- [Return to RatProbNorm1Tori](https://www.math.kyoto-u.ac.jp/~yamasaki/Algorithm/RatProbNorm1Tori/index.html)
- [Return to Norm1ToriHNP](https://www.math.kyoto-u.ac.jp/~yamasaki/Algorithm/Norm1ToriHNP/index.html)

[FlabbyResolutionFromBase.gap](https://www.math.kyoto-u.ac.jp/~yamasaki/Algorithm/Norm1ToriHNP/FlabbyResolutionFromBase.gap)

Definition of *MG*

Let G be a finite subgroup of $\operatorname{GL}(n,{\mathbb Z}).$ The G -lattice M_G of rank n is defined to be the G -lattice with a \mathbb{Z} -basis $\{u_1,\ldots,u_n\}$ on which G acts by $\sigma(u_i) = \sum_{j=1}^n a_{i,j} u_j$ for any $\sigma = [a_{i,j}] \in G.$

Hminus1

‣ Hminus1(*G*)

returns the Tate cohomology group ${\widehat{H}}^{-1}(G, M_{G})$ for a finite subgroup $G \leq \mathrm{GL}(n,\mathbb{Z}).$

H0

‣ H0(*G*)

returns the Tate cohomology group ${\widehat{H}}^0(G,M_G)$ for a finite subgroup $G \leq \mathrm{GL}(n,\mathbb{Z}).$

H1

 $·$ H₁(G)

returns the cohomology group $H^1(G,M_G)$ for a finite subgroup $G\leq \mathrm{GL}(n,\mathbb{Z}).$

Z0lattice

‣ Z0lattice(*G*)

returns a $\mathbb Z$ -basis of the group of Tate 0 -cocycles ${\widehat Z}^0(G,M_G)$ for a finite subgroup $G \leq \mathrm{GL}(n,{\mathbb Z}).$

ConjugacyClassesSubgroups2, ConjugacyClassesSubgroupsFromPerm

‣ ConjugacyClassesSubgroups2(*G*)

‣ ConjugacyClassesSubgroupsFromPerm(*G*)

returns the list of conjugacy classes of subgroups of a group G_{\cdot} We use this function because the ordering of the conjugacy classes of subgroups of G by the built-in function ConjugacyClassesSubgroups(*G*) is not fixed for some groups. If a group G is too big, ConjugacyClassesSubgroups2($\bm G$) may not work well.

IsFlabby

‣ IsFlabby(*G*)

returns whether G -lattice M_G is flabby or not.

IsCoflabby

‣ IsCoflabby(*G*)

returns whether G -lattice M_G is coflabby or not.

IsInvertible

‣ IsInvertible(*G*)

returns whether G -lattice M_G is invertible or not.

FlabbyResoluton

```
‣ FlabbyResolution(G)
```
returns a flabby resolution $0 \to M_G \to P \to F \to 0$ of M_G as follows: *ι ϕ* M_G

‣ FlabbyResolution(*G*).actionP

returns the matrix representation of the action of G on $P;$

‣ FlabbyResolution(*G*).actionF

returns the matrix representation of the action of G on $F;$

‣ FlabbyResolution(*G*).injection

returns the matrix which corresponds to the injection $\iota : M_G \rightarrow P;$

‣ FlabbyResolution(*G*).surjection

returns the matrix which corresponds to the surjection $\phi: P \rightarrow F.$

IsInvertibleF

```
‣ IsInvertibleF(G)
```

```
returns whether [M_G]^{fl} is invertible.
```
 $·$ flfl(G)

flfl

returns the G -lattice E with $[[M_G]^{fl}]^{fl} = [E].$

PossibilityOfStablyPermutationF

‣ PossibilityOfStablyPermutationF(*G*)

returns a basis $\mathcal{L} = \{l_1,\ldots,l_s\}$ of the solution space of the system of linear equations which is obtained by computing some \Z -class invariants. Each isomorphism class of irreducible permutation G -lattices corresponds to a conjugacy class of subgroup H of G by $H \leftrightarrow \mathbb{Z}[G/H]$. Let H_1,\ldots,H_r be conjugacy classes of subgroups of G whose ordering corresponds to the GAP $\,$ function ConjugacyClassesSubgroups2(*G*). Let F be the flabby class of $M_G.$ We assume that F is stably permutation, i.e. for $x_{r+1} = \pm 1$,

$$
\left(\bigoplus_{i=1}^r \mathbb{Z}[G/H_i]^{\oplus x_i}\right) \oplus F^{\oplus x_{r+1}} \ \simeq \ \bigoplus_{i=1}^r \mathbb{Z}[G/H_i]^{\oplus y_i}.
$$

Define $a_i = x_i - y_i$ and $b_1 = x_{r+1}.$ Then we have for $b_1 = \pm 1.$

$$
\bigoplus_{i=1}^r \mathbb{Z}[G/H_i]^{\oplus a_i} \ \simeq \ F^{\oplus (-b_1)}.
$$

 $[M_G]^{fl} = 0 \Longrightarrow$ there exist $a_1, \ldots, a_r \in \mathbb{Z}$ and $b_1 = \pm 1$ which satisfy the system of linear equations.

PossibilityOfStablyPermutationM

‣ PossibilityOfStablyPermutationM(*G*)

returns the same as PossibilityOfStablyPermutationF(*G*) but with respect to M_G instead of F_\cdot

Nlist

‣ Nlist(*l*)

returns the negative part of the list l_{\cdot}

Plist

‣ Plist(*l*)

returns the positive part of the list l .

StablyPermutationFCheck

returns the matrix P which satisfies $G_1P = PG_2$ where G_1 (resp. G_2) is the matrix representation group of the action of G on $(\oplus_{i=1}^r \mathbb{Z}[G/H_i]^{\oplus a_i})\oplus F^{\oplus b_1}$ (resp. $(\oplus_{i=1}^r \mathbb{Z}[G/H_i]^{\oplus a_i'}) \oplus F^{\oplus b_1'})$ with the isomorphism

$$
\left(\bigoplus_{i=1}^r \mathbb{Z}[G/H_i]^{\oplus a_i}\right) \oplus F^{\oplus b_1} \simeq \left(\bigoplus_{i=1}^r \mathbb{Z}[G/H_i]^{\oplus a_i'}\right) \oplus F^{\oplus b_1'}
$$

for lists $L_1 = [a_1, \ldots, a_r, b_1]$ and $L_2 = [a'_1, \ldots, a'_r, b'_1]$, if P exists. If such P does not exist, this returns false.

StablyPermutationMCheck

```
‣ StablyPermutationMCheck(G,L1,L2)
```
returns the same as StablyPermutationFCheck(*G*,*L1*,*L2*) but with respect to M_G instead of F_\cdot

StablyPermutationFCheckP

```
‣ StablyPermutationFCheckP(G,L1,L2)
```
returns a basis $\mathcal{P} = \{P_1, \ldots, P_m\}$ of the solution space of $G_1P = PG_2$ where G_1 (resp. G_2) is the matrix representation group of the action of G on $(\oplus_{i=1}^r \mathbb{Z}[\overline{G/H_i}]^{\oplus a_i}) \oplus F^{\oplus b_1}$ (resp. $(\oplus_{i=1}^r \mathbb{Z}[G/H_i]^{\oplus a_i'}) \oplus F^{\oplus b_1'}$) for lists $L_1 = [a_1, \ldots, a_r, b_1]$ and $L_2 = [a'_1, \ldots, a'_r, b'_1]$, if P exists. If such P does not exist, this returns [].

StablyPermutationMCheckP

‣ StablyPermutationMCheckP(*G*,*L1*,*L2*)

returns the same as StablyPermutationFCheckP(*G*,*L1*,*L2*) but with respect to M_G instead of F_\cdot

StablyPermutationFCheckMat

```
‣ StablyPermutationFCheckMat(G,L1,L2,P)
```
returns true if $G_1P = PG_2$ and det $P = \pm 1$ where G_1 (resp. G_2) is the matrix representation group of the action of G on $(\oplus_{i=1}^r \mathbb{Z}[G/H_i]^{\oplus a_i})\oplus F^{\oplus b_1}$ (resp. $(\oplus_{i=1}^r \mathbb{Z}[G/H_i]^{\oplus a_i'}) \oplus F^{\oplus b_1'})$ for lists $L_1 = [a_1, \ldots, a_r, b_1]$ and $L_2=[a'_1,\ldots,a'_r,b'_1].$ If not, this returns false.

StablyPermutationMCheckMat

```
‣ StablyPermutationMCheckMat(G,L1,L2,P)
```
returns the same as StablyPermutationFCheckMat(*G*,*L1*,*L2*,*P*) but with respect to M_G instead of F_\cdot

StablyPermutationFCheckGen

```
‣ StablyPermutationFCheckP(G,L1,L2)
```
returns the list $[\mathcal{M}_1,\mathcal{M}_2]$ where $\mathcal{M}_1 = [g_1,\ldots, g_t]$ (resp. $\mathcal{M}_2 = [g'_1, \ldots, g'_t])$ is a list of the generators of G_1 (resp. G_2) which is the matrix representation group of the action of G on $(\oplus_{i=1}^r \mathbb{Z}[G/H_i]^{\oplus a_i})\oplus F^{\oplus b_1}$ (resp. $(\oplus_{i=1}^r \mathbb{Z}[G/H_i]^{\oplus a_i'}) \oplus F^{\oplus b_1'})$ for lists $L_1 = [a_1, \ldots, a_r, b_1]$ and $L_2=[a'_1,\ldots,a'_r,b'_1].$

StablyPermutationMCheckGen

```
‣ StablyPermutationMCheckGen(G,L1,L2)
```
returns the same as StablyPermutationFCheckGen(*G*,*L1*,*L2*) but with respect to M_G instead of F_\cdot

DirectSumMatrixGroup

‣ DirectSumMatrixGroup(*l*)

returns the direct sum of the groups G_1, \ldots, G_n for the list $l = [G_1, \ldots, G_n].$

DirectProductMatrixGroup

‣ DirectProductMatrixGroup(*l*)

returns the direct product of the groups G_1,\ldots,G_n for the list $l = [G_1, \ldots, G_n].$

Norm1TorusJ

```
‣ Norm1TorusJ(d,m)
```
returns the Chevalley module $J_{G/H}$ for the m -th transitive subgroup $G = dTm \leq S_d$ of degree d where H is the stabilizer of one of the letters in . *G*

FlabbyResolutionLowRankFromGroup

```
‣ FlabbyResolutionLowRankFromGroup(M,G)
```
returns a suitable flabby resolution with low rank for G -lattice M by using

backtracking techniques. Repeating the algorithm, by defining $[M]^{f l^n} := [[M]^{f l^{n-1}}]^{f l}$ inductively, $[M]^{f l} = 0$ is provided if we may find some n with $[M]^{f l^n} = 0$ (this method is slightly improved to the flfl algorithm, see above).

Hcandidates

```
‣ Hcandidates(G)
```
 r etruns subgroups H of G which satisfy $\bigcap_{\sigma \in G} H^{\sigma} = \{1\}$ where $H^{\sigma} = \sigma^{-1} H \sigma$ (hence H contains no normal subgroup of G except for $\{1\}$).

Norm1TorusJTransitiveGroup

```
‣ Norm1TorusJTransitiveGroup(d,m)
```
returns the Chevalley module $J_{G/H}$ for the m -th transitive subgroup $G = {}_d T_m \leq S_d$ of degree d where H is the stabilizer of one of the letters in G . (The input and output of this function is the same as the function Norm1TorusJ(*d*,*m*) but this function is more efficient.)

Norm1TorusJCoset

```
‣ Norm1TorusJCoset(G,H)
```
retruns the Chevalley module $J_{G/H}$ for a group G and a subgroup $H\leq G.$

StablyPermutationMCheckPPari

```
‣ StablyPermutationMCheckPPari(G,L1,L2)
```
returns the same as StablyPermutationMCheckP(*G*,*L1*,*L2*) but using efficient PARI/GP functions (e.g. matker, matsnf) [PARI2]. (This function applies unionfind algorithm and it also requires PARI/GP [PARI2].)

StablyPermutationFCheckPPari

```
‣ StablyPermutationFCheckPPari(G,L1,L2)
```
returns the same as StablyPermutationFCheckP(*G*,*L1*,*L2*) but using efficient PARI/GP functions (e.g. matker, matsnf) [PARI2]. (This function applies unionfind algorithm and it also requires PARI/GP [PARI2].)

StablyPermutationFCheckPFromBasePari

```
‣ StablyPermutationFCheckPFromBasePari(G,mi,L1,L2)
```
returns the same as StablyPermutationFCheckPPari(*G*,*L1*,*L2*) but with respect to $m_i = \mathcal{P}^\circ$ instead of the original \mathcal{P}° as in Hoshi and Yamasaki [HY17, Equation (4) in Section 5.1]. (See [HY17, Section 5.7, Method III]. This function applies union-find algorithm and it also requires PARI/GP [PARI2].)

FlabbyResolutionNorm1TorusJ

```
‣ FlabbyResolutionNorm1TorusJ(d,m).actionF
```
returns the matrix representation of the action of G on a flabby class $F = [J_{G/H}]^{fl}$ for the m -th transitive subgroup $G = dTm \leq S_n$ of degree n where H is the stabilizer of one of the letters in G . (This function is similar to FlabbyResolution(Norm1TorusJ(*d*,*m*)).actionF but it may speed up and save memory resources.)

References

[HY17] Akinari Hoshi and Aiichi Yamasaki, Rationality problem for algebraic tori, Mem. Amer. Math. Soc. **248** (2017) no. 1176, v+215 pp. [AMS](https://doi.org/10.1090/memo/1176) Preprint version: [arXiv:1210.4525.](https://arxiv.org/abs/1210.4525)

[HHY20] Sumito Hasegawa, Akinari Hoshi and Aiichi Yamasaki, Rationality problem for norm one tori in small dimensions, Math. Comp. **89** (2020) 923-940. [AMS](https://doi.org/10.1090/mcom/3469) Extended version: [arXiv:1811.02145.](https://arxiv.org/abs/1811.02145)

[HY] Akinari Hoshi and Aiichi Yamasaki, Rationality problem for norm one tori for A_5 and $\mathrm{PSL}_2(\mathbb{F}_8)$ extensions, <u>arXiv:2309.16187</u>.

[PARI2] The PARI Group, PARI/GP version 2.13.3, Univ. Bordeaux, 2021, [http://pari.math.u-bordeaux.fr/.](http://pari.math.u-bordeaux.fr/)

Copyright © 2018 Akinari Hoshi, Aiichi Yamasaki