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§1 Introduction & Main theorems 1,2,3,4

▶ k : a global field, i.e. a number field or a finite extension of Fq(t).

Definition (Hasse norm principle)

Let k be a global field. K/k be a finite extension and A×
K be the idele

group of K. We say that the Hasse norm principle holds for K/k if

Obs(K/k) := (NK/k(A×
K) ∩ k×)/NK/k(K

×) = 1

where NK/k is the norm map.

Theorem (Hasse’s norm theorem 1931)

If K/k is a cyclic extension of a number field, then

Obs(K/k) = 1.

Example (Hasse [Has31]): Obs(Q(
√
−39,

√
−3)/Q) ' Z/2Z.

Obs(Q(
√
2,
√
−1)/Q) = 1.

In both cases, Galois group G ' V4 (Klein four-group).
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Tate’s theorem (1967)

For any Galois extension K/k, Tate gave:

Theorem (Tate 1967, in Alg. Num. Th. ed. by Cassels and Fröhlich)

Let K/k be a finite Galois extension with Galois group Gal(K/k) ' G.
Let Vk be the set of all places of k and Gv be the decomposition group of
G at v ∈ Vk. Then

Obs(K/k) ' Coker{
⊕
v∈Vk

Ĥ−3(Gv,Z)
cores−−−→ Ĥ−3(G,Z)}

where Ĥ is the Tate cohomology. In particular, In particular, the Hasse
norm principle holds for K/k if and only if the restriction map
H3(G,Z) res−−→

⊕
v∈Vk H

3(Gv,Z) is injective.

▶ If G ' Cn is cyclic, then H3(Cn,Z) ' H1(Cn,Z) = 0 and hence the
Hasse’s original theorem follows.

▶ If G ' V4, then Obs(K/k) = 0 ⇐⇒ ∃v ∈ Vk such that Gv = V4
(H3(V4,Z) = Z/2Z) (v: should be ramified).
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Known results for HNP (1/2)

The HNP for Galois extensions K/k was investigated by
Gerth [Ger77], [Ger78], Gurak [Gur78a], [Gur78b], [Gur80],
Morishita [Mor90], Horie [Hor93], Takeuchi [Tak94], Kagawa [Kag95], etc.

▶ (Gurak 1978; Endo-Miyata 1975 + Ono 1963)
If all the Sylow subgroups of Gal(K/k) is cyclic, then Obs(K/k) = 0.

However, for non-Galois extensions K/k, very little is known whether the
Hasse norm principle holds:

▶ (Bartels 1981) [K : k] = p; prime ⇒ HNP for K/k holds.

▶ (Bartels 1981) [K : k] = n and Galois closure Gal(L/k) ' Dn.

▶ (Voskresenskii-Kunyavskii 1984) [K : k] = n and Gal(L/k) ' Sn
⇒ HNP for K/k holds.

▶ (Macedo 2020) [K : k] = n and Gal(L/k) ' An
⇒ HNP for K/k holds if n ≥ 5; n = 6 using Hoshi-Yamasaki [HY17].
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Ono’s theorem (1963)

▶ T : algebraic k-torus, i.e. T ×k k ' (Gm,k)
n.

▶ X(T ) := Ker{H1(k, T )
res−−→

⊕
v∈Vk

H1(kv, T )} : Shafarevich-Tate gp.

▶ The norm one torus R
(1)
K/k(Gm) of K/k:

1 −→ R
(1)
K/k(Gm) −→ RK/k(Gm,K)

NK/k−→ Gm,k −→ 1

where RK/k is the Weil restriction.

▶ R
(1)
K/k(Gm) is biregularly isomorphic to the norm hyper surface

f(x1, . . . , xn) = 1 where f ∈ k[x1, . . . , xn] is the norm form of K/k.

Theorem (Ono 1963, Ann. of Math.)

Let K/k be a finite extension and T = R
(1)
K/k(Gm). Then

X(T ) ' Obs(K/k).
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Known results for HNP (2/2)

▶ T = R
(1)
K/k(Gm).

▶ X(T ) ' Obs(K/k).

Theorem (Kunyavskii 1984)

Let [K : k] = 4, G = Gal(L/k) ' 4Tm (1 ≤ m ≤ 5).
Then X(T ) = 0 except for 4T2 and 4T4. For 4T2 ' V4, 4T4 ' A4,
(i) X(T ) ≤ Z/2Z;
(ii) X(T ) = 0 ⇔ ∃v ∈ Vk such that V4 ≤ Gv.

Theorem (Drakokhrust-Platonov 1987)

Let [K : k] = 6, G = Gal(L/k) ' 6Tm (1 ≤ m ≤ 16).
Then X(T ) = 0 except for 6T4 and 6T12. For 6T4 ' A4, 6T12 ' A5,
(i) X(T ) ≤ Z/2Z;
(ii) X(T ) = 0 ⇔ ∃v ∈ Vk such that V4 ≤ Gv.
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Main theorems 1,2,3,4 (1/3)

▶ ∃ 2, 13, 73, 710, 6079 cases of alg. k-tori T of dim(T ) = 1, 2, 3, 4, 5.
▶ X: a smooth k-compactification of T , X = X ×k k.

Theorem 1 ([HKY22, Theorem 1.5 and Theorem 1.6])

(i) dim(T ) = 4. Among the 216 cases (of 710) of not retract rational T ,

H1(k,PicX) '


0 (194 of 216),

Z/2Z (20 of 216),

(Z/2Z)⊕2 (2 of 216).
(ii) dim(T ) = 5. Among 3003 cases (of 6079) of not retract rational T ,

H1(k,PicX) '


0 (2729 of 3003),

Z/2Z (263 of 3003),

(Z/2Z)⊕2 (11 of 3003).

▶ Kunyavskii (1984) showed that among the 15 cases (of 73) of not
retract ratinal T of dim(T ) = 3, H1(k,PicX) = 0 (13 of 15),
H1(k,PicX) ' Z/2Z (2 of 15).
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Main theorems 1,2,3,4 (2/3)

▶ k : a field, K/k : a separable field extension of [K : k] = n.

▶ T = R
(1)
K/k(Gm) with dim(T ) = n− 1.

▶ X : a smooth k-compactification of T .

▶ L/k : Galois closure of K/k, G := Gal(L/k) and H = Gal(L/K)
with [G : H] = n =⇒ G = nTm ≤ Sn: transitive.

▶ The number of transitive subgroups nTm of Sn (2 ≤ n ≤ 15) up to
conjugacy is given as follows:

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15

# of nTm 1 2 5 5 16 7 50 34 45 8 301 9 63 104

Theorem 2 ([HKY22, Theorem 1.5], [HKY23, Theorem 1.1])

Let 2 ≤ n ≤ 15 be an integer. Then H1(k,PicX) 6= 0 ⇐⇒ G = nTm is
given as in [HKY22, Table 1] (n 6= 12) or [HKY23,Table 1] (n = 12).
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[HKY22, Table 1]: H1(k,PicX) ' H1(G, [JG/H ]
fl) 6= 0

where G = nTm with 2 ≤ n ≤ 15 and n 6= 12

G H1(k,PicX) ≃ H1(G, [JG/H ]fl)

4T2 ≃ V4 Z/2Z
4T4 ≃ A4 Z/2Z
6T4 ≃ A4 Z/2Z
6T12 ≃ A5 Z/2Z
8T2 ≃ C4 × C2 Z/2Z
8T3 ≃ (C2)

3 (Z/2Z)⊕3

8T4 ≃ D4 Z/2Z
8T9 ≃ D4 × C2 Z/2Z
8T11 ≃ (C4 × C2)⋊ C2 Z/2Z
8T13 ≃ A4 × C2 Z/2Z
8T14 ≃ S4 Z/2Z
8T15 ≃ C8 ⋊ V4 Z/2Z
8T19 ≃ (C2)

3 ⋊ C4 Z/2Z
8T21 ≃ (C2)

3 ⋊ C4 Z/2Z
8T22 ≃ (C2)

3 ⋊ V4 Z/2Z
8T31 ≃ ((C2)

4 ⋊ C2)⋊ C2 Z/2Z
8T32 ≃ ((C2)

3 ⋊ V4)⋊ C3 Z/2Z
8T37 ≃ PSL3(F2) ≃ PSL2(F7) Z/2Z
8T38 ≃ (((C2)

4 ⋊ C2)⋊ C2)⋊ C3 Z/2Z
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[HKY22, Table 1]: H1(k,PicX) ' H1(G, [JG/H ]
fl) 6= 0

where G = nTm with 2 ≤ n ≤ 15 and n 6= 12

G H1(k,PicX) ≃ H1(G, [JG/H ]fl)

9T2 ≃ (C3)
2 Z/3Z

9T5 ≃ (C3)
2 ⋊ C2 Z/3Z

9T7 ≃ (C3)
2 ⋊ C3 Z/3Z

9T9 ≃ (C3)
2 ⋊ C4 Z/3Z

9T11 ≃ (C3)
2 ⋊ C6 Z/3Z

9T14 ≃ (C3)
2 ⋊Q8 Z/3Z

9T23 ≃ ((C3)
2 ⋊Q8)⋊ C3 Z/3Z

10T7 ≃ A5 Z/2Z
10T26 ≃ PSL2(F9) ≃ A6 Z/2Z
10T32 ≃ S6 Z/2Z
14T30 ≃ PSL2(F13) Z/2Z
15T9 ≃ (C5)

2 ⋊ C3 Z/5Z
15T14 ≃ (C5)

2 ⋊ S3 Z/5Z
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Main theorems 1,2,3,4 (3/3)

▶ k : a number field, K/k : a separable field extension of [K : k] = n.

▶ T = R
(1)
K/k(Gm), X : a smooth k-compactification of T .

Theorem 3 ([HKY22, Theorem 1.18], [HKY23, Theorem 1.3])

Let 2 ≤ n ≤ 15 be an integer. For the cases in [HKY22, Table 1] (n 6= 12)
or [HKY23,Table 1] (n = 12),

X(T ) = 0 ⇐⇒ G = nTm satisfies some conditions of Gv

where Gv is the decomposition group of G at v.

▶ By Ono’s theorem X(T ) ' Obs(K/k), Theorem 3 gives a necessary
and sufficient condition for HNP for K/k with [K : k] ≤ 15.

Theorem 4 ([HKY22, Theorem 1.17])

Assume that G =Mn ≤ Sn (n = 11, 12, 22, 23, 24) is the Mathieu group
of degree n. Then H1(k,PicX) = 0. In particular, X(T ) = 0.
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Examples of Theorem 3

Example (G = 8T4 ' D4, 8T13 ' A4 × C2, 8T14 ' S4,
8T37 ' PSL2(F7), 10T7 ' A5, 14T30 ' PSL2(F13) )

X(T ) = 0 ⇐⇒ ∃v ∈ Vk such that V4 ≤ Gv.

Example (G = 10T26 ' PSL2(F9) )

X(T ) = 0 ⇐⇒ ∃v ∈ Vk such that D4 ≤ Gv.

Example (G = 10T32 ' S6 ≤ S10)

X(T ) = 0 ⇐⇒ ∃v ∈ Vk such that
(i) V4 ≤ Gv where N

G̃
(V4) ' C8 ⋊ (C2 × C2) for the normalizer N

G̃
(V4)

of V4 in G̃ with the normalizer G̃ = NS10(G) ' Aut(G) of G in S10 or
(ii) D4 ≤ Gv where D4 ≤ [G,G] ' A6.

▶ 45/165 subgroups V4 ≤ G satisfy (i).
▶ 45/180 subgroups D4 ≤ G satisfy (ii).
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Definition of some rationalities

▶ L/k : f.g. field extension. L is k-rational
def⇐⇒ L ' k(x1, . . . , xn).

Definition (stably rational)

L is called stably k-rational if L(yi, . . . , ym) is k-rational.

Definition (retract rational)

Let k be an infinite field.
L is called retract k-rational if ∃k-algebra R ⊂ L such that
(i) L is the quotient field of R;
(ii) ∃f ∈ k[x1, . . . , xn], ∃k-algebra hom. ϕ : R→ k[x1, . . . , xn][1/f ] and
ψ : k[x1, . . . , xn][1/f ]→ R satisfying ψ ◦ ϕ = 1R.

Definition (unirational)

L is called k-unirational if L ⊂ k(t1, . . . , tn).

▶ “rational” ⇒ “stably rational” ⇒ “retract rational” ⇒ “unirational”.
▶ algebraic k-torus T is k-unirational.
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§2 Rationality problem for algebraic tori (1/3)

Problem (Rationality problem for algebraic tori)

Whether an algebraic torus T is k-rational?

▶ ∃2 algebraic tori with dim(T ) = 1; the trivial torus Gm and

R
(1)
K/k(Gm) with [K : k] = 2, which are k-rational.

▶ ∃13 algebraic tori with dim(T ) = 2;

Theorem (Voskresenskii 1967)

All the algebraic tori T with dim(T ) = 2 are k-rational.

▶ ∃73 algebraic tori with dim(T ) = 3;

Theorem (Kunyavskii 1990)

(i) ∃58 algebraic tori T with dim(T ) = 3 which are k-rational;
(ii) ∃15 algebraic tori T with dim(T ) = 3 which are not k-rational;
(iii) T is k-rational ⇔ T is stably k-rational ⇔ T is retract k-rational.
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▶ ∃710 algebraic tori with dim(T ) = 4;

Theorem (Hoshi-Yamasaki 2017)

(i) ∃487 algebraic tori T with dim(T ) = 4 which are stably k-rational;
(ii) ∃7 algebraic tori T with dim(T ) = 4 which are not stably k-rational
but retract k-rational;
(iii) ∃216 algebraic tori T with dim(T ) = 4 which are not retract
k-rational.

▶ ∃6079 algebraic tori with dim(T ) = 5;

Theorem (Hoshi-Yamasaki 2017)

(i) ∃3051 algebraic tori T with dim(T ) = 5 which are stably k-rational;
(ii) ∃25 algebraic tori T with dim(T ) = 5 which are not stably k-rational
but retract k-rational;
(iii) ∃3003 algebraic tori T with dim(T ) = 5 which are not retract
k-rational.

▶ We do not know “k-rationality”.
▶ Voskresenskii’s conjecture: any stably k-rational torus is k-rational

(Zariski problem). 16 / 39



Rationality problem for algebraic tori T (2/3)

▶ T : algebraic k-torus
=⇒ ∃ finite Galois extension L/k such that T ×k L ' (Gm,L)

n.

▶ G = Gal(L/k) where L is the minimal splitting field.

Category of algebraic k-tori which split/L
duality←→ Category of G-lattices

(i.e. finitely generated Z-free Z[G]-module)

▶ T 7→ the character group X(T ) = Hom(T,Gm): G-lattice.

▶ T = Spec(L[M ]G) which splits/L with X(T ) 'M 7→M : G-lattice.

▶ Tori of dimension n
1:1←→ elements of the set H1(G,GL(n,Z))

where G = Gal(k/k) since Aut(Gn
m) = GL(n,Z).

▶ k-torus T of dimension n is determined uniquely by the integral
representation h : G → GL(n,Z) up to conjugacy, and the group
h(G) is a finite subgroup of GL(n,Z).

▶ The function field of T
identified←→ L(M)G: invariant field.
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Rationality problem for algebraic tori T (3/3)

▶ L/k: Galois extension with G = Gal(L/k).

▶ M =
⊕

1≤j≤n Z · uj : G-lattice with a Z-basis {u1, . . . , un}.
▶ G acts on L(x1, . . . , xn) by

σ(xi) =

n∏
j=1

x
ai,j
j , 1 ≤ i ≤ n

for any σ ∈ G, when σ(ui) =
∑n

j=1 ai,juj , ai,j ∈ Z.
▶ L(M) := L(x1, . . . , xn) with this action of G.

▶ The function field of algebraic k-torus T
identified←→ L(M)G

Rationality problem for algebraic tori T (2nd form)

Whether L(M)G is k-rational?
(= purely transcendental over k?; L(M)G = k(∃t1, . . . , ∃tn)?)
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Flabby (Flasque) resolution (1/3)

▶ M : G-lattice, i.e. f.g. Z-free Z[G]-module.

Definition

(i) M is permutation
def⇐⇒ M ' ⊕1≤i≤mZ[G/Hi];

(ii) M is stably permutation
def⇐⇒ M ⊕ ∃P ' P ′

, P, P
′
: permutation;

(iii) M is invertible
def⇐⇒ M ⊕ ∃M ′ ' P : permutation;

(iv) M is coflabby
def⇐⇒ H1(H,M) = 0 (∀H ≤ G);

(v) M is flabby
def⇐⇒ Ĥ−1(H,F ) = 0 (∀H ≤ G).

▶ “permutation” ⇒ “stably permutationl” ⇒ “invertible”
⇒ “flabby and coflabby”.

Definition (Commutative monoid of G-lattices mod. permutation)

M1 ∼M2
def⇐⇒ M1 ⊕ P1 'M2 ⊕ P2 (∃P1, ∃P2 : permutation)

=⇒ commutative monoid L : [M1] + [M2] := [M1 ⊕M2], 0 = [P ].
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Flabby (Flasque) resolution (2/3)

Theorem (Endo-Miyata 1975, Colliot-Thélène and Sansuc 1977)

For any G-lattice M , there exists a short exact sequence of G-lattices

0→M → P → F → 0

where P is permutation and F is flabby.

▶ called a flabby resolution of the G-lattice M .

▶ [M ]fl := [F ]: flabby class of M (well-defined).

Theorem (Endo-Miyata 1973, Voskresenskii 1974, Saltman 1984)

(EM73) [M ]fl = 0⇐⇒ L(M)G is stably k-rational.
(Vos74) [M ]fl = [M

′
]fl ⇐⇒ L(M)G(x1, . . . , xm) ' L(M

′
)G(y1, . . . , yn).

(Sal84) [M ]fl is invertible ⇐⇒ L(M)G is retract k-rational.
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Flabby (Flasque) resolution (3/3)

Theorem (Voskresenskii 1969)

Let k be a field and G = Gal(k/k). Let T be an algebraic k-torus, X be a
smooth k-compactification of T and X = X ×k k. Then

0→ T̂ → Q̂→ PicX → 0

is an exact seq. of G-lattice where Q̂ is permutation and Pic X is flabby.

▶ [T̂ ]fl = [PicX]; flabby class of T̂ .

Theorem (Endo-Miyata 1973, Voskresenskii 1974, Saltman 1984)

(EM73) [PicX] = 0⇐⇒ T is stably k-rational.

(Vos74) [PicX] = [PicX ′ ]⇐⇒ T and T
′
are stably bir. k-equivalent.

(Sal84) [PicX] is invertible ⇐⇒ T is retract k-rational.
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Voskresenskii’s theorem (1969) (1/2)

Theorem (Voskresenskii 1969)

Let k be a global field, T be an algebraic k-torus and X be a smooth
k-compactification of T . Then there exists an exact sequence

0→ A(T )→ H1(k,PicX)∨ →X(T )→ 0

where M∨ = Hom(M,Q/Z) is the Pontryagin dual of M .

▶ The group A(T ) :=
(∏

v∈Vk T (kv)
)/

T (k) is called the kernel of the

weak approximation of T .

▶ T : retract rational ⇐⇒ [T̂ ]fl = [PicX] is invertible
=⇒ PicX is flabby and coflabby
=⇒ H1(k,PicX)∨ = 0 =⇒ A(T ) = X(T ) = 0.

▶ when T = R
(1)
K/k(Gm), by Ono’s theorem X(T ) ' Obs(K/k),

T : retract k-rational =⇒ Obs(K/k) = 0 (HNP for K/k holds).
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Voskresenskii’s theorem (1969) (2/2)

▶ when T = R
(1)
K/k(Gm), by Ono’s theorem X(T ) ' Obs(K/k),

T : retract k-rational =⇒ Obs(K/k) = 0 (HNP for K/k holds).

▶ when T = R
(1)
K/k(Gm), T̂ = JG/H where

JG/H = (IG/H)
◦ = Hom(IG/H ,Z) is the dual lattice of

IG/H = Ker(ε) and ε : Z[G/H]→ Z is the augmentation map.

▶ (Hoshi-Yamasaki, 2018, Hasegawa-Hoshi-Yamasaki, 2020)
For [K : k] = n ≤ 15 except 9T27 ' PSL2(F8), the classificasion of

stably/retract rational R
(1)
K/k(Gm) was given.

▶ when T = R
(1)
K/k(Gm), T : retract k-rational =⇒ H1(k,PicX) = 0

(use this to get Theorem 2).

▶ H1(k,PicX) ' Br(X)/Br(k) ' Brnr(k(X)/k)/Br(k)
where Br(X) is the étale cohomological/Azumaya Brauer group of X
by Colliot-Thélène-Sansuc 1987.
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§3 Proof of Theorem 3

▶ We use Drakokhrust-Platonov’s method :

Definition (first obstruction to the HNP)

Let L ⊃ K ⊃ k be a tower of finite extensions where L is normal over k.
We call the group

Obs1(L/K/k) =
(
NK/k(A×

K) ∩ k×
)
/
(
(NL/k(A×

L ) ∩ k
×)NK/k(K

×)
)

the first obstruction to the HNP for K/k corresponding to the tower
L ⊃ K ⊃ k.

▶ Obs1(L/K/k) = Obs(K/k) / (NL/k(A×
L ) ∩ k×).

▶ Obs1(L/K/k) is easier than Obs(K/k).

▶ We use GAP. The related algorithms/functions we made
are available from https://doi.org/10.57723/289563

(KURENAI: repository of Kyoto University).
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Drakokhrust-Platonov’s method (1/3)

Theorem (Drakokhrust-Platonov 1987)

Let L ⊃ K ⊃ k be a tower of finite extensions where L is Galois over k.
Let G = Gal(L/k) and H = Gal(L/K). Then

Obs1(L/K/k) ' Kerψ1 /ϕ1(Kerψ2)

where

H/[H,H]
ψ1:H↪→G−−−−−−→ G/[G,G]xϕ1:Hw↪→H

xϕ2:Gv ↪→G

⊕
v∈Vk

⊕
w|v

Hw/[Hw,Hw]

 ψ2−−−−→
⊕
v∈Vk

Gv/[Gv, Gv]

and ψ2 is defined by

ψ2(h[Hw,Hw]) = x−1
i hxi[Gv, Gv]

for h ∈ Hw = H ∩ xGvx−1 (x ∈ G).
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Drakokhrust-Platonov’s method (2/3)

▶ ψv2 : the restriction of the map ψ2 to
⊕

w|vHw/[Hw,Hw].

▶ Obs1(L/K/k) = Kerψ1/ϕ1(Kerψnr
2 )ϕ1(Kerψr2).

Proposition (Drakokhrust-Platonov 1987)

(i) Gv1 ≤ Gv2 =⇒ ϕ1(Kerψv12 ) ⊂ ϕ1(Kerψv22 );
(ii) ϕ1(Kerψnr

2 ) = 〈[h, x] | h ∈ H ∩ xHx−1, x ∈ G〉/[H,H];
(iii) Let Hi ≤ Gi ≤ G (1 ≤ i ≤ m), Hi ≤ H ∩Gi, ki = LGi and
Ki = LHi . If Obs(Ki/ki) = 1 for any 1 ≤ i ≤ m and

m⊕
i=1

Ĥ−3(Gi,Z)
cores−−−→ Ĥ−3(G,Z)

is surjective, then Obs(K/k) = Obs1(L/K/k). In particular,

[K : k] = n is square-free =⇒ Obs(K/k) = Obs1(L/K/k).
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Drakokhrust-Platonov’s method (3/3)

Theorem (Drakokhrust 1989; Opolka 1980)

Let L̃ ⊃ L ⊃ k be a tower of Galois extensions with G̃ = Gal(L̃/k) and
H̃ = Gal(L̃/K) which correspond to a central extension

1→ A→ G̃→ G→ 1 with A ∩ [G̃, G̃] 'M(G) = H2(G,C×);

the Schur multiplier of G. Then

Obs(K/k) = Obs1(L̃/K/k).

In particular, if G̃ is a Schur cover of G, i.e. A 'M(G), then
Obs(K/k) = Obs1(L̃/K/k).

▶ This theorem is useful, but G̃ may become large!

▶ We use GAP. The related algorithms/functions we made
are available from https://doi.org/10.57723/289563

(KURENAI: repository of Kyoto University).
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Example : G = 12T261 ' (S3)
4 ⋊ V4 ' S3 o V4 (1/2)

Example (G = 12T261 ' (S3)
4 ⋊ V4 ' S3 o V4)

X(T ) = 0 ⇐⇒ there exists a place v of k such that
(i) V4 ≤ Gv where V4 ∩D(G) = 1 for the unique characteristic subgroup
D(G) ' (C3)

4 ⋊ (C2)
3 �G ,

(ii) C4 × C2 ≤ Gv where (C4 × C2) ∩D(G1) ' C2 with
D(G) ' (C3)

4 ⋊ (C2)
3 �G ,

(iii) D4 ≤ Gv where D4 ∩ (S3)
4 ' C2 with (S3)

4 �G ,
(iv) Q8 ≤ Gv, or
(v) (C2)

3 ⋊ C3 ≤ Gv.

▶ H1(k,PicX) ' Z/2Z.
▶ |G| = 64 × 4 = 5184.

▶ H3(G,Z) 'M(G) ' (Z/2Z)⊕4 : Schur multiplier of G.

G̃← too large ! |G̃| = 64 × 4× 24 = 82944.
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Example : G = 12T261 ' (S3)
4 ⋊ V4 ' S3 o V4 (2/2)

We can take a minimal stem ext. G = G̃/A′ (i.e. A ≤ Z(G) ∩ [G,G]) of
G in the commutative diagram

1 −−−−→ A =M(G) −−−−→ G̃
π−−−−→ G −−−−→ 1y y ∥∥∥

1 −−−−→ A = A/A′ −−−−→ G = G̃/A′ π−−−−→ G −−−−→ 1

with A ' Z/2Z. There exists 15 minimal stem extensions. Then we can
find exactly one (1/15) minimal stem extension which satisfies that

⊕m
′

i=1Ĥ
−3(Gi,Z)

cores−−−→ Ĥ−3(G,Z)

is surjective. By Drakorust-Platonov’s Proposition (iii), we have

Obs(K/k) = Obs1(Lj/K/k).

▶ Kerψ1 = (Z/2Z)⊕4.
▶ ϕnr

1 (Kerψnr
2 ) = (Z/2Z)⊕3.

▶ ϕr
1(Kerψr

2) = Z/2Z (819/891 cases) or 0 (72/891 cases).
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Sketch of the proof of Theorem 3 (1/2)

Step 1

• For G = Gal(L/k) = nTm ≤ Sn and H = Gal(L/K) ≤ G with

[G : H] = n, determine T = R
(1)
K/k(Gm) satisfying H

1(k,PicX) 6= 0.

(Make Table 1)

▶ We shoud treat n = (4, 6), 8, 9, 10, 12, 14, 15 because
H1(k,PicX) = 0 when n = p: prime.

Step 2

• For the cases in Table1, determine X(T ) ' Obs(K/k).
(2-1)
(a) n = pq (p 6= q : primes) −→ Obs(K/k) ' Obs1(L/K/k).
(b) otherwise −→ Find a Schur cover G̃.

Then we get L̃/k s.t. Obs(K/k) ' Obs1(L̃/K/k).

(2-2) Calculation Obs1(L/K/k) for suitable L ⊂ L̃.
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Sketch of the proof of Theorem 3 (2/2)

(2-2) Calculation Obs1(L/K/k).
By Drakokhrust-Platonov’s Thmeorem,

Obs1(L/K/k) ' Kerψ1/ϕ1(Kerψnr
2 )ϕ1(Kerψr

2),

H/[H,H]
ψ1−−−−−→ G/[G,G]xφ1

xφ2

⊕
v∈Vk

⊕
w|v

Hw/[Hw, Hw]

 ψ2−−−−−→
⊕
v∈Vk

Gv/[Gv, Gv].

We compute the following:
(i) Kerψ1;
(ii) ϕ1(Kerψnr

2 ) = 〈[h, x] | h ∈ H ∩ xHx−1, x ∈ G〉/[H,H];
(by Drakokhrust-Platonov’s Proposition (ii))

(iii) ϕ1(Kerψr
2) (in terms of Gv).
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§4 Application 1: R-equivalence in algebraic k-tori (1/2)

Definition (R-equivalence, Manin 1974, in Cubic Forms)

▶ f : Z → X : rational map of k-varieties covers a point x ∈ X(k).
def⇐⇒ there exists a point z ∈ Z(k) such that f is defined at z and
f(z) = x.

▶ x, y ∈ X(k) are R-equivalent.
def⇐⇒ there exist a fin. seq. of points x = x1, . . . , xr = y and rational
maps fi : P1 → X (1 ≤ i ≤ r − 1) such that fi covers xi, xi+1.

Theorem (Colliot-Thélène and Sansuc 1977)

Let k be a field, T be an algebraic k-torus and 1→ S → Q→ T → 1 be a

flabby resolution of T . Then T (k) = H0(k, T )
δ−→ H1(k, S) induces

T (k)/R ' H1(k, S).
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Application 1: R-equivalence in algebraic k-tori (2/2)

▶ Let k be a local field. Using Tate-Nakayama duality, we have

T (k)/R ' H1(k, S) ' H1(k, Ŝ) ' H1(k,PicX)

for norm one tori T = R
(1)
K/k(Gm) where [K : k] = n ≤ 15.

Theorem ([HKY22], [HKY23])

Let 2 ≤ n ≤ 15 be an integer. Let k be a local field, K/k be a separable

field extension of degree n, and T = R
(1)
K/k(Gm) be the norm one torus of

K/k. Then, T (k)/R ' H1(k,PicX) 6= 0 ⇐⇒ G is given as in [HKY22,
Table 1] of [HKY23, Table 1].
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Application 2: Tamagawa number of k-tori (1/2)

Theorem (Ono 1963)

Let k be a global field, T be an algebraic k-torus and τ(T ) be the
Tamagawa number of T . Then

τ(T ) =
|H1(k, T̂ )|
|X(T )|

.

In particular, if T is retract k-rational, then τ(T ) = |H1(k, T̂ )|.

▶ Let k be a number field, K/k be a field extension of degree n,

T = R
(1)
K/k(Gm) be the norm one torus of K/k. By Ono’s formula, we

can calculate Tamagawa number of T explicitly.

▶ Example. G = 15T9 ⇒ τ(T ) =
3

5
or 3 because X(T ) ≤ Z/5Z.
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Application 2: Tamagawa number of k-tori (2/2)

▶ τ(T ) = |H1(k, T̂ )|/|X(T )|.

Theorem ([HKY22, Theorem 8.2])

Let k be a global field and T be an algebraic k-torus of dimension 4 (resp.
5). Among 710 (reps. 6079) cases of algebraic k-tori T , if T is one of the
688 (resp. 5805) cases with H1(k,PicX) = 0, then τ(T ) = |H1(k, T̂ )|.

Theorem ([HKY22, Theorem 8.3], [HKY23, Remark 1.4])

Let 2 ≤ n ≤ 15 be an integer. Let k be a number field, K/k be a field
extension of degree n, L/k be the Galois closure of K/k, and

T = R
(1)
K/k(Gm) be the norm one torus of K/k. Then τ(T ) = |H1(k, T̂ )|

except for the cases in [HKY22, Table 1] and [HKY23, Table 1]. For the
exceptional cases, we have τ(T ) = |H1(G, JG/H)|/|X(T )|.
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Sporadic simple group cases: M11 and J1 (1/3)

▶ k : a numberl field.

▶ K/k : a separable field extension of [K : k] = n (not fixed).

▶ L/k : Galois closure of K/k with G = Gal(L/k) and
H = Gal(L/K) ⪇ G with [G : H] = n.

▶ T = R
(1)
K/k(Gm) with dim(T ) = n− 1.

▶ X : a smooth k-compactification of T .

▶ G 'M11 with |G| = 7920 = 24 · 32 · 5 · 11 or
G ' J1 with |G| = 175560 = 23 · 3 · 5 · 7 · 11 · 19
⇒M(G) ' H3(G,Z) = 0 : Schur multiplier of G.

Theorem ([HKY2, Theorem 1.6]) G 'M11

Asume that G 'M11 and H = Gal(L/K) ⪇ G.

H1(k,PicX) =

{
0 if Syl2(H) 6' C2, C4, C8,

Z/2Z if Syl2(H) ' C2, C4, C8.
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Sporadic simple group cases: M11 and J1 (2/3)

Theorem ([HKY2, Theorem 1.8]) G 'M11

Asume that G 'M11 and H = Gal(L/K) ⪇ G.
(1) If Syl2(H) 6' C2, C4, C8, then A(T ) 'X(T ) ' H1(k,PicX) = 0.
(2) If Syl2(H) ' C2, C4, C8, then either
(a) A(T ) = 0 and X(T ) ' H1(k,PicX) ' Z/2Z or
(b) A(T ) ' H1(k,PicX) ' Z/2Z and X(T ) = 0,
and the condition (b) is equivalent to:
(c) there exists a place v of k such that

V4 ≤ Gv or Q8 ≤ Gv if Syl2(H) ' C2,

D4 ≤ Gv or Q8 ≤ Gv if Syl2(H) ' C4,

QD8 ≤ Gv if Syl2(H) ' C8

where Gv is the decomposition group of G at a place v of k.

▶ 0→ A(T )→ H1(k,PicX)∨ →X(T )→ 0 (Voskresenskii 1969).
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Sporadic simple group cases: M11 and J1 (3/3)

Theorem ([HKY2, Theorem 1.7]) G ' J1

Asume that G ' J1 and H = Gal(L/K) ⪇ G.

H1(k,PicX) =

{
0 if Syl2(H) 6' C2,

Z/2Z if Syl2(H) ' C2.

Theorem ([HKY2, Theorem 1.9]) G ' J1

Asume that G ' J1 and H = Gal(L/K) ⪇ G.
(1) If Syl2(H) 6' C2, then A(T ) 'X(T ) ' H1(k,PicX) = 0.
(2) If Syl2(H) ' C2, then either
(a) A(T ) = 0 and X(T ) ' H1(k,PicX) ' Z/2Z or
(b) A(T ) ' H1(k,PicX) ' Z/2Z and X(T ) = 0,
and the condition (b) is equivalent to:
(c) there exists a place v of k such that V4 ≤ Gv where Gv is the
decomposition group of G at a place v of k.
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Proof: Macedo and Newton [MN22, Corollary 3.4]

▶ L/K/k: a tower of finite extensions with L/k Galois.
▶ G = Gal(L/k) and H = Gal(L/K) ≤ G.
▶ Hp = Sylp(H) and Kp = LHp .
▶ X and Xp: smooth compactifications of

T = R
(1)
K/k(Gm) and Tp = R

(1)
Kp/k

(Gm) respectively.

Theorem (Macedo and Newton [MN22, Corollary 3.4])

We obtain a commutative diagram with exact rows as follows:

0 // A(T )(p) //

≃
��

H1(k,PicX)∨(p)
//

≃
��

X(T )(p)

≃
��

// 0

0 // A(Tp)(p) // H1(k,PicXp)
∨
(p)

// X(Tp)(p) // 0

where (p) stands for the p-primary part and the vertical isomorphisms are
induced by the natural inclusion T ↪→ Tp.
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