 (8) P = {P1, … , Pm}

G1P = PG2 m = rankZ
Hom(G1, G2) = rankZ HomH̃ (MG1 , MG2) P

G1P = PG2
P P = ±1 G1 G2 GL(n, Z) n

(8) (8)
[F ⊕b1 ] = [F ′ ⊕b′

1 ] H̃

P = {P1, … , Pm} G1P = PG2
m = rankZ Hom(G1, G2) G1 G2

H̃ (⊕r
i=1Z[H̃ /Hi]⊕ai) ⊕ F ⊕b1

(⊕r
i=1Z[H̃ /Hi]⊕a′

i) ⊕ F ′ ⊕b′
1 (8)

H̃ ≤ G × G′ G G′ l1 = [a1, … , ar, b1]
l2 = [a′

1, … , a′
r, b′

1] P P

MG MG′ F F ′

G1P = PG2 P = ±1 G1 G2

H̃

(⊕r
i=1Z[H̃ /Hi]⊕ai) ⊕ F ⊕b1 (⊕r

i=1Z[H̃ /Hi]⊕a′
i) ⊕ F ′ ⊕b′

1

(8) H̃ ≤ G × G′ G G′

l1 = [a1, … , ar, b1] l2 = [a′
1, … , a′

r, b′
1]

MG MG′ F F ′



‣ StablyEquivalentFCheckGenSubdirectProduct(H~,l1,l2)

returns the list  where  (resp.
) is a list of the generators of  (resp. ) which is the

matrix representation group of the action of  on

 (resp. ) with the

isomorphism  for a subdirect product  of  and , and lists
, .

StablyEquivalentMCheckGenSubdirectProduct

‣ StablyEquivalentMCheckGenSubdirectProduct(H~,l1,l2)

returns the same as StablyEquivalentMCheckGenSubdirectProduct(H~,l1,l2)
but with respect to  and  instead of  and .

By applying the function StablyEquivalentFCheckPSubdirectProduct, we
get a basis  of the solution space of  with det

 for some  where  (resp. ) is the matrix

representation group of the action of  on the left-hand side

 (resp. the right-hand side

) of the isomorphism  and 
.

However, in general, we have that det  for any . In the
general case, we should seek a matrix  with det  which is given as a
linear combination . This task is important for us and not easy
in general even if we use a computer.

We made the following GAP algorithms which may find a matrix
 with  and det .

We will explain the algorithms below when the input  is obtained by

StablyEquivalentFCheckPSubdirectProduct( ) although it works in
more general situations.

SearchPRowBlocks

‣ SearchPRowBlocks(P)

returns the records bpBlocks and rowBlocks where bpBlocks (resp. rowBlocks)
is the decomposition of the list  (resp. ) with

 (resp. ) according to the direct sum
decomposition of  for a basis  of the solution space of

 where  (resp. ) is the matrix representation group of the

action of  on the left-hand side  (resp. the right-

[M1, M2] M1 = [g1, … , gt]
M2 = [g′

1, … , g′
t] G1 G2

H̃

(⊕r
i=1Z[H̃ /Hi]⊕ai) ⊕ F ⊕b1 (⊕r

i=1Z[H̃ /Hi]⊕a′
i) ⊕ F ′ ⊕b′

1

(8) H̃ ≤ G × G′ G G′

l1 = [a1, … , ar, b1] l2 = [a′
1, … , a′

r, b′
1]

MG MG′ F F ′

P = {P1, … , Pm} G1P = PG2
Pi = ±1 1 ≤ i ≤ m G1 G2

H̃

(⊕r
i=1Z[H̃ /Hi]⊕ai) ⊕ F ⊕b1

(⊕r
i=1Z[H̃ /Hi]⊕a′

i) ⊕ F ′ ⊕b′
1 (8) m = rankZ

Hom(G1, G2)

Pi ≠ ±1 1 ≤ i ≤ m
P P = ±1

P = ∑m
i=1 ciPi

P = ∑m
i=1 ciPi G1P = PG2 P = ±1

P
H̃ , l1, l2

l = [1, … , m] l = [1, … , n]
m = rankZ Hom(G1, G2) n = size G1

MG1 P = {P1, … , Pm}
G1P = PG2 G1 G2

H̃ (⊕r
i=1Z[H̃ /Hi]⊕ai) ⊕ F ⊕b1



hand side ) of the isomorphism .

We write [ ]  SearchPRowBlocks( ).bpBlocks[ ] and [ ] 
SearchPRowBlocks( ).rowBlocks[ ].

SearchPFilterRowBlocks

‣ SearchPFilterRowBlocks(P,B[t],R[t],j)

returns the lists  where  is the  matrix with all invariant factors
 which is of the form  at most  non-zero

's and  is the submatrix of  consists of [ ] rows with [ ]
 for a basis  of the solution space of  where

 (resp. ) is the matrix representation group of the action of  on the left-

hand side  (resp. the right-hand side

) of the isomorphism , [ ] 
SearchPRowBlocks( ).bpBlocks[ ], [ ]  SearchPRowBlocks( ).rowBlocks[
]) and .

‣ SearchPFilterRowBlocks(P,B[t],R[t],j,C)

returns the same as SearchPFilterRowBlocks(P,B[t],R[t],j) but with respect to
 instead of  for the list  of integers.

SearchPFilterRowBlocksRandomMT

‣ SearchPFilterRowBlocksRandomMT(P,B[t],R[t],u)

returns the same as SearchPFilterRowBlocks(P,B[t],R[t],j) but with respect to
random 's via Mersenne Twister instead of at most  non-zero 's for
integer .

‣ SearchPFilterRowBlocksRandomMT(P,B[t],R[t],u,C)

returns the same as SearchPFilterRowBlocksRandomMT(P,B[t],R[t],u) but with
respect to  instead of  for the list  of integers.

SearchPMergeRowBlock

‣ SearchPMergeRowBlock(m1,m2)

returns all concatenations of the matrices  and  vertically with all
invariant factors  (resp. a concatenation of the matrices  and  vertically
with determinant ) for  and  where  are

 matrices and  are  matrices with  <  (resp.
).

When there exists  such that [ ] , we can use:

(⊕r
i=1Z[H̃ /Hi]⊕a′

i) ⊕ F ′ ⊕b′
1 (8)

B t = P t R t =
P t

{Ms} Ms nt × n
1 Ms = ∑i ∈ B[t] ciP

′
i (ci ∈ {0, 1}) j

ci P ′
i Pi R t nt = length(R t

) P = {P1, … , Pm} G1P = PG2

G1 G2 H̃

(⊕r
i=1Z[H̃ /Hi]⊕ai) ⊕ F ⊕b1

(⊕r
i=1Z[H̃ /Hi]⊕a′

i) ⊕ F ′ ⊕b′
1 (8) B t =

P t R t = P
t j ≥ 1

ci ∈ C ci ∈ {0, 1} C

u ci j ci

u ≥ 1

ci ∈ C ci ∈ {0, 1} C

Ms Mt

1 Ms Mt

±1 m1 = {Ms} m2 = {Mt} Ms

n1 × n Mt n2 × n n1 + n2 n
n1 + n2 = n

t ∈ Z R t = {j}



SearchPLinear

‣ SearchPLinear(M,P1)

returns the list  of integers for an  matrix  which

is obtained by inserting the zero row into the -th row of  matrix
 with all invariant factors  and  where

[ ]  SearchPRowBlocks( ).bpBlocks[ ],  is the submatrix of  deleting
the -th row, and  is obtained by

StablyEquivalentFCheckPSubdirectProduct( , , ) under the assumption
that there exists  such that [ ] .

When there exist  such that [ ] , [ ] , we can
use:

SearchPBilinear

‣ SearchPBilinear(M,P1,P2)

returns the matrix  for an  matrix

 which is obtained by inserting the two zero rows into the -th row and the
-th row of  matrix  with all invariant

factors  and , , where [ ] 

SearchPRowBlocks( ).bpBlocks[ ], [ ]  SearchPRowBlocks(
).bpBlocks[ ],  is the submatrix of  deleting the -th and the -th rows,
and  is obtained by

StablyEquivalentFCheckPSubdirectProduct( , , ) under the assumption
that there exist  such that [ ]  and [ ] .

When there exists  such that [ ] , we can use:

SearchPQuadratic

‣ SearchPQuadratic(M,P1)

returns the matrix
 for an

 matrix  which is obtained by inserting the two zero rows into the -th
row and the -th row of  matrix  with all

invariant factors  and , where [ ]  SearchPRowBlocks(

).bpBlocks[ ],  is the submatrix of  deleting the -th and -th rows and
 is obtained by

StablyEquivalentFCheckPSubdirectProduct( , , ) under the assumption
that there exists  such that [ ] .

{det(M + Pi)}i ∈ B[t] n × n M

j (n − 1) × n
Ms = ∑i ∉ B[t] ciP

′
i 1 P1 = {Pi}i ∈ B[t]

B t = P t P ′
i Pi

j P = {P1, … , Pm}
H̃ l1 l2

t ∈ Z R t = {j}

t1, t2 ∈ Z R t1 = {j1} R t2 = {j2}

[det(M + Pi1 + Pi2)]i1 ∈ B[t1],i2 ∈ B[t2] n × n

M j1
j2 (n − 2) × n Ms = ∑i ∉ B[t1] ∪ B[t2] ciP

′
i

1 P1 = {Pi1}i1∈B[t1] P2 = {Pi2}i2∈B[t2] B t1 =
P t1 B t2 = P

t2 P ′
i Pi j1 j2

P = {P1, … , Pm}
H̃ l1 l2

t1, t2 ∈ Z R t1 = {j1} R t2 = {j2}

t ∈ Z R t = {j1, j2}

[ (det(M + Pi1 + Pi2) − det(M + Pi1) − det(M + Pi2))]i1,i2 ∈ B[t]
1
2

n × n M j1
j2 (n − 2) × n Ms = ∑i ∉ B[t] ciP

′
i

1 P1 = {Pi}i∈B[t] B t = P
t P ′

i Pi j1 j2
P = {P1, … , Pm}

H̃ l1 l2
t ∈ Z R t = {j1, j2}



When [ ] , we can use:

SearchP1

‣ SearchP1(P)

returns a matrix  with ,  and det
 where  (resp. ) is the matrix representation group of the action

of  on the left-hand side  (resp. the right-hand

side ) of the isomorphism  for
 which is obtained by

StablyEquivalentFCheckPSubdirectProduct( , , ) under the assumption
that [ ] .

‣ SearchP1(P,C)

returns the same as SearchP1(P) but with respect to  instead of
 for the list  of integers.

Endomorphismring

‣ Endomorphismring(G)

returns a -basis of  for a finite subgroup  of .

IsCodimJacobsonEnd1

‣ IsCodimJacobsonEnd1(G,p)

returns true (resp. false) if  (resp. )

where  for a finite subgroup  of  and prime

number . If this returns true, then  is an indecomposable -
lattice. In particular,  is an indecomposable -lattice (see [HY, Lemma
6.11]).

IdempotentsModp

‣ IdempotentsModp(B,p)

returns all idempotents of  for a -basis  of a subring  of 
matrices  over  and prime number . If this returns only the zero and
the identity matrices when , then  is an

indecomposable -lattice. In particular,  is an indecomposable -
lattice (see [HY, Lemma 6.10]).

ConjugacyClassesSubgroups2WSEC

R 1 = {1, … , m}

P = ∑m
i=1 ciPi ci ∈ {0, 1} G1P = PG2

P = ±1 G1 G2

H̃ (⊕r
i=1Z[H̃ /Hi]⊕ai) ⊕ F ⊕b1

(⊕r
i=1Z[H̃ /Hi]⊕a′

i) ⊕ F ′ ⊕b′
1 (8)

P = {P1, … , Pm}
H̃ l1 l2

R 1 = {1, … , m}

ci ∈ C
ci ∈ {0, 1} C

Z EndZ[G](MG) G GL(n, Z)

dimZ/pZ(E/pE)/J(E/pE) = 1 ≠ 1
E = EndZ[G](MG) G GL(n, Z)

p MG ⊗Z Zp Zp[G]
MG G

R/pR Z B R n × n
M(n, Z) Z p

R = EndZ[G](MG) MG ⊗Z Zp

Zp[G] MG G



‣ ConjugacyClassesSubgroups2WSEC(G)

returns the records ConjugacyClassesSubgroups2 and WSEC where
ConjugacyClassesSubgroups2 is the list  of conjugacy classes of
subgroups of  with the fixed ordering via the
function ConjugacyClassesSubgroups2( ) (see [HY17, Section 4.1]) and
WSEC is the list  where  is in the -th weak stably -
equivalent class  in dimension .

MaximalInvariantNormalSubgroup

‣ MaximalInvariantNormalSubgroup(G,ConjugacyClassesSubgroups2WSEC(G))

returns the maximal normal subgroup  of  which satisfies that
 implies  for any  where

 is the natural homomorphism, , and  is in the
-th weak stably -equivalent class  in dimension .

PossibilityOfStablyEquivalentSubdirectProducts with "WSEC"
option

‣ PossibilityOfStablyEquivalentSubdirectProducts(G,G',
ConjugacyClassesSubgroups2WSEC(G),
ConjugacyClassesSubgroups2WSEC(G'),["WSEC"])

returns the list  of the subdirect products  of  and  up to
-conjugacy which satisfy  for any

 where  is in the -th weak stably -equivalent class 

in dimension  and  is a subdirect product of  and

 which acts on  and  through the surjections  and

 respectively (indeed, this function computes it for  up to
conjugacy for the sake of saving time).

IsomorphismFromSubdirectProduct

‣ IsomorphismFromSubdirectProduct(H~)

returns the isomorphism  which satisfies

 for any  where  and

 for a subdirect product  of  and  with

surjections  and .

AutGSubdirectProductsWSECInvariant

‣ AutGSubdirectProductsWSECInvariant(G)

returns subdirect products 

[g1, … , gm]
G ≤ GL(n, Z) (n = 3, 4)

G
[w1, … , wm] gi wi k
WSECwi

n

N G
π(H1) = π(H2) ψ(H1) = ψ(H2) H1, H2 ≤ G
π : G → G/N ψ : Hi ↦ wi Hi

wi k WSECwi
n

l H̃ ≤ G × G′ G G′

(GL(n1, Z) × GL(n2, Z)) w1 = w2

H ≤ H̃ φi(H) wi k WSECwi

n (n = 3, 4) H̃ ≤ G × G′ G

G′ MG MG′ φ1 : H̃ → G

φ2 : H̃ → G′ H

σ : G/N → G′/N ′

σ(φ1(h)N) = φ2(h)N ′ h ∈ H̃ N = φ1(Ker(φ2))
N ′ = φ2(Ker(φ1)) H̃ ≤ G × G′ G G′

φ1 : H̃ → G φ2 : H̃ → G′

H̃ m = {(g, gσm) ∣ g ∈ G, gσm ∈ Gσm}



 of  and  where  is a complete set of
representatives of the double coset ,

 is the group of inner automorphisms on ,  is the group of
automorphisms on ,  is the normalizer of  in  and

 is the centralizer of  in .

AutGSubdirectProductsWSECInvariantGen

‣ AutGSubdirectProductsWSECInvariantGen(G)

returns the same as AutGSubdirectProductsWSECInvariant( ) but with
respect to  where  are some minimal number of
generators of the double cosets of , i.e. minimal number of elements

 which satisfy , instead of a
complete set of representatives of the double coset . If this returns [],
then we get .

AutGLnZ

‣ AutGLnZ(G)

returns

N3WSECMembersTable

‣ N3WSECMembersTable[r][i]

returns an integer  which satisfies that  is the -th group in the weak
stably -equivalent class .

N4WSECMembersTable

‣ N4WSECMembersTable[r][i]

is the same as N3WSECMembersTable[r][i] but using  instead of .

(1 ≤ m ≤ s) G Gσm {σ1, … , σs}
X∖Z/X

Inn(G) ≤ X ≤ Y ≤ Z ≤ Aut(G),

X = AutGL(n,Z)(G) = {σ ∈ Aut(G) ∣ G and Gσ are conjugate inGL(n, Z)} ≃

Y = {σ ∈ Aut(G) ∣ [MG]fl = [MGσ ]fl as H̃ -lattices where H̃ = {(g, gσ) ∣ g ∈

Z = {σ ∈ Aut(G) ∣ [MH ]fl ∼ [MH σ ]fl for any H ≤ G},

Inn(G) G Aut(G)
G NGL(n,Z)(G) G GL(n, Z)

ZGL(n,Z)(G) G GL(n, Z)

G
{σ1, … , σt} σ1, … , σt ∈ Z

X∖Z/X
σ1, … , σt ∈ Z ⟨σ1, … , σt, x ∣ x ∈ X⟩ = Z

X∖Z/X
X = Y = Z

X = AutGL(n,Z)(G) = {σ ∈ Aut(G) ∣ G and Gσ are conjugate in GL(n, Z)} ≃

j N3,j i
k WSECr

N4,j N3,j



I4WSECMembersTable

‣ I4WSECMembersTable[r][i]

is the same as N3WSECMembersTable[r][i] but using  instead of .

AutGWSECINvariantSmallDegreeTest

‣ AutGWSECINvariantSmallDegreeTest(G)

returns the list ) of integers with the minimal
 which satisfies  where

for .
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l = [l1, … , ls] (l1 ≤ ⋯ ≤ ls

ls, … , l1 Z = Z ′

Z = {σ ∈ Aut(G) ∣ [MH ]fl ∼ [MH σ ]fl for any H ≤ G},

Z ′ = {σ ∈ Aut(G) ∣ [MH ]fl ∼ [MH σ ]fl for any H ≤ G with [G : H] ∈ l}

G ≤ GL(n, Z) (n = 3, 4)
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