• [Return to BCAlgTori](https://www.math.kyoto-u.ac.jp/~yamasaki/Algorithm/BCAlgTori/index.html)

[FlabbyResolutionBC.gap](https://www.math.kyoto-u.ac.jp/~yamasaki/Algorithm/BCAlgTori/FlabbyResolutionBC.gap)

Definition of M_G

Let G be a finite subgroup of $\operatorname{GL}(n,{\mathbb Z}).$ The G -lattice M_G of rank n is defined to be the G -lattice with a \mathbb{Z} -basis $\{u_1, \ldots, u_n\}$ on which G acts by

$$
\sigma(u_i)=\sum_{j=1}^n a_{i,j}u_j\qquad \qquad (1)
$$

for any $\sigma = [a_{i,j}] \in G.$

Hminus1

‣ Hminus1(*G*)

returns the Tate cohomology group ${\widehat{H}}^{-1}(G, M_{G})$ for a finite subgroup $G \leq \mathrm{GL}(n,\mathbb{Z}).$

H0

$·$ H $\Theta(G)$

returns the Tate cohomology group ${\widehat{H}}^0(G,M_G)$ for a finite subgroup $G \leq \mathrm{GL}(n,\mathbb{Z}).$

H1

```
‣ H1(G)
```
returns the cohomology group $H^1(G,M_G)$ for a finite subgroup $G \leq \mathrm{GL}(n,\mathbb{Z}).$

Sha1Omega

‣ Sha1Omega(*G*)

returns $Sha_w^1(G,M_G).$

Sha1OmegaTr

‣ Sha1OmegaTr(*G*)

returns $Sha_w^1(G,(M_G)^\circ).$

ShaOmega

‣ ShaOmega(*G*,*n*)

returns $\mathit{Sha}^n_w(G, M_G)$ for G -lattice M_G . This function needs HAP package in GAP.

ShaOmegaFromGroup

‣ ShaOmegaFromGroup(*M*,*n*,*G*)

returns $Sha_w^n(G,M)$ for G -lattice M . This function needs HAP package in GAP.

TorusInvariants

‣ TorusInvariants(*G*)

returns $TI_G=[l_1,l_2,l_3,l_4]$ where

$$
l_1 = \begin{cases} 0 & \text{if} \ \ [M_G]^{fl} = 0, \\ 1 & \text{if} \ \ [M_G]^{fl} \neq 0 \ \text{but is invertible,} \\ 2 & \text{if} \ \ [M_G]^{fl} \ \text{is not invertible,} \end{cases}
$$

$$
\begin{array}{l} l_2 = H^1(G, [M_G]^{fl}) \simeq \mathit{Sha}^1_w(G, [M_G]^{fl}), \\ l_3 = \mathit{Sha}^1_w(G, (M_G)^\circ) \simeq \mathit{Sha}^2_w(G, ([M_G]^{fl})^\circ), \\ l_4 = H^1(G, ([M_G]^{fl})^{fl}) \simeq \mathit{Sha}^2_w(G, [M_G]^{fl}) \text{ via the command H1(G).} \end{array}
$$

TorusInvariantsHAP

‣ TorusInvariantsHap(*G*)

returns $TI_G=[l_1,l_2,l_3,l_4]$ where

$$
l_1 = \begin{cases} 0 & \text{if} \ \ [M_G]^{fl} = 0, \\ 1 & \text{if} \ \ [M_G]^{fl} \neq 0 \ \text{but is invertible}, \\ 2 & \text{if} \ \ [M_G]^{fl} \ \text{is not invertible}, \end{cases}
$$

$$
l_2 = H^1(G, [M_G]^{fl}) \simeq Sha_w^1(G, [M_G]^{fl}),
$$

\n
$$
l_3 = Sha_w^1(G, (M_G)^\circ) \simeq Sha_w^2(G, ([M_G]^{fl})^\circ),
$$

\n
$$
l_4 = Sha_w^2(G, [M_G]^{fl})
$$
 via the command ShaOmegaFromGroup(
\n
$$
[M_G]^{fl}, 2, G).
$$

\nThis function needs HAP package in GAP.

This function needs HAP package in GAP.

ConjugacyClassesSubgroups2TorusInvariants

returns the records ConjugacyClassesSubgroups2 and TorusInvariants where ConjugacyClassesSubgroups2 is the list $[g_1, \ldots, g_m]$ of conjugacy classes of subgroups of $G\leq \mathrm{GL}(n,\mathbb{Z})$ with the fixed ordering via the function ConjugacyClassesSubgroups2(*G*) ([\[HY17,](#page-12-0) Section 4.1]) and TorusInvariants is the list [TorusInvariants $(g_1), \ldots,$ TorusInvariants (g_m)] via the function TorusInvariants(*G*).

PossibilityOfStablyEquivalentSubdirectProducts

```
‣ PossibilityOfStablyEquivalentSubdirectProducts(G,G',
ConjugacyClassesSubgroups2TorusInvariants(G),
ConjugacyClassesSubgroups2TorusInvariants(G'))
```
returns the list l of the subdirect products $\widetilde{H}\leq G\times G'$ of G and G' up to $(\mathrm{GL}(n_1,\mathbb{Z})\times\mathrm{GL}(n_2,\mathbb{Z}))$ -conjugacy which satisfy $TI_{\varphi_1(H)}=TI_{\varphi_2(H)}$ for any $H \leq \widetilde{H}$ where $\widetilde{H} \leq G \times G'$ is a subdirect product of G and G' which acts on M_G and $M_{G'}$ through the surjections $\varphi_1 : \bar{H} \to G$ and $\varphi_2 : \widetilde{H} \rightarrow G'$ respectively (indeed, this function computes it for H up to conjugacy for the sake of saving time). In particular, if the length of the list l is zero, then we find that $[M_G]^{fl}$ and $[M_{G^\prime}]^{fl}$ are not weak stably k -equivalent.

FlabbyResolutionLowRank

‣ FlabbyResolutionLowRank(*G*).actionF

returns the matrix representation of the action of G on F where F is a suitable flabby class of $M_G\left(F\right) = [M_G]^{fl}$) with low rank by using backtracking techniques (see [\[HY17,](#page-12-0) Chapter 5], see also [\[HHY](#page-12-1) Algorithm 4.1 (3)]).

Each isomorphism class of irreducible permutation H -lattices corresponds to a conjugacy class of subgroup H of \overline{H} by $H \leftrightarrow \mathbb{Z}[\overline{H}\,/\overline{H}].$ Let $H_1 = \{1\}, \ldots, H_r = H$ be all conjugacy classes of subgroups of H whose ordering corresponds to the GAP function ConjugacyClassesSubgroups2(\bar{H}) (see $[HY17, Section 4.1, page 42]$ $[HY17, Section 4.1, page 42]$).

We suppose that $[F] = [F^\prime]$ as \widetilde{H} -lattices. Then we have

$$
\left(\bigoplus_{i=1}^r \mathbb{Z}[\widetilde{H}/H_i]^{\oplus x_i}\right) \oplus F^{\oplus b_1} \simeq \left(\bigoplus_{i=1}^r \mathbb{Z}[\widetilde{H}/H_i]^{\oplus y_i}\right) \oplus F'^{\oplus b_1} \quad (2)
$$

where $b_1 = 1$. We write the equation $\left(2 \right)$ as

$$
\bigoplus_{i=1}^r \mathbb{Z}[\widetilde{H}/H_i]^{\oplus a_i} \simeq (F-F')^{\oplus (-b_1)} \qquad \qquad (3)
$$

formally where $a_i = x_i - y_i \in \mathbb{Z}$. Then we may consider " $F-F$ $'$ " formally in the sene of (2) . By computing some $\operatorname{GL}(n,{\mathbb Z})$ -conjugacy class invariants, we will give a necessary condition for $[F] = [F^{\prime}].$

Let $\{c_1, \ldots, c_r\}$ be a set of complete representatives of the conjugacy classes of H . Let $A_i(c_j)$ be the matrix representation of the factor coset action of $c_j \in H$ on $\mathbb{Z}[H]/H_i]$ and $B(c_j)$ be the matrix representation of the action of $c_j \in \widetilde{H}$ on $F-F'.$

By (3) , for each $c_j \in H$, we have

$$
\sum_{i=1}^{r} a_i \operatorname{tr} A_i(c_j) + b_1 \operatorname{tr} B(c_j) = 0 \tag{4}
$$

where $\operatorname{tr} A$ is the trace of the matrix A . Similarly, we consider the rank of $H^0 = {\widehat Z}^0$. For each H_j , we get

$$
\sum_{i=1}^r a_i \operatorname{rank} \widehat{Z}^0(H_j,\mathbb{Z}[\widetilde{H}/H_i])+b_1 \operatorname{rank} \widehat{Z}^0(H_j,F-F')=0. \quad (5)
$$

Finally, we compute ${\widehat{H}}^0$. Let $Sy_p(A)$ be a p -Sylow subgroup of an abelian group $A.$ $Sy_p(A)$ can be written as a direct product of cyclic groups uniquely. Let $n_{p,e}(Sy_p(A))$ be the number of direct summands of cyclic groups of order p^e . For each H_j, p, e , we get

$$
\sum_{i=1}^r a_i\, n_{p,e}(Sy_p(\widehat{H}^0(H_j,\mathbb{Z}[\widetilde{H}\,/\,H_i]))) + b_1\, n_{p,e}(Sy_p(\widehat{H}^0(H_j,F-F')))=0
$$

By the equalities $\left(4\right)$, $\left(5\right)$ and $\left(6\right)$, we may get a system of linear equations in a_1, \ldots, a_r, b_1 over \Z . Namely, we have that $[F] = [F']$ as \widetilde{H} -lattices \Longrightarrow there exist $a_1, \ldots, a_r \in \mathbb{Z}$ and $b_1 = \pm 1$ which satisfy $(3) \Longrightarrow$ this system of linear equations has an integer solution in a_1, \ldots, a_r with $b_1 = \pm 1.$

In particular, if this system of linear equations has no integer solutions, then we conclude that $[F]\neq [F']$ as \widetilde{H} -lattices.

PossibilityOfStablyEquivalentFSubdirectProduct

```
‣ PossibilityOfStablyEquivalentFSubdirectProduct(H~)
```
returns a basis $\mathcal{L} = \{l_1, \ldots, l_s\}$ of the solution space $\{[a_1, \ldots, a_r, b_1] \mid a_i, b_1 \in \mathbb{Z}\}$ of the system of linear equations which is obtained by the equalities $(4),\, (5)$ and (6) and gives all possibilities that establish the equation (3) for a subdirect product $\widetilde{H}\leq G\times G'$ of G and $G'.$

PossibilityOfStablyEquivalentMSubdirectProduct

```
‣ PossibilityOfStablyEquivalentMSubdirectProduct(H~)
```
returns the same as PossibilityOfStablyEquivalentFSubdirectProduct(*H~*) but with respect to M_G and $M_{G'}$ instead of \overline{F} and $F'.$

PossibilityOfStablyEquivalentFSubdirectProduct with "H2" option

```
‣ PossibilityOfStablyEquivalentFSubdirectProduct(H~:H2)
```
returns the same as PossibilityOfStablyEquivalentFSubdirectProduct(*H~*) but using also the additional equality

$$
\sum_{i=1}^r a_i\,n_{p,e}(Sy_p(H^2(\widetilde{H},\mathbb{Z}[\widetilde{H}\,/\,H_i])))+b_1\,n_{p,e}(Sy_p(H^2(\widetilde{H}\,,F-F')))=0
$$

and the equalities (4) , (5) and (6) .

PossibilityOfStablyEquivalentMSubdirectProduct with "H2" option

‣ PossibilityOfStablyEquivalentMSubdirectProduct(*H~*:H2)

returns the same as PossibilityOfStablyEquivalentFSubdirectProduct(*H~*:H2) but with respect to M_G and $\dot{M}_{G'}$ instead of F and $F'.$

In general, we will provide a method in order to confirm the isomorphism

$$
\left(\bigoplus_{i=1}^r \mathbb{Z}[\widetilde{H}/H_i]^{\oplus a_i}\right) \oplus F^{\oplus b_1} \simeq \left(\bigoplus_{i=1}^r \mathbb{Z}[\widetilde{H}/H_i]^{\oplus a'_i}\right) \oplus F'^{\oplus b'_1} \qquad (8)
$$

with $a_i, a'_i \geq 0$, $b_1, b'_1 \geq 1$, although it is needed by trial and error.

Let G_1 (resp. G_2) be the matrix representation group of the action of \overline{H} on the left-hand side $(\oplus_{i=1}^r \mathbb{Z}[\widetilde{H}/H_i]^{\oplus a_i}) \oplus F^{\oplus b_1}$ (resp. the right-hand side $(\oplus_{i=1}^r \mathbb{Z}[\widetilde{H}/H_i]^{\oplus a_i'}) \oplus F^{\oplus b_1'})$ of the isomorphism (8) . Let $\mathcal{P}=\{P_1,\ldots,P_m\}$ be a basis of the solution space of $G_1P = PG_2$ where $m = \mathrm{rank}_\mathbb{Z}$ $\operatorname{Hom}(G_1,G_2)=\operatorname{rank}_\Z \operatorname{Hom}_{\widetilde{H}}(M_{G_1},M_{G_2}).$ Our aim is to find the matrix P which satisfies $G_1P = PG_2$ by using computer effectively. If we can get a matrix P with det $P=\pm 1$, then G_1 and G_2 are $\mathrm{GL}(n,{\mathbb Z})$ -conjugate where n is the rank of both sides of (8) and hence the isomorphism (8) established. This implies that the flabby class $[F^{\oplus b_1}] = [F'^{\oplus b'_1}]$ as \widetilde{H} -lattices.

StablyEquivalentFCheckPSubdirectProduct

‣ StablyEquivalentFCheckPSubdirectProduct(*H~*,*l1*,*l2*)

returns a basis $\mathcal{P} = \{P_1, \ldots, P_m\}$ of the solution space of $G_1P = PG_2$ where $m = \mathrm{rank}_\mathbb{Z}\, \mathrm{Hom}(G_1,G_2)$ and G_1 (resp. G_2) is the matrix representation group of the action of \widetilde{H} on $(\oplus_{i=1}^r \mathbb{Z}[\widetilde{H}/H_i]^{\oplus a_i})\oplus F^{\oplus b_1}$ (resp. $(\oplus_{i=1}^r \mathbb{Z}[\widetilde{H}/H_i]^{\oplus a_i'}) \oplus F'^{\oplus b_1'})$ with the isomorphism (8) for a subdirect product $\widetilde{H}\leq G\times G'$ of G and G' , and lists $l_1=[a_1,\ldots,a_r,b_1],$ $l_2=[a'_1,\ldots,a'_r,b'_1]$, if P exists. If such P does not exist, this returns [].

StablyEquivalentMCheckPSubdirectProduct

‣ StablyEquivalentMCheckPSubdirectProduct(*H~*,*l1*,*l2*)

returns the same as StablyEquivalentFCheckPSubdirectProduct(*H~*,*l1*,*l2*) but with respect to M_G and $\dot{M}_{G'}$ instead of F and $F'.$

StablyEquivalentFCheckMatSubdirectProduct

‣ StablyEquivalentFCheckMatSubdirectProduct(*H~*,*l1*,*l2*,*P*)

returns true if $G_1P = PG_2$ and det $P = \pm 1$ where G_1 (resp. G_2) is the matrix representation group of the action of \bar{H} on $(\oplus_{i=1}^r \mathbb{Z}[\widetilde{H}/H_i]^{\oplus a_i}) \oplus F^{\oplus b_1}$ (resp. $(\oplus_{i=1}^r \mathbb{Z}[\widetilde{H}/H_i]^{\oplus a_i'}) \oplus F'^{\oplus b_1'}$) with the isomorphism (8) for a subdirect product $\widetilde{H}\leq G\times G'$ of G and G' , and lists $l_1=[a_1,\ldots,a_r,b_1]$, $l_2=[a'_1,\ldots,a'_r,b'_1]$. If not, this returns false.

StablyEquivalentMCheckMatSubdirectProduct

‣ StablyEquivalentMCheckMatSubdirectProduct(*H~*,*l1*,*l2*,*P*)

returns the same as StablyEquivalentFCheckMatSubdirectProduct(*H~*,*l1*,*l2*,*P*) but with respect to M_G and $\dot{M}_{G'}$ instead of F and $F'.$

StablyEquivalentFCheckGenSubdirectProduct

returns the list $[\mathcal{M}_1,\mathcal{M}_2]$ where $\mathcal{M}_1 = [g_1,\ldots,g_t]$ (resp. $\mathcal{M}_2 = [g'_1, \ldots, g'_t])$ is a list of the generators of G_1 (resp. G_2) which is the matrix representation group of the action of \bar{H} on $(\oplus_{i=1}^r \mathbb{Z}[\widetilde{H}/H_i]^{\oplus a_i}) \oplus F^{\oplus b_1}$ (resp. $(\oplus_{i=1}^r \mathbb{Z}[\widetilde{H}/H_i]^{\oplus a_i'}) \oplus F'^{\oplus b_1'}$) with the isomorphism (8) for a subdirect product $\widetilde{H}\leq G\times G'$ of G and G' , and lists $l_1 = [a_1, \ldots, a_r, b_1], l_2 = [a'_1, \ldots, a'_r, b'_1].$

StablyEquivalentMCheckGenSubdirectProduct

‣ StablyEquivalentMCheckGenSubdirectProduct(*H~*,*l1*,*l2*)

returns the same as StablyEquivalentMCheckGenSubdirectProduct(*H~*,*l1*,*l2*) but with respect to M_G and $M_{G^{\prime}}$ instead of F and $F^{\prime}.$

By applying the function StablyEquivalentFCheckPSubdirectProduct, we get a basis $\mathcal{P} = \{P_1, \ldots, P_m\}$ of the solution space of $G_1P = PG_2$ with det $P_i = \pm 1$ for some $1 \leq i \leq m$ where G_1 (resp. G_2) is the matrix representation group of the action of \bar{H} on the left-hand side $(\oplus_{i=1}^r \mathbb{Z}[\widetilde{H}/H_i]^{\oplus a_i}) \oplus F^{\oplus b_1}$ (resp. the right-hand side $(\oplus_{i=1}^r \mathbb{Z}[\widetilde{H}/H_i]^{\oplus a_i'}) \oplus F'^{\oplus b_1'})$ of the isomorphism (8) and $m = \mathrm{rank}_\mathbb{Z}$ $\operatorname{Hom}(G_1,G_2).$

However, in general, we have that det $P_i \neq \pm 1$ for any $1 \leq i \leq m$. In the general case, we should seek a matrix P with det $P=\pm 1$ which is given as a linear combination $P=\sum_{i=1}^m c_iP_i.$ This task is important for us and not easy in general even if we use a computer. P with det $P=\pm 1$ $P = \sum_{i=1}^{m} c_i P_i$

We made the following GAP algorithms which may find a matrix $P = \sum_{i=1}^m c_i P_i$ with $G_1 P = P G_2$ and det $P = \pm 1$.

We will explain the algorithms below when the input P is obtained by Stably EquivalentFCheckPSubdirectProduct $(\bar{H} \, , l_1, l_2)$ *although it works in more general situations.*

SearchPRowBlocks

‣ SearchPRowBlocks(*P*)

returns the records bpBlocks and rowBlocks where bpBlocks (resp. rowBlocks) is the decomposition of the list $l = [1, \ldots, m]$ (resp. $l = [1, \ldots, n]$) with $m = \mathrm{rank}_\mathbb{Z} \, \mathrm{Hom}(G_1, G_2)$ (resp. $n = \mathrm{size}\ G_1$) according to the direct sum decomposition of M_{G_1} for a basis $\mathcal{P} = \{P_1, \ldots, P_m\}$ of the solution space of $G_1P = PG_2$ where G_1 (resp. G_2) is the matrix representation group of the action of \widetilde{H} on the left-hand side $(\oplus_{i=1}^r \mathbb{Z}[\widetilde{H}/H_i]^{\oplus a_i})\oplus F^{\oplus b_1}$ (resp. the righthand side $(\oplus_{i=1}^r \mathbb{Z}[\widetilde{H}/H_i]^{\oplus a_i'}) \oplus F'^{\oplus b_1'})$ of the isomorphism $(8).$

 W e write $B[t] = \text{SearchPROwBlocks}(\mathcal P)$.bpBlocks[t] and $R[t] = \text{archPRowBlocks}(\mathcal P)$.rowBlocks[t]. SearchPRowBlocks(P).rowBlocks[t].

SearchPFilterRowBlocks

‣ SearchPFilterRowBlocks(*P*,*B*[*t*],*R*[*t*],*j*)

returns the lists $\{M_s\}$ where M_s is the $n_t \times n$ matrix with all invariant factors 1 which is of the form $M_s = \sum_{i ~\in~ B[t]} c_i P'_i~(c_i \in \{0,1\})$ at most j non-zero c_i 's and P'_i is the submatrix of P_i consists of $R[t]$ rows with $n_t = \mathrm{length}(R[t])$) for a basis $\mathcal{P} = \{P_1, \ldots, P_m\}$ of the solution space of $G_1P = PG_2$ where G_1 (resp. G_2) is the matrix representation group of the action of \bar{H} on the lefthand side $(\oplus_{i=1}^r \mathbb{Z}[\widetilde{H}/H_i]^{\oplus a_i}) \oplus F^{\oplus b_1}$ (resp. the right-hand side $(\oplus_{i=1}^r \mathbb{Z}[\widetilde{H}/H_i]^{\oplus a_i'}) \oplus F'{}^{\oplus b_1'})$ of the isomorphism (8) , $B[t]=0$ $\mathsf{SearchPROwBlocks}(\mathcal{P}).\mathsf{bpBlocks}[t],$ $R[t] = \mathsf{SearchPROwBlocks}(\mathcal{P}).\mathsf{rowBlocks}[t]$ t]) and $j\geq 1$.

‣ SearchPFilterRowBlocks(*P*,*B*[*t*],*R*[*t*],*j*,*C*)

returns the same as SearchPFilterRowBlocks(*P*,*B*[*t*],*R*[*t*],*j*) but with respect to $c_i \in C$ instead of $c_i \in \{0,1\}$ for the list C of integers.

SearchPFilterRowBlocksRandomMT

```
‣ SearchPFilterRowBlocksRandomMT(P,B[t],R[t],u)
```
returns the same as SearchPFilterRowBlocks(*P*,*B*[*t*],*R*[*t*],*j*) but with respect to random u c_i 's via Mersenne Twister instead of at most j non-zero c_i 's for integer $u\geq 1$.

‣ SearchPFilterRowBlocksRandomMT(*P*,*B*[*t*],*R*[*t*],*u*,*C*)

returns the same as SearchPFilterRowBlocksRandomMT(*P*,*B*[*t*],*R*[*t*],*u*) but with respect to $c_i \in C$ instead of $c_i \in \{0,1\}$ for the list C of integers.

SearchPMergeRowBlock

‣ SearchPMergeRowBlock(*m1*,*m2*)

returns all concatenations of the matrices M_s and M_t vertically with all invariant factors 1 (resp. a concatenation of the matrices M_s and M_t vertically with determinant ± 1) for $m_1 = \{M_s\}$ and $m_2 = \{M_t\}$ where M_s are $n_1 \times n$ matrices and M_t are $n_2 \times n$ matrices with $n_1 + n_2$ < n (resp. $n_1 + n_2 = n$).

When there exists $t \in \mathbb{Z}$ such that $R[t] = \{j\}$, we can use:

SearchPLinear

‣ SearchPLinear(*M*,*P1*)

returns the list $\{\det(M+P_i)\}_{i\:\in\: B[t]}$ of integers for an $n\times n$ matrix M which is obtained by inserting the zero row into the j -th row of $(n-1)\times n$ matrix $M_s = \sum_{i \, \not\in \, B[t]} c_i P'_i$ with all invariant factors 1 and $\mathcal{P}_1 = \{P_i\}_{i \, \in \, B[t]}$ where $B[t] = \text{SearchPROwBlocks}(\mathcal{P}).\text{bpBlocks}[t]$, P'_i is the submatrix of P_i deleting the j -th row, and $\mathcal{P} = \{P_1, \ldots, P_m\}$ is obtained by $\mathsf{StablyE}$ quivalentFCheckPSubdirectProduct $(\bar{H}$, $l_1, l_2)$ under the assumption that there exists $t \in \mathbb{Z}$ such that $R[t] = \{j\}.$

When there exist $t_1, t_2 \in \mathbb{Z}$ such that $R[t_1] = \{ j_1 \},$ $R[t_2] = \{ j_2 \},$ we can use:

SearchPBilinear

‣ SearchPBilinear(*M*,*P1*,*P2*)

returns the matrix $[\det(M+P_{i_1}+P_{i_2})]_{i_1\,in B[t_1], i_2\,in B[t_2]}$ for an $n\times n$ matrix M which is obtained by inserting the two zero rows into the j_1 -th row and the j_2 -th row of $(n-2)\times n$ matrix $M_s = \sum_{i\not\in B[t_1]\,\cup\, B[t_2]} c_i P_i^I$ with all invariant factors 1 and $\mathcal{P}_1 = \{P_{i_1}\}_{i_1 \in B[t_1]},$ $\mathcal{P}_2 = \{P_{i_2}\}_{i_2 \in B[t_2]}$, where $B[t_1]$ $=$ $\mathsf{SearchPROwBlocks}(\mathcal{P}).$ bpBlocks $[t_1]$, $B[t_2] = \mathsf{SearchPROwBlocks}(\mathcal{P})$).bpBlocks[t_2], P'_i is the submatrix of P_i deleting the j_1 -th and the j_2 -th rows, and $\mathcal{P} = \{P_1, \ldots, P_m\}$ is obtained by $\mathsf{StablyE}$ quivalentFCheckPSubdirectProduct $(\overline H\,$, $l_1, l_2)$ under the assumption that there exist $t_1, t_2 \in \mathbb{Z}$ such that $R[t_1] = \{ j_1 \}$ and $R[t_2] = \{ j_2 \}.$

When there exists $t \in \mathbb{Z}$ such that $R[t] = \{j_1, j_2\}$, we can use:

SearchPQuadratic

‣ SearchPQuadratic(*M*,*P1*)

returns the matrix

 $[\,\frac{1}{2}(\det(M+P_{i_1}+P_{i_2})-\det(M+P_{i_1})-\det(M+P_{i_2}))]_{i_1,i_2\,\in\,B[t]}$ for an $n \times n$ matrix M which is obtained by inserting the two zero rows into the j_1 -th row and the j_2 -th row of $(n-2)\times n$ matrix $M_s = \sum_{i\notin B[t]} c_iP'_i$ with all invariant factors 1 and $\mathcal{P}_1 = \{P_i\}_{i \in B[t]},$ where $B[t] =$ SearchPRowBlocks($\mathcal P$).bpBlocks[t], P_i' is the submatrix of P_i deleting the j_1 -th and j_2 -th rows and $\mathcal{P} = \{P_1, \ldots, P_m\}$ is obtained by $\mathsf{StablyE}$ quivalentF $\mathsf{CheckPSubdirectProduct}(\widetilde{H},l_1,l_2)$ under the assumption that there exists $t \in \mathbb{Z}$ such that $R[t] = \{j_1, j_2\}.$ 2

When $R[1] = \{1, \ldots, m\}$, we can use:

SearchP1

```
‣ SearchP1(P)
```
returns a matrix $P = \sum_{i=1}^m c_i P_i$ with $c_i \in \{0,1\}$, $G_1 P = P G_2$ and det $P=\pm 1$ where G_1 (resp. G_2) is the matrix representation group of the action of \widetilde{H} on the left-hand side $(\oplus_{i=1}^r \mathbb{Z}[\widetilde{H}/H_i]^{\oplus a_i})\oplus F^{\oplus b_1}$ (resp. the right-hand side $(\oplus_{i=1}^r \mathbb{Z}[\widetilde{H}/H_i]^{\oplus a_i'}) \oplus F'^{\oplus b_1'})$ of the isomorphism (8) for $\mathcal{P} = \{P_1, \ldots, P_m\}$ which is obtained by $\mathsf{StablyE}$ quivalentF $\mathsf{CheckPSubdirectProduct}(\widetilde{H}_, l_1, l_2)$ under the assumption that $R[1] = \{1, \ldots, m\}$.

‣ SearchP1(*P*,*C*)

returns the same as SearchP1(*P*) but with respect to $c_i \in C$ instead of $c_i \in \{0,1\}$ for the list C of integers.

Endomorphismring

```
‣ Endomorphismring(G)
```
returns a $\mathbb Z$ -basis of $\mathrm{End}_{\mathbb Z[G]}(M_G)$ for a finite subgroup G of $\mathrm{GL}(n,\mathbb Z).$

IsCodimJacobsonEnd1

‣ IsCodimJacobsonEnd1(*G*,*p*)

returns true (resp. false) if $\dim_{{\mathbb Z}/p{\mathbb Z}}(E/pE)\big/ J(E/pE) = 1$ (resp. $\neq 1$) where $E=\mathrm{End}_{\mathbb{Z}[G]}(M_G)$ for a finite subgroup G of $\mathrm{GL}(n,\mathbb{Z})$ and prime number $p.$ If this returns true, then $M_G \otimes_{\mathbb{Z}} \mathbb{Z}_p$ is an indecomposable $\mathbb{Z}_p[G]$ lattice. In particular, M_G is an indecomposable G -lattice (see [<u>HY,</u> Lemma 6.11]).

IdempotentsModp

‣ IdempotentsModp(*B*,*p*)

returns all idempotents of R/pR for a $\mathbb Z$ -basis B of a subring R of $n\times n$ matrices $M(n,\mathbb{Z})$ over $\mathbb Z$ and prime number $p.$ If this returns only the zero and the identity matrices when $R = \mathrm{End}_{\mathbb{Z}[G]}(M_G)$, then $M_G \otimes_{\mathbb{Z}} \mathbb{Z}_p$ is an indecomposable $\mathbb{Z}_p[G]$ -lattice. In particular, M_G is an indecomposable G -lattice (see [[HY,](#page-12-2) Lemma 6.10]).

ConjugacyClassesSubgroups2WSEC

‣ ConjugacyClassesSubgroups2WSEC(*G*)

returns the records ConjugacyClassesSubgroups2 and WSEC where ConjugacyClassesSubgroups2 is the list $[g_1, \ldots, g_m]$ of conjugacy classes of subgroups of $G\leq \mathrm{GL}(n,{\mathbb Z})$ $(n=3,4)$ with the fixed ordering via the function ConjugacyClassesSubgroups2(G) (see <u>[\[HY17,](#page-12-0)</u> Section 4.1]) and WSEC is the list $[w_1, \ldots, w_m]$ where g_i is in the w_i -th weak stably k equivalent class WSEC_{w_i} in dimension $n.$

MaximalInvariantNormalSubgroup

```
‣ MaximalInvariantNormalSubgroup(G,ConjugacyClassesSubgroups2WSEC(G))
```
returns the maximal normal subgroup N of G which satisfies that $\pi(H_1) = \pi(H_2)$ implies $\psi(H_1) = \psi(H_2)$ for any $H_1, H_2 \leq G$ where $\pi: G \rightarrow G/N$ is the natural homomorphism, $\psi: H_i \mapsto w_i$, and H_i is in the w_i -th weak stably k -equivalent class WSEC_{w_i} in dimension $n.$

PossibilityOfStablyEquivalentSubdirectProducts with "WSEC" option

```
‣ PossibilityOfStablyEquivalentSubdirectProducts(G,G',
ConjugacyClassesSubgroups2WSEC(G),
ConjugacyClassesSubgroups2WSEC(G'),["WSEC"])
```
returns the list l of the subdirect products $H\,\leq G\times G'$ of G and G' up to -conjugacy which satisfy $w_1=w_2$ for any $H \leq \overline{H}$ where $\varphi_i(H)$ is in the w_i -th weak stably k -equivalent class WSEC_{w_i} in dimension n $(n=3,4)$ and $\widetilde{H}\leq G\times G'$ is a subdirect product of G and G' which acts on M_G and $M_{G'}$ through the surjections $\varphi_1 : \widetilde{H} \to G$ and $\varphi_2 : \widetilde{H} \rightarrow G'$ respectively (indeed, this function computes it for H up to conjugacy for the sake of saving time). l of the subdirect products $\widetilde{H}\leq G\times G'$ of G and G' $(\mathrm{GL}(n_1,\mathbb{Z})\times\mathrm{GL}(n_2,\mathbb{Z}))$ -conjugacy which satisfy $w_1=w_2$

IsomorphismFromSubdirectProduct

‣ IsomorphismFromSubdirectProduct(*H~*)

 $\sigma: G/N \to G'/N'$ which satisfies $\sigma(\varphi_1(h)N)=\varphi_2(h)N'$ for any $h\in\widetilde{H}$ where $N=\varphi_1(\mathrm{Ker}(\varphi_2))$ and $N' = \varphi_2 ({\rm Ker}(\varphi_1))$ for a subdirect product $\widetilde{H} \leq G \times G'$ of G and G' with surjections $\varphi_1 : \widetilde{H} \to G$ and $\varphi_2 : \widetilde{H} \to G'$.

AutGSubdirectProductsWSECInvariant

‣ AutGSubdirectProductsWSECInvariant(*G)*

returns subdirect products ${\widetilde{H}}_{m}=\{(g,g^{\sigma_{m}})\mid g\in G,g^{\sigma_{m}}\in G^{\sigma_{m}}\}$

 $(1 \leq m \leq s)$ of G and G^{σ_m} where $\{\sigma_1, \ldots, \sigma_s\}$ is a complete set of ϵ representatives of the double coset $X\backslash Z/X,$

$$
\operatorname{Inn}(G)\leq X\leq Y\leq Z\leq \operatorname{Aut}(G),
$$

 $X = \text{Aut}_{\text{GL}(n,\mathbb{Z})}(G) = \{ \sigma \in \text{Aut}(G) \mid G \text{ and } G^{\sigma} \text{ are conjugate in} \text{GL}(n,\mathbb{Z}) \}$ $Y = \{\sigma \in {\rm Aut}(G)\mid [M_G]^{fl} = [M_{G^\sigma}]^{fl} \text{ as } \widetilde{H}\text{-lattices where } \widetilde{H} = \{(g, g^\sigma) \mid g \in H\}$ $Z = \{\sigma \in {\rm Aut}(G) \mid [M_H]^{fl} \sim [M_{H^{\sigma}}]^{fl} \text{ for any } H \leq G\},$

 ${\rm Inn}(G)$ is the group of inner automorphisms on G , ${\rm Aut}(G)$ is the group of automorphisms on G , $N_{\mathrm{GL}(n,\mathbb{Z})}(G)$ is the normalizer of G in $\mathrm{GL}(n,\mathbb{Z})$ and $Z_{\mathrm{GL}(n,\mathbb{Z})}(G)$ is the centralizer of G in $\mathrm{GL}(n,\mathbb{Z}).$

AutGSubdirectProductsWSECInvariantGen

‣ AutGSubdirectProductsWSECInvariantGen(*G*)

returns the same as AutGSubdirectProductsWSECInvariant(G) but with $\{\sigma_1, \ldots, \sigma_t\}$ where $\sigma_1, \ldots, \sigma_t \in Z$ are some minimal number of $\mathsf{generators}$ of the double cosets of $X\backslash Z/X$, i.e. minimal number of elements $\sigma_1, \ldots, \sigma_t \in Z$ which satisfy $\langle \sigma_1, \ldots, \sigma_t, x \mid x \in X \rangle = Z$, instead of a $\mathop{\mathsf{complete}}$ set of representatives of the double coset $X\backslash Z/X$. If this returns [], then we get $X=Y=Z.$

AutGLnZ

‣ AutGLnZ(*G*)

returns

 $X = \text{Aut}_{\text{GL}(n,\mathbb{Z})}(G) = \{ \sigma \in \text{Aut}(G) \mid G \text{ and } G^{\sigma} \text{ are conjugate in } \text{GL}(n,\mathbb{Z}) \}$

N3WSECMembersTable

‣ N3WSECMembersTable[*r*][*i*]

returns an integer j which satisfies that $N_{3,j}$ is the i -th group in the weak stably k -equivalent class ${\rm WSEC}_r$.

N4WSECMembersTable

```
‣ N4WSECMembersTable[r][i]
```
is the same as N3WSECMembersTable[*r*][*i*] but using $N_{4,j}$ instead of $N_{3,j}.$

I4WSECMembersTable

```
‣ I4WSECMembersTable[r][i]
```
is the same as N3WSECMembersTable[*r*][*i*] but using $I_{4,j}$ instead of $N_{3,j}.$

AutGWSECINvariantSmallDegreeTest

‣ AutGWSECINvariantSmallDegreeTest(*G*)

returns the list $l = [l_1, \ldots, l_s]~(l_1 \leq \cdots \leq l_s)$ of integers with the minimal l_s, \ldots, l_1 which satisfies $Z = Z'$ where

$$
\begin{aligned} Z &= \{\sigma \in \mathrm{Aut}(G) \mid [M_H]^{fl} \sim [M_{H^\sigma}]^{fl} \text{ for any } H \leq G\}, \\ Z' &= \{\sigma \in \mathrm{Aut}(G) \mid [M_H]^{fl} \sim [M_{H^\sigma}]^{fl} \text{ for any } H \leq G \text{ with } [G:H] \in l\} \\ \text{for } G &\leq \mathrm{GL}(n, \mathbb{Z}) \text{ (}n=3, 4\text{).} \end{aligned}
$$

References

[HHY20] Sumito Hasegawa, Akinari Hoshi and Aiichi Yamasaki, Rationality problem for norm one tori in small dimensions, Math. Comp. **89** (2020) 923-940. [AMS](https://doi.org/10.1090/mcom/3469) Extended version: [arXiv:1811.02145.](https://arxiv.org/abs/1811.02145)

[HY17] Akinari Hoshi and Aiichi Yamasaki, Rationality problem for algebraic tori, Mem. Amer. Math. Soc. **248** (2017) no. 1176, v+215 pp. [AMS](https://doi.org/10.1090/memo/1176) Preprint version: [arXiv:1210.4525.](https://arxiv.org/abs/1210.4525)

[HY] Akinari Hoshi and Aiichi Yamasaki, Birational classification for algebraic tori, [arXiv:2112.02280.](https://arxiv.org/abs/2112.02280)

Copyright © 2021 Akinari Hoshi, Aiichi Yamasaki