Norm one tori and Hasse norm principle

Akinari Hoshi (joint work with Kazuki Kanai and Aiichi Yamasaki)

Niigata University, Japan

November 5, 2024

Table of contents

- 1 Introduction & Main theorems 1,2,3,4
- 2 Rationality problem for algebraic tori
- 3 Proof of Theorem 3
- 4 Applications: *R*-equivalence & Tamagawa number

A. Hoshi, K. Kanai, A. Yamasaki,

[HKY22] Norm one tori and Hasse norm principle, Math. Comp. (2022). [HKY23] Norm one tori and Hasse norm principle, II: Degree 12 case, JNT (2023). [HKY1] Norm one tori and Hasse norm principle, III: Degree 16 case, arXiv:2404.01362.

[HKY2] Hasse norm principle for *M*¹¹ and *J*¹ extensions, arXiv:2210.09119.

We use GAP. The related algorithms/functions are available from

https://doi.org/10.57723/289563 (KURENAI: repository of Kyoto University),

http://mathweb.sc.niigata-u.ac.jp/~hoshi/Algorithm/Norm1ToriHNP/ ,

https://www.math.kyoto-u.ac.jp/~yamasaki/Algorithm/Norm1ToriHNP/ .

*§*1 Introduction & Main theorems 1,2,3,4

 \blacktriangleright *k* : a global field, i.e. a number field or a finite extension of $\mathbb{F}_q(t)$.

Definition (Hasse norm principle)

Let k be a global field. K/k be a finite extension and \mathbb{A}_K^\times be the idele group of *K*. We say that the Hasse norm principle holds for *K/k* if

$$
\mathrm{Obs}(K/k) := (N_{K/k}(\mathbb{A}_K^{\times}) \cap k^{\times})/N_{K/k}(K^{\times}) = 1
$$

where $N_{K/k}$ is the norm map.

Theorem (Hasse's norm theorem 1931)

If *K/k* is a cyclic extension of a number field, then

 $Obs(K/k) = 1.$

Example (Hasse [Has31]): Obs(Q(*√ −*39*, √ √*^{−39}, *√*^{−3})/Q) ≃ Z/2Z. $Obs(\mathbb{Q}(\sqrt{2},$ *√ −*1)*/*Q) = 1.

In both cases, Galois group $G \simeq V_4$ (Klein four-group).

Tate's theorem (1967)

For any Galois extension *K/k*, Tate gave:

Theorem (Tate 1967, *in Alg. Num. Th. ed. by Cassels and Fröhlich*)

Let K/k be a finite Galois extension with Galois group $Gal(K/k) \simeq G$. Let V_k be the set of all places of k and G_v be the decomposition group of *G* at v ∈ V_k . Then

$$
\mathrm{Obs}(K/k) \simeq \mathrm{Coker}\{\bigoplus_{v \in V_k} \widehat{H}^{-3}(G_v, \mathbb{Z}) \xrightarrow{\mathrm{cores}} \widehat{H}^{-3}(G, \mathbb{Z})\}
$$

where H is the Tate cohomology. In particular, In particular, the Hasse norm principle holds for *K/k* if and only if the restriction map $H^3(G,\mathbb{Z}) \stackrel{\text{res}}{\longrightarrow} \bigoplus_{v \in V_k} H^3(G_v,\mathbb{Z})$ is injective.

- \blacktriangleright If $G \simeq C_n$ is cyclic, then $H^3(C_n, \mathbb{Z}) \simeq H^1(C_n, \mathbb{Z}) = 0$ and hence the Hasse's original theorem follows.
- ▶ If $G \simeq V_4$, then $\text{Obs}(K/k) = 0 \Longleftrightarrow \exists v \in V_k$ such that $G_v = V_4$ $(H^3(V_4, \mathbb{Z}) = \mathbb{Z}/2\mathbb{Z})$ (*v*: should be ramified).

Known results for $HNP(1/2)$

The HNP for Galois extensions *K/k* was investigated by Gerth [Ger77], [Ger78], Gurak [Gur78a], [Gur78b], [Gur80], Morishita [Mor90], Horie [Hor93], Takeuchi [Tak94], Kagawa [Kag95], etc.

 \blacktriangleright (Gurak 1978; Endo-Miyata 1975 + Ono 1963) If all the Sylow subgroups of $Gal(K/k)$ is cyclic, then $Obs(K/k) = 0$.

However, for non-Galois extensions *K/k*, very little is known whether the Hasse norm principle holds:

- ▶ (Bartels 1981) $[K : k] = p$; prime \Rightarrow HNP for K/k holds.
- \blacktriangleright (Bartels 1981) $[K : k] = n$ and Galois closure $Gal(L/k) \simeq D_n$.
- \blacktriangleright (Voskresenskii-Kunyavskii 1984) $[K : k] = n$ and $Gal(L/k) \simeq S_n$ \Rightarrow HNP for K/k holds.
- \blacktriangleright (Macedo 2020) $[K : k] = n$ and $Gal(L/k) \simeq A_n$ \Rightarrow HNP for *K/k* holds if *n* ≥ 5; *n* = 6 using Hoshi-Yamasaki [HY17].

Ono's theorem (1963)

$$
\blacktriangleright \; T : \; \text{algebraic} \; \text{k-torus, i.e.} \; T \times_k \overline{k} \simeq (\mathbb{G}_{m, \overline{k}})^n.
$$

$$
\blacktriangleright \ \amalg(T) := \operatorname{Ker}\{H^1(k,T) \xrightarrow{\operatorname{res}} \bigoplus_{v \in V_k} H^1(k_v,T)\} : \text{Shafarevich-Tate gp.}
$$

 \blacktriangleright The norm one torus $R^{(1)}_{K/k}(\mathbb{G}_m)$ of $K/k\mathbb{R}^2$

$$
1 \longrightarrow R_{K/k}^{(1)}(\mathbb{G}_m) \longrightarrow R_{K/k}(\mathbb{G}_{m,K}) \stackrel{\mathrm{N}_{K/k}}{\longrightarrow} \mathbb{G}_{m,k} \longrightarrow 1
$$

where $R_{K/k}$ is the Weil restriction.

 \blacktriangleright $R^{(1)}_{K/k}(\mathbb{G}_m)$ is biregularly isomorphic to the norm hyper surface $f(x_1, \ldots, x_n) = 1$ where $f \in k[x_1, \ldots, x_n]$ is the norm form of K/k .

Theorem (Ono 1963, Ann. of Math.)

Let K/k be a finite extension and $T=R_{K/k}^{(1)}(\mathbb{G}_m).$ Then $\text{III}(T) \simeq \text{Obs}(K/k)$.

Known results for HNP (2/2)

$$
\triangleright T = R_{K/k}^{(1)}(\mathbb{G}_m).
$$

\n
$$
\triangleright \text{III}(T) \simeq \text{Obs}(K/k).
$$

Theorem (Kunyavskii 1984)

Let $[K : k] = 4$, $G = \text{Gal}(L/k) \simeq 4Tm$ $(1 \leq m \leq 5)$. Then $III(T) = 0$ except for $4T2$ and $4T4$. For $4T2 \simeq V_4$, $4T4 \simeq A_4$, (i) $\text{III}(T) \leq \mathbb{Z}/2\mathbb{Z}$; (ii) $\text{III}(T) = 0 \Leftrightarrow \exists v \in V_k$ such that $V_4 \leq G_v$.

Theorem (Drakokhrust-Platonov 1987)

Let $[K : k] = 6$, $G = \text{Gal}(L/k) \simeq 6Tm \ (1 \leq m \leq 16)$. Then $III(T) = 0$ except for 6*T*4 and 6*T*12. For 6*T*4 $\simeq A_4$, 6*T*12 $\simeq A_5$, (i) $\text{III}(T) \leq \mathbb{Z}/2\mathbb{Z}$; (ii) $\text{III}(T) = 0 \Leftrightarrow \exists v \in V_k$ such that $V_4 \leq G_v$.

Main theorems $1,2,3,4$ $(1/3)$

▶ \exists 2*,* 13*, 73, 710, 6079* cases of alg. *k*-tori *T* of $\dim(T) = 1, 2, 3, 4, 5$. ▶ *X*: a smooth *k*-compactification of *T*, $\overline{X} = X \times_k \overline{k}$.

Theorem 1 ([HKY22, Theorem 1.5 and Theorem 1.6])
\n(i) dim(T) = 4. Among the 216 cases (of 710) of not retract rational T,
\n
$$
H^1(k, Pic\overline{X}) \simeq \begin{cases} 0 & (194 \text{ of } 216), \\ \mathbb{Z}/2\mathbb{Z} & (20 \text{ of } 216), \\ (\mathbb{Z}/2\mathbb{Z})^{\oplus 2} & (2 \text{ of } 216). \end{cases}
$$
\n(ii) dim(T) = 5. Among 3003 cases (of 6079) of not retract rational T,
\n
$$
H^1(k, Pic\overline{X}) \simeq \begin{cases} 0 & (2729 \text{ of } 3003), \\ \mathbb{Z}/2\mathbb{Z} & (263 \text{ of } 3003), \\ (\mathbb{Z}/2\mathbb{Z})^{\oplus 2} & (11 \text{ of } 3003). \end{cases}
$$

 \blacktriangleright Kunyavskii (1984) showed that among the 15 cases (of 73) of not retract ratinal T of $\dim(T) = 3$, $H^1(k, \mathrm{Pic}\,\overline{X}) = 0$ $(13$ of $15)$, $H^1(k, \text{Pic }\overline{X}) \simeq \mathbb{Z}/2\mathbb{Z}$ (2 of 15).

Main theorems 1,2,3,4 (2/3)

 \blacktriangleright *k* : a field, K/k : a separable field extension of $[K : k] = n$.

$$
\blacktriangleright T = R_{K/k}^{(1)}(\mathbb{G}_m) \text{ with } \dim(T) = n - 1.
$$

- ▶ *X* : a smooth *k*-compactification of *T*.
- \blacktriangleright L/k : Galois closure of K/k , $G := \text{Gal}(L/k)$ and $H = \text{Gal}(L/K)$ with $[G : H] = n \Longrightarrow G = nTm \leq S_n$: transitive.
- ▶ The number of transitive subgroups nTm of S_n ($2 \le n \le 15$) up to conjugacy is given as follows:

Theorem 2 ([HKY22, Theorem 1.5], [HKY23, Theorem 1.1])

Let $2\leq n\leq 15$ be an integer. Then $H^1(k,\mathrm{Pic}\,\overline{X})\neq 0 \Longleftrightarrow G=nTm$ is given as in [HKY22, Table 1] $(n \neq 12)$ or [HKY23,Table 1] $(n = 12)$.

Main theorems $1,2,3,4$ $(3/3)$

 \blacktriangleright *k* : a number field, K/k : a separable field extension of $[K : k] = n$. \blacktriangleright $T = R_{K/k}^{(1)}(\mathbb{G}_m)$, X : a smooth k -compactification of $T.$

Theorem 3 ([HKY22, Theorem 1.18], [HKY23, Theorem 1.3])

Let $2 \le n \le 15$ be an integer. For the cases in [HKY22, Table 1] $(n \ne 12)$ or [HKY23,Table 1] (*n* = 12),

 $\text{III}(T) = 0 \Longleftrightarrow G = nTm$ satisfies some conditions of G_v

where G_v is the decomposition group of G at v .

▶ By Ono's theorem $III(T) \simeq Obs(K/k)$, Theorem 3 gives a necessary and sufficient condition for HNP for K/k with $[K : k] \leq 15$.

Theorem 4 ([HKY22, Theorem 1.17])

Assume that $G = M_n \leq S_n$ $(n = 11, 12, 22, 23, 24)$ is the Mathieu group of degree *n*. Then $H^1(k, \mathrm{Pic}\,\overline{X}) = 0$. In particular, $\mathrm{III}(T) = 0$.

Examples of Theorem 3

Example $(G = 8T4 \simeq D_4, 8T13 \simeq A_4 \times C_2, 8T14 \simeq S_4$ $8T37 \simeq \text{PSL}_2(\mathbb{F}_7)$, $10T7 \simeq A_5$, $14T30 \simeq \text{PSL}_2(\mathbb{F}_{13})$

 $\text{III}(T) = 0 \Longleftrightarrow \exists v \in V_k$ such that $V_4 \leq G_v$.

Example $(G = 10T26 \simeq \text{PSL}_2(\mathbb{F}_9)$)

 $\text{III}(T) = 0 \Longleftrightarrow \exists v \in V_k$ such that $D_4 \leq G_v$.

$\textsf{Example (}G = 10T32 \simeq S_6 \leq S_{10}$

 $\text{III}(T) = 0 \Longleftrightarrow \exists v \in V_k$ such that (i) $V_4 \leq G_v$ where $N_{\widetilde{G}}(V_4) \simeq C_8 \rtimes (C_2 \times C_2)$ for the normalizer $N_{\widetilde{G}}(V_4)$ of V_4 in \tilde{G} with the normalizer $G = N_{S_{10}}(G) \simeq \text{Aut}(G)$ of G in S_{10} or (ii) $D_4 \leq G_v$ where $D_4 \leq [G, G] \simeq A_6$.

▶ 45/165 subgroups $V_4 \le G$ satisfy (i). ▶ 45/180 subgroups D_4 < G satisfy (ii).

Definition of some rationalities

▶ *L*/ k : f.g. field extension. *L* is k -rational $\stackrel{\text{def}}{\iff} L \simeq k(x_1, \ldots, x_n)$.

Definition (stably rational)

 L is called stably k -rational if $L(y_i,\ldots,y_m)$ is k -rational.

Definition (retract rational)

Let *k* be an infinite field.

L is called retract *k*-rational if *∃k*-algebra *R ⊂ L* such that

(i) *L* is the quotient field of *R*;

 (i) $\exists f \in k[x_1, \ldots, x_n]$, $\exists k$ -algebra hom. $\varphi : R \to k[x_1, \ldots, x_n][1/f]$ and ψ : $k[x_1, \ldots, x_n][1/f] \rightarrow R$ satisfying $\psi \circ \varphi = 1_R$.

Definition (unirational)

L is called *k*-unirational if $L \subset k(t_1, \ldots, t_n)$.

▶ "rational" *⇒* "stably rational" *⇒* "retract rational" *⇒* "unirational".

 \blacktriangleright algebraic *k*-torus *T* is *k*-unirational.

*§*2 Rationality problem for algebraic tori (1/3)

Problem (Rationality problem for algebraic tori)

Whether an algebraic torus *T* is *k*-rational?

- ▶ \exists 2 algebraic tori with $\dim(T) = 1$; the trivial torus \mathbb{G}_m and $R^{(1)}_{K/k}(\mathbb{G}_m)$ with $[K:k]=2$, which are k -rational.
- ▶ \exists 13 algebraic tori with $\dim(T) = 2$;

Theorem (Voskresenskii 1967)

All the algebraic tori *T* with $\dim(T) = 2$ are *k*-rational.

▶ $∃73$ algebraic tori with $dim(T) = 3$;

Theorem (Kunyavskii 1990)

(i) *∃*58 algebraic tori *T* with dim(*T*) = 3 which are *k*-rational;

- (ii) *∃*15 algebraic tori *T* with dim(*T*) = 3 which are not *k*-rational;
- (iii) *T* is *k*-rational *⇔ T* is stably *k*-rational *⇔ T* is retract *k*-rational.

▶ $∃710$ algebraic tori with $dim(T) = 4$;

Theorem (Hoshi-Yamasaki 2017)

(i) *∃*487 algebraic tori *T* with dim(*T*) = 4 which are stably *k*-rational; (ii) *∃*7 algebraic tori *T* with dim(*T*) = 4 which are not stably *k*-rational but retract *k*-rational; (iii) $∃216$ algebraic tori *T* with $dim(T) = 4$ which are not retract

k-rational.

▶ $\exists 6079$ algebraic tori with $\dim(T) = 5$;

Theorem (Hoshi-Yamasaki 2017)

(i) *∃*3051 algebraic tori *T* with dim(*T*) = 5 which are stably *k*-rational; (ii) *∃*25 algebraic tori *T* with dim(*T*) = 5 which are not stably *k*-rational but retract *k*-rational;

(iii) *∃*3003 algebraic tori *T* with dim(*T*) = 5 which are not retract *k*-rational.

- ▶ We do not know "*k*-rationality".
- ▶ Voskresenskii's conjecture: any stably *k*-rational torus is *k*-rational $(Zariski problem).$

Rationality problem for algebraic tori *T* (2/3)

- ▶ *T*: algebraic *k*-torus
	- \Longrightarrow \exists finite Galois extension L/k such that $T\times_k L \simeq (\mathbb{G}_{m,L})^n.$
- \blacktriangleright $G = \text{Gal}(L/k)$ where L is the minimal splitting field.

Category of algebraic *k*-tori which split $/L \stackrel{\text{duality}}{\longleftrightarrow}$ Category of *G*-lattices (i.e. finitely generated \mathbb{Z} -free $\mathbb{Z}[G]$ -module)

- ▶ *T* \mapsto the character group $X(T) = \text{Hom}(T, \mathbb{G}_m)$: *G*-lattice.
- ▶ $T = \operatorname{Spec}(L[M]^G)$ which splits/ L with $X(T) \simeq M \leftrightarrow M$: *G*-lattice.
- ▶ Tori of dimension $n \stackrel{1:1}{\longleftrightarrow}$ elements of the set $H^1({\mathcal G},{\rm GL}(n,{\mathbb Z}))$ where $\mathcal{G} = \operatorname{Gal}(\overline{k}/k)$ since $\operatorname{Aut}(\mathbb{G}_m^n) = \operatorname{GL}(n,\mathbb{Z})$.
- \blacktriangleright *k*-torus *T* of dimension *n* is determined uniquely by the integral representation $h: \mathcal{G} \to \mathrm{GL}(n, \mathbb{Z})$ up to conjugacy, and the group $h(\mathcal{G})$ is a finite subgroup of $\mathrm{GL}(n,\mathbb{Z})$.
- ▶ The function field of $T \stackrel{\text{identified}}{\longleftrightarrow} L(M)^G$: invariant field.

Rationality problem for algebraic tori *T* (3/3)

- \blacktriangleright *L*/k: Galois extension with $G = \text{Gal}(L/k)$.
- ▶ $M = \bigoplus_{1 \leq j \leq n} \mathbb{Z} \cdot u_j$: *G*-lattice with a \mathbb{Z} -basis $\{u_1, \ldots, u_n\}$. \blacktriangleright *G* acts on $L(x_1, \ldots, x_n)$ by

$$
\sigma(x_i) = \prod_{j=1}^n x_j^{a_{i,j}}, \quad 1 \le i \le n
$$

for any
$$
\sigma \in G
$$
, when $\sigma(u_i) = \sum_{j=1}^n a_{i,j} u_j$, $a_{i,j} \in \mathbb{Z}$.
\n \triangleright $L(M) := L(x_1, \ldots, x_n)$ with this action of G .

▶ The function field of algebraic *k*-torus $T \stackrel{\text{identified}}{\longleftrightarrow} L(M)^G$

Rationality problem for algebraic tori *T* (2nd form)

Whether $L(M)^G$ is k -rational?

 $(=$ purely transcendental over $k?$; $L(M)^G = k(\exists t_1, \ldots, \exists t_n)?$

Flabby (Flasque) resolution $(1/3)$

 \blacktriangleright *M*: *G*-lattice, i.e. f.g. *Z*-free *Z*[*G*]-module.

Definition

- (i) *M* is permutation $\stackrel{\text{def}}{\iff} M \simeq \bigoplus_{1 \leq i \leq m} \mathbb{Z}[G/H_i];$
- $\varphi^{\text{def}}(i)$ *M* is stably permutation $\stackrel{\text{def}}{\iff} M \oplus \exists P \simeq P',\ P,P'$: permutation;
- φ (iii) M is invertible $\stackrel{\text{def}}{\iff} M \oplus \exists M^{'} \simeq P$: permutation;
- \Rightarrow $H^1(H, M) = 0 \ (\forall H \leq G);$
 \Rightarrow $H^1(H, M) = 0 \ (\forall H \leq G);$
- (v) *M* is flabby $\xrightarrow{\text{def}} \widehat{H}^{-1}(H, F) = 0 \ (\forall H \leq G).$

▶ "permutation" *⇒* "stably permutationl" *⇒* "invertible" *⇒* "flabby and coflabby".

Definition (Commutative monoid of *G*-lattices mod. permutation)

 $M_1 \sim M_2 \overset{\text{def}}{\iff} M_1 \oplus P_1 \simeq M_2 \oplus P_2 \text{ } (\exists P_1, \exists P_2 \text{ : permutation)}$ \implies commutative monoid $\mathcal{L}: [M_1] + [M_2] := [M_1 \oplus M_2], 0 = [P].$

Theorem (Endo-Miyata 1975, Colliot-Thélène and Sansuc 1977)

For any *G*-lattice *M*, there exists a short exact sequence of *G*-lattices

$$
0 \to M \to P \to F \to 0
$$

where *P* is permutation and *F* is flabby.

- ▶ called a flabby resolution of the *G*-lattice *M*.
- \blacktriangleright $[M]^{fl} := [F]$: flabby class of M (well-defined).

Theorem (Endo-Miyata 1973, Voskresenskii 1974, Saltman 1984)

 $(\mathsf{EM73})\ [M]^{fl} = 0 \Longleftrightarrow L(M)^G$ is stably k -rational. $(V$ os74) $[M]$ ^{fl} = $[M']$ ^{fl} \Longleftrightarrow $L(M)^{G}(x_1, ..., x_m) \simeq L(M')^{G}(y_1, ..., y_n)$. $\textsf{(Sal84)}~[M]^{fl}$ is invertible $\Longleftrightarrow L(M)^G$ is retract k -rational.

Theorem (Voskresenskii 1969)

Let *k* be a field and $G = \text{Gal}(\overline{k}/k)$. Let *T* be an algebraic *k*-torus, *X* be a smooth *k*-compactification of *T* and $\overline{X} = X \times_k \overline{k}$. Then

$$
0 \to \widehat{T} \to \widehat{Q} \to \text{Pic } \overline{X} \to 0
$$

is an exact seq. of G-lattice where \widehat{Q} is permutation and Pic \overline{X} is flabby.

$$
\blacktriangleright [\widehat{T}]^{fl} = [\text{Pic }\overline{X}]; \text{flably class of }\widehat{T}.
$$

Theorem (Endo-Miyata 1973, Voskresenskii 1974, Saltman 1984)

(EM73) $[Pic \overline{X}] = 0 \Longleftrightarrow T$ is stably *k*-rational. $({\sf Vos74})$ $[{\rm Pic}\,\overline{X}] = [{\rm Pic}\,X'] \Longleftrightarrow T$ and T' are stably bir. k -equivalent. (Sal84) $[Pic \overline{X}]$ is invertible $\Longleftrightarrow T$ is retract *k*-rational.

Theorem (Voskresenskii 1969)

Let *k* be a global field, *T* be an algebraic *k*-torus and *X* be a smooth *k*-compactification of *T*. Then there exists an exact sequence

$$
0 \to A(T) \to H^1(k, \text{Pic }\overline{X})^{\vee} \to \text{III}(T) \to 0
$$

where $M^{\vee} = \text{Hom}(M, \mathbb{Q}/\mathbb{Z})$ is the Pontryagin dual of M.

- ▶ The group $A(T) := \left(\prod_{v \in V_k} T(k_v) \right) \big/ \overline{T(k)}$ is called the kernel of the weak approximation of *T*.
- ▶ *T* : retract rational $\iff [\widehat{T}]^{fl} = [\text{Pic } \overline{X}]$ is invertible \implies Pic \overline{X} is flabby and coflabby $\implies H^1(k, \text{Pic }\overline{X})^{\vee} = 0 \implies A(T) = \text{III}(T) = 0.$

 \blacktriangleright when $T = R_{K/k}^{(1)}(\mathbb{G}_m)$, by Ono's theorem $\text{III}(T) \simeq \text{Obs}(K/k),$ *T* : retract *k*-rational \implies $Obs(K/k) = 0$ (HNP for K/k holds).

Voskresenskii's theorem (1969) (2/2)

 \blacktriangleright when $T = R_{K/k}^{(1)}(\mathbb{G}_m)$, by Ono's theorem $\mathrm{III}(T) \simeq \mathrm{Obs}(K/k)$, *T* : retract *k*-rational \implies $Obs(K/k) = 0$ (HNP for K/k holds).

$$
\blacktriangleright \text{ when } T = R_{K/k}^{(1)}(\mathbb{G}_m), \ \hat{T} = J_{G/H} \text{ where}
$$
\n
$$
J_{G/H} = (I_{G/H})^{\circ} = \text{Hom}(I_{G/H}, \mathbb{Z}) \text{ is the dual lattice of}
$$
\n
$$
I_{G/H} = \text{Ker}(\varepsilon) \text{ and } \varepsilon : \mathbb{Z}[G/H] \to \mathbb{Z} \text{ is the augmentation map.}
$$

- ▶ (Hoshi-Yamasaki, 2018, Hasegawa-Hoshi-Yamasaki, 2020) For $[K : k] = n \le 15$ except $9T27 \simeq \text{PSL}_2(\mathbb{F}_8)$, the classificasion of stably/retract rational $R^{(1)}_{K/k}(\mathbb{G}_m)$ was given.
- ▶ when $T = R_{K/k}^{(1)}(\mathbb{G}_m)$, T : retract k -rational $\Longrightarrow H^1(k,\text{Pic}\,\overline{X}) = 0$ (use this to get Theorem 2).
- \blacktriangleright $H^1(k, \text{Pic }\overline{X}) \simeq \text{Br}(X)/\text{Br}(k) \simeq \text{Br}_{nr}(k(X)/k)/\text{Br}(k)$ where $Br(X)$ is the étale cohomological/Azumaya Brauer group of X by Colliot-Thélène-Sansuc 1987.

*§*3 Proof of Theorem 3

▶ We use Drakokhrust-Platonov's method :

Definition (first obstruction to the HNP)

Let *L ⊃ K ⊃ k* be a tower of finite extensions where *L* is normal over *k*. We call the group

$$
Obs_1(L/K/k) = (N_{K/k}(\mathbb{A}_K^{\times}) \cap k^{\times}) / ((N_{L/k}(\mathbb{A}_L^{\times}) \cap k^{\times})N_{K/k}(K^{\times}))
$$

the first obstruction to the HNP for *K/k* corresponding to the tower *L ⊃ K ⊃ k*.

- ▶ Obs₁($L/K/k$) = Obs(K/k) / ($N_{L/k}(\mathbb{A}_L^{\times}) \cap k^{\times}$).
- \blacktriangleright Obs₁($L/K/k$) is easier than Obs(K/k).
- ▶ We use GAP. The related algorithms/functions we made are available from $\left| \right. \right|$ https://doi.org/10.57723/289563

(KURENAI: repository of Kyoto University).

Theorem (Drakokhrust-Platonov 1987)

Let *L ⊃ K ⊃ k* be a tower of finite extensions where *L* is Galois over *k*. Let $G = \text{Gal}(L/k)$ and $H = \text{Gal}(L/K)$. Then

 $Obs_1(L/K/k) \simeq \text{Ker } \psi_1 / \varphi_1(\text{Ker } \psi_2)$

where

$$
H/[H, H] \longrightarrow G/[G, G]
$$

$$
\downarrow^{\varphi_1:H_w \hookrightarrow H} \qquad G/[G, G]
$$

$$
\bigoplus_{v \in V_k} \left(\bigoplus_{w|v} H_w/[H_w, H_w] \right) \longrightarrow \bigoplus_{v \in V_k} G_v/[G_v, G_v]
$$

and ψ_2 is defined by

$$
\psi_2(h[H_w, H_w]) = x_i^{-1} h x_i[G_v, G_v]
$$

for $h \in H_w = H \cap xG_v x^{-1}$ $(x \in G)$.

Drakokhrust-Platonov's method (2/3)

- $\blacktriangleright \psi_2^v$: the restriction of the map ψ_2 to $\bigoplus_{w|v} H_w/[H_w,H_w].$
- ▶ Obs₁($L/K/k$) = Ker ψ_1/φ_1 (Ker ψ_2^{nr}) φ_1 (Ker ψ_2^{r}).

Proposition (Drakokhrust-Platonov 1987)

(i)
$$
G_{v_1} \leq G_{v_2} \Longrightarrow \varphi_1(\text{Ker }\psi_2^{v_1}) \subset \varphi_1(\text{Ker }\psi_2^{v_2});
$$

\n(ii) $\varphi_1(\text{Ker }\psi_2^{\text{nr}}) = \langle [h, x] \mid h \in H \cap xHx^{-1}, x \in G \rangle / [H, H];$
\n(iii) Let $H_i \leq G_i \leq G$ $(1 \leq i \leq m)$, $H_i \leq H \cap G_i$, $k_i = L^{G_i}$ and
\n $K_i = L^{H_i}$. If $\text{Obs}(K_i/k_i) = 1$ for any $1 \leq i \leq m$ and
\n $\bigoplus_{i=1}^m \widehat{H}^{-3}(G_i, \mathbb{Z}) \xrightarrow{i=1} \widehat{H}^{-3}(G, \mathbb{Z})$
\nis surjective, then $\text{Obs}(K/k) = \text{Obs}_1(L/K/k)$. In particular,
\n $[K : k] = n$ is square-free $\Longrightarrow \text{Obs}(K/k) = \text{Obs}_1(L/K/k)$.

Drakokhrust-Platonov's method (3/3)

Theorem (Drakokhrust 1989; Opolka 1980)

Let $\widetilde{L} \supset L \supset k$ be a tower of Galois extensions with $\widetilde{G} = \mathrm{Gal}(\widetilde{L}/k)$ and $\widetilde{H} = \mathrm{Gal}(\widetilde{L}/K)$ which correspond to a central extension $1 \to A \to \widetilde{G} \to G \to 1$ with $A \cap [\widetilde{G}, \widetilde{G}] \simeq M(G) = H^2(G, \mathbb{C}^\times);$

the Schur multiplier of *G*. Then

 $Obs(K/k) = Obs_1(\widetilde{L}/K/k).$

In particular, if \widetilde{G} is a Schur cover of *G*, i.e. $A \simeq M(G)$, then $Obs(K/k) = Obs_1(L/K/k)$.

- \blacktriangleright This theorem is useful, but \widetilde{G} may become large!
- ▶ We use GAP. The related algorithms/functions we made are available from https://doi.org/10.57723/289563

(KURENAI: repository of Kyoto University).

Example : $G = 12T261 \simeq (S_3)^4 \rtimes V_4 \simeq S_3 \wr V_4$ (1/2)

$\textsf{Example (}G = 12T261 \simeq (S_3)^4 \rtimes V_4 \simeq S_3 \wr V_4\textsf{)}$

 $I\amalg(T) = 0 \iff$ there exists a place *v* of *k* such that (i) $V_4 \leq G_v$ where $V_4 \cap D(G) = 1$ for the unique characteristic subgroup $D(G) \simeq (C_3)^4 \rtimes (C_2)^3 \lhd G$, $(C_4 \times C_2 \leq G_v$ where $(C_4 \times C_2) ∩ D(G1) \simeq C_2$ with $D(G) \simeq (C_3)^4 \rtimes (C_2)^3 \lhd G$, (iii) $D_4 \leq G_v$ where $D_4 \cap (S_3)^4 \simeq C_2$ with $(S_3)^4 \lhd G$, (iv) $Q_8 \leq G_v$, or (v) $(C_2)^3 \rtimes C_3 \leq G_v$.

$$
\blacktriangleright H^1(k, \text{Pic }\overline{X}) \simeq \mathbb{Z}/2\mathbb{Z}.
$$

$$
\blacktriangleright |G| = 6^4 \times 4 = 5184.
$$

▶ $H^3(G, \mathbb{Z}) \simeq M(G) \simeq (\mathbb{Z}/2\mathbb{Z})^{\oplus 4}$: Schur multiplier of *G*. $\widetilde{G} \leftarrow$ too large ! $|\widetilde{G}| = 6^4 \times 4 \times 2^4 = 82944.$

Example : $G = 12T261 \simeq (S_3)^4 \rtimes V_4 \simeq S_3 \wr V_4$ (2/2)

We can take a minimal stem ext. $G = G/A'$ (i.e. $A \leq Z(G) \cap [G,G]$) of *G* in the commutative diagram

with $\overline{A} \simeq \mathbb{Z}/2\mathbb{Z}$. There exists 15 minimal stem extensions. Then we can find exactly one $(1/15)$ minimal stem extension which satisfies that

$$
\bigoplus_{i=1}^{m'} \widehat{H}^{-3}(G_i, \mathbb{Z}) \xrightarrow{\text{cores}} \widehat{H}^{-3}(\overline{G}, \mathbb{Z})
$$

is surjective. By Drakorust-Platonov's Proposition (iii), we have

$$
Obs(K/k) = Obs_1(\overline{L}_j/K/k).
$$

\n- Ker
$$
\psi_1 = (\mathbb{Z}/2\mathbb{Z})^{\oplus 4}
$$
.
\n- $\varphi_1^{\text{nr}}(\text{Ker } \psi_2^{\text{nr}}) = (\mathbb{Z}/2\mathbb{Z})^{\oplus 3}$.
\n- $\varphi_1^{\text{r}}(\text{Ker } \psi_2^{\text{r}}) = \mathbb{Z}/2\mathbb{Z}$ (819/891 cases) or 0 (72/891 cases).
\n

Sketch of the proof of Theorem 3 $(1/2)$

Step 1

• For $G = \text{Gal}(L/k) = nTm \leq S_n$ and $H = \text{Gal}(L/K) \leq G$ with $[G:H]=n,$ determine $T=R_{K/k}^{(1)}(\mathbb{G}_m)$ satisfying $H^1(k,\text{Pic}\,\overline{X})\neq 0.$ (Make Table 1)

▶ We shoud treat $n = (4, 6), 8, 9, 10, 12, 14, 15$ because $H^1(k, \mathrm{Pic}\,\overline{X}) = 0$ when $n = p$: prime.

Step 2

• For the cases in Table1, determine $III(T) \simeq \mathrm{Obs}(K/k)$. (2-1) (a) $n = pq$ ($p ≠ q$: primes) → Obs(K/k) \simeq Obs₁($L/K/k$). (b) otherwise $→$ Find a Schur cover *G*. Then we get L/k s.t. $\text{Obs}(K/k) \simeq \text{Obs}_1(\overline{L}/K/k)$. (2-2) Calculation $Obs_1(\overline{L}/K/k)$ for suitable \overline{L} ⊂ \widetilde{L} .

Sketch of the proof of Theorem 3 (2/2)

 $(2-2)$ Calculation $Obs_1(\overline{L}/K/k)$. By Drakokhrust-Platonov's Thmeorem, $\text{Obs}_1(\overline{L}/K/k) \simeq \text{Ker } \psi_1/\varphi_1(\text{Ker } \psi_2^{\text{nr}})\varphi_1(\text{Ker } \psi_2^{\text{r}}),$ $H/[H, H] \longrightarrow G/[G, G]$ x *φ*1 \uparrow $\overline{1}$ $| \varphi_2$ Æ *v∈V^k* $\sqrt{ }$ $\bigoplus_{w|v}$ $H_w/[H_w,H_w]$ \setminus ** \rightarrow *∞ v∈V^k* $G_v/[G_v,G_v].$

We compute the following:

(i) Ker ψ_1 ;

 $(iii) \varphi_1(\text{Ker } \psi_2^{\text{nr}}) = \langle [h, x] \mid h \in H \cap xHx^{-1}, x \in G \rangle / [H, H];$ (by Drakokhrust-Platonov's Proposition (ii)) $(iii) \varphi_1(\text{Ker } \psi_2^{\text{r}})$ (in terms of G_v).

*§*4 Application 1: *R*-equivalence in algebraic *k*-tori (1/2)

Definition (*R*-equivalence, Manin 1974, *in Cubic Forms*)

- ▶ $f: Z \to X$: rational map of *k*-varieties covers a point $x \in X(k)$. $\stackrel{\text{def}}{\iff}$ there exists a point $z \in Z(k)$ such that f is defined at z and $f(z) = x$.
- ▶ $x, y \in X(k)$ are *R*-equivalent. $\overset{\text{def}}{\iff}$ there exist a fin. seq. of points $x = x_1, \ldots, x_r = y$ and rational
	- $\mathsf{maps}\;f_i:\mathbb{P}^1\to X\;(1\leq i\leq r-1)$ such that f_i covers $x_i,\,x_{i+1}.$

Theorem (Colliot-Thélène and Sansuc 1977)

Let *k* be a field, *T* be an algebraic *k*-torus and $1 \rightarrow S \rightarrow Q \rightarrow T \rightarrow 1$ be a flabby resolution of $T.$ Then $T(k) = H^0(k,T) \stackrel{\delta}{\to} H^1(k,S)$ induces

 $T(k)/R \simeq H^1(k, S)$.

Application 1: *R*-equivalence in algebraic *k*-tori (2/2)

▶ Let *k* be a local field. Using Tate-Nakayama duality, we have

$$
T(k)/R \simeq H^1(k, S) \simeq H^1(k, \widehat{S}) \simeq H^1(k, \operatorname{Pic} \overline{X})
$$

for norm one tori $T=R_{K/k}^{(1)}(\mathbb{G}_m)$ where $[K:k]=n\leq 15.$

Theorem ([HKY22], [HKY23])

Let $2 \le n \le 15$ be an integer. Let *k* be a local field, K/k be a separable field extension of degree n , and $T=R_{K/k}^{(1)}(\mathbb{G}_m)$ be the norm one torus of K/k . Then, $T(k)/R \simeq H^1(k,\mathrm{Pic}\,\overline{X}) \neq 0 \Longleftrightarrow G$ is given as in [HKY22, Table 1] of [HKY23, Table 1].

Theorem (Ono 1963)

Let *k* be a global field, *T* be an algebraic *k*-torus and $\tau(T)$ be the Tamagawa number of *T*. Then

$$
\tau(T) = \frac{|H^1(k,\widehat{T})|}{|\text{III}(T)|}.
$$

In particular, if *T* is retract *k*-rational, then $\tau(T) = |H^1(k, \hat{T})|$.

 \blacktriangleright Let *k* be a number field, K/k be a field extension of degree n, $T=R_{K/k}^{(1)}(\mathbb{G}_m)$ be the norm one torus of K/k . By Ono's formula, we can calculate Tamagawa number of *T* explicitly.

Example.
$$
G = 15T9 \Rightarrow \tau(T) = \frac{3}{5}
$$
 or 3 because III(T) $\leq \mathbb{Z}/5\mathbb{Z}$.

Application 2: Tamagawa number of *k*-tori (2/2)

 $\blacktriangleright \tau(T) = |H^1(k,\hat{T})|/|\text{III}(T)|.$

Theorem ([HKY22, Theorem 8.2])

Let *k* be a global field and *T* be an algebraic *k*-torus of dimension 4 (resp. 5). Among 710 (reps. 6079) cases of algebraic *k*-tori *T*, if *T* is one of the 688 (resp. 5805) cases with $H^1(k, \text{Pic }\overline{X}) = 0$, then $\tau(T) = |H^1(k, \hat{T})|$.

Theorem ([HKY22, Theorem 8.3], [HKY23, Remark 1.4])

Let 2 *≤ n ≤* 15 be an integer. Let *k* be a number field, *K/k* be a field extension of degree *n*, *L/k* be the Galois closure of *K/k*, and $T = R_{K/k}^{(1)}(\mathbb{G}_m)$ be the norm one torus of K/k . Then $\tau(T) = |H^1(k,\widehat{T})|$ except for the cases in [HKY22, Table 1] and [HKY23, Table 1]. For the ϵ exceptional cases, we have $\tau(T) = |H^1(G, J_{G/H})|/|\mathrm{III}(T)|.$

Sporadic simple group cases: *M*¹¹ and *J*¹ (1/3)

- \blacktriangleright k : a numberl field.
- \blacktriangleright *K/k*: a separable field extension of $[K : k] = n$ (not fixed).
- \blacktriangleright *L*/k: Galois closure of K/k with $G = \text{Gal}(L/k)$ and $H = \text{Gal}(L/K) \leq G$ with $[G : H] = n$.

$$
\blacktriangleright T = R_{K/k}^{(1)}(\mathbb{G}_m) \text{ with } \dim(T) = n - 1.
$$

▶ *X* : a smooth *k*-compactification of *T*.

►
$$
G \simeq M_{11}
$$
 with $|G| = 7920 = 2^4 \cdot 3^2 \cdot 5 \cdot 11$ or
\n $G \simeq J_1$ with $|G| = 175560 = 2^3 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 19$
\n⇒ $M(G) \simeq H^3(G, \mathbb{Z}) = 0$: Schur multiplier of G .

Theorem ($[HKY2,$ Theorem 1.6) $G \simeq M_{11}$

Asume that $G \simeq M_{11}$ and $H = \text{Gal}(L/K) \leq G$. $H^1(k, \text{Pic }\overline{X}) = \begin{cases} 0 & \text{if } \text{Syl}_2(H) \not\cong C_2, C_4, C_8, \\ \pi \text{ for } \text{if } \text{Syl}_2(H) \not\cong C_2, C_4, C_8, \end{cases}$ $\mathbb{Z}/2\mathbb{Z}$ if $\text{Syl}_2(H) \simeq C_2, C_4, C_8$.

Theorem ([HKY2, Theorem 1.8]) $G \simeq M_{11}$

Asume that $G \simeq M_{11}$ and $H = \text{Gal}(L/K) \leq G$. (1) If $\text{Syl}_2(H) \not\simeq C_2, C_4, C_8$, then $A(T) \simeq \text{III}(T) \simeq H^1(k, \text{Pic } \overline{X}) = 0$. (2) If $\text{Syl}_2(H) \simeq C_2, C_4, C_8$, then either $A(T) = 0$ and $\mathrm{III}(T) \simeq H^1(k, \mathrm{Pic}\,\overline{X}) \simeq \mathbb{Z}/2\mathbb{Z}$ or (b) $A(T) \simeq H^1(k, \text{Pic }\overline{X}) \simeq \mathbb{Z}/2\mathbb{Z}$ and $\text{III}(T) = 0$, and the condition (b) is equivalent to: (c) there exists a place *v* of *k* such that $\sqrt{ }$ \int \mathcal{L} $V_4 \leq G_v$ or $Q_8 \leq G_v$ if $Syl_2(H) \simeq C_2$, $D_4 \leq G_v$ or $Q_8 \leq G_v$ if $Syl_2(H) \simeq C_4$, $QD_8 \leq G_v$ if $Syl_2(H) \simeq C_8$

where G_v is the decomposition group of G at a place v of k .

▶ 0 → $A(T)$ → $H^1(k, \text{Pic }\overline{X})^{\vee}$ → $\text{III}(T)$ → 0 (Voskresenskii 1969).

Sporadic simple group cases: *M*¹¹ and *J*¹ (3/3)

Theorem ([HKY2, Theorem 1.7]) $G \simeq J_1$

Asume that $G \simeq J_1$ and $H = \text{Gal}(L/K) \leq G$.

$$
H^{1}(k, \text{Pic }\overline{X}) = \begin{cases} 0 & \text{if } \text{Syl}_{2}(H) \not\cong C_{2}, \\ \mathbb{Z}/2\mathbb{Z} & \text{if } \text{Syl}_{2}(H) \simeq C_{2}. \end{cases}
$$

Theorem ($[HKY2,$ Theorem 1.9]) $G \simeq J_1$

Asume that $G \simeq J_1$ and $H = \text{Gal}(L/K) \leq G$. (1) If $\text{Syl}_2(H) \not\simeq C_2$, then $A(T) \simeq \text{III}(T) \simeq H^1(k, \text{Pic } \overline{X}) = 0.$ (2) If $\text{Syl}_2(H) \simeq C_2$, then either $A(T) = 0$ and $III(T) \simeq H^1(k, \mathrm{Pic}\,\overline{X}) \simeq \mathbb{Z}/2\mathbb{Z}$ or (b) $A(T) \simeq H^1(k, \text{Pic }\overline{X}) \simeq \mathbb{Z}/2\mathbb{Z}$ and $\text{III}(T) = 0$, and the condition (b) is equivalent to: (c) there exists a place *v* of *k* such that $V_4 \leq G_v$ where G_v is the decomposition group of *G* at a place *v* of *k*.

Proof: Macedo and Newton [MN22, Corollary 3.4]

- \blacktriangleright $L/K/k$: a tower of finite extensions with L/k Galois.
- ▶ $G = \text{Gal}(L/k)$ and $H = \text{Gal}(L/K) \leq G$.
- \blacktriangleright $H_p = \text{Syl}_p(H)$ and $K_p = L^{H_p}.$
- \blacktriangleright *X* and X_p : smooth compactifications of $T=R_{K/k}^{(1)}(\mathbb{G}_m)$ and $T_p=R_{K_p/k}^{(1)}(\mathbb{G}_m)$ respectively.

Theorem (Macedo and Newton [MN22, Corollary 3.4])

We obtain a commutative diagram with exact rows as follows:

$$
0 \longrightarrow A(T)_{(p)} \longrightarrow H^1(k, \text{Pic } \overline{X})_{(p)}^{\vee} \longrightarrow III(T)_{(p)} \longrightarrow 0
$$

\n
$$
\simeq \begin{vmatrix} \searrow & \searrow & \\ \searrow & \searrow & \\ 0 & \longrightarrow A(T_p)_{(p)} \longrightarrow H^1(k, \text{Pic } \overline{X_p})_{(p)}^{\vee} \longrightarrow III(T_p)_{(p)} \longrightarrow 0 \end{vmatrix}
$$

where (*p*) stands for the *p*-primary part and the vertical isomorphisms are induced by the natural inclusion $T \hookrightarrow T_p$.