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§1 Introduction & Main theorems 1,2,3,4

» k : a global field, i.e. a number field or a finite extension of F,(t).

Definition (Hasse norm principle)

Let k be a global field. K/k be a finite extension and A} be the idele

group of K. We say that the Hasse norm principle holds for K/k if
Obs(K/k) := (N /k(Ag) N E*) [Nicp(K*) =1

where Ny ;. is the norm map.

A,

Theorem (Hasse's norm theorem 1931)

If K/k is a cyclic extension of a number field, then
Obs(K/k) = 1.

Example (Hasse [Has31]): Obs(Q(v/—39,v—3)/Q) ~ Z/27.
Obs(Q(v2,v~1)/Q) = 1.
In both cases, Galois group G ~ V; (Klein four-group).

.
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Tate's theorem (1967)

For any Galois extension K /k, Tate gave:

Theorem (Tate 1967, in Alg. Num. Th. ed. by Cassels and Fréohlich)

Let K/k be a finite Galois extension with Galois group Gal(K/k) ~ G
Let V4 be the set of all places of k and G, be the decomposition group of
G at v € V.. Then

Obs(K/k) ~ Coker{ @) H*(G,,Z) == H3(G, Z)}
vEV]

where H is the Tate cohomology. In particular, In particular, the Hasse
norm principle holds for K /k if and only if the restriction map
H3(G,z) = Doev, H3(G,,7) is injective.

o

> If G ~ C, is cyclic, then H3(C,,,Z) ~ H'(Cy,,Z) = 0 and hence the
Hasse's original theorem follows.

> If G ~ Vj, then Obs(K/k) = 0 <= v € V}, such that G, =V}
(H3(Vy,Z) = 7./27) (v: should be ramified).
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Known results for HNP (1/2)

The HNP for Galois extensions K'/k was investigated by
Gerth [Ger77], [Ger78], Gurak [Gur78a], [Gur78b], [Gur80],
Morishita [Mor90], Horie [Hor93], Takeuchi [Tak94], Kagawa [Kag95], etc.

» (Gurak 1978; Endo-Miyata 1975 + Ono 1963)
If all the Sylow subgroups of Gal(K/k) is cyclic, then Obs(K/k) = 0.

However, for non-Galois extensions K /k, very little is known whether the
Hasse norm principle holds:

> (Bartels 1981) [K : k] = p; prime = HNP for K /k holds.
> (Bartels 1981) [K : k] = n and Galois closure Gal(L/k) ~ D,,.

> (Voskresenskii-Kunyavskii 1984) [K : k] = n and Gal(L/k) ~ S,
= HNP for K /k holds.

» (Macedo 2020) [K : k] = n and Gal(L/k) ~ A,
= HNP for K/k holds if n > 5; n = 6 using Hoshi-Yamasaki [HY17].
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Ono's theorem (1963)

> T : algebraic k-torus, i.e. T X, k ~ (G, )"

res

> II(T) := Ker{H' (k,T) * @5 H'(ky, T)} : Shafarevich-Tate gp.

veVy
» The norm one torus R%}k(Gm) of K/k:
1 — RY. (Gm) — Ripi(Gmr) 24 G 1
— K/k( m) — K/k( m,K) — Gy —

where Ry, is the Weil restriction.

> Rg}k(((}m) is biregularly isomorphic to the norm hyper surface
f(z1,...,xn) = 1 where f € k[z1,...,xy,] is the norm form of K/k.

Theorem (Ono 1963, Ann. of Math.)

Let K/k be a finite extension and T' = R%k((@m) Then

[II(T) ~ Obs(K/k).
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Known results for HNP (2/2)

> T =R (Gm).
> TII(T) ~ Obs(K/k).

Theorem (Kunyavskii 1984)

Let [K : k] =4, G = Gal(L/k) ~4Tm (1 <m <5).

Then III(7") = 0 except for 472 and 474. For 472 ~ Vy, 474 ~ Ay,
(i) OI(T) < Z/2Z;

(ii) II(7T") = 0 < v € Vi such that Vj < G,

Theorem (Drakokhrust-Platonov 1987)

Let [K : k] =6, G = Gal(L/k) ~ 6Tm (1 <m < 16).

Then II(T) = 0 except for 674 and 67'12. For 674 ~ Ay, 6712 ~ As,
(i) UI(T) < Z/2Z,;

(ii) II(T) = 0 < v € V; such that Vj < G,
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Main theorems 1,2,3,4 (1/3)

> 32/13,73,710,6079 cases of alg. k-tori T of dim(T") = 1,2,3,4,5.

» X: a smooth k-compactification of T, X = X x, k.
Theorem 1 ([HKY22, Theorem 1.5 and Theorem 1.6])

(i) dim(7T") = 4. Among the 216 cases (of 710) of not retract rational T,

0 (194 of 216),
HY(k,PicX) ~ { Z/2Z (20 of 216),
(2)27)%? (2 of 216).
(ii) dim(T") = 5. Among 3003 cases (of 6079) of not retract rational T,
0 (2729 of 3003),
H'(k,PicX) ~ { Z/2Z (263 of 3003),
(Z/27)%? (11 of 3003).

» Kunyavskii (1984) showed that among the 15 cases (of 73) of not
retract ratinal T of dim(T) = 3, H'(k,Pic X) = 0 (13 of 15),
H(k,Pic X) ~ 7/27 (2 of 15).
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Main theorems 1,2,3,4 (2/3)

k : a field, K/k : a separable field extension of [K : k] = n.

T = Ry, (Gy) with dim(T) =n — 1.

| 4

>

> X : a smooth k-compactification of T'.

» L/k : Galois closure of K/k, G := Gal(L/k) and H = Gal(L/K)
with [G: H| =n = G =nTm < Sy, transitive.

» The number of transitive subgroups nT'm of S,, (2 <n < 15) up to
conjugacy is given as follows:

n‘2345 6 7 &8 9 10 11 12 13 14 15
#ofnTm‘l 2 5 5 16 7 50 34 45 8§ 301 9 63 104

Theorem 2 ([HKY22, Theorem 1.5], [HKY23, Theorem 1.1])

Let 2 < n < 15 be an integer. Then H'(k,Pic X) # 0 <= G =nTm is
given as in [HKY22, Table 1] (n # 12) or [HKY23,Table 1] (n = 12).
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[HKY22, Table 1]: H'(k,PicX) ~ HY(G, [Jg/u)/") #0
where G = nT'm with 2 < n <15 and n #£ 12

G H'(k,PicX) ~ H (G, [Jo/ul’")
4T2 ~ 'V, Z/2Z
4T4 ~ Ay 7.)27.
6T4 ~ Ay 727
6T12 ~ As 7.)27.
8T2 ~ Cy x Cy Z]27
8T3 ~ (C2)? (7.)27)%3
8T4 ~ Dy Z/27
8T9 ~ Dy x Co 7.)27.
8T'11 ~ (C4 X CQ) X Co Z/QZ
8713 ~ A4 X CQ Z/QZ
8T14 ~ S, 727
8715~ Cs x Vi 7.)27.
8T19 ~ (C2)* x C4 7./27
8721 ~ (C2)® x C4 7/27.
8722 ~ (C2)* x Va 7/27
8T31 =~ ((C2)* x C2) x Ca 7./27
8732 ~ ((C2)? x Vi) x Cs 7/27.
8T'37 ~ PSL3(F2) ~ PSLa(F7) 7.)27.
8738 ~ (((C2)* x Cs) x C2) x Cs 7./27.
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[HKY22, Table 1]: H'(k,PicX) ~ H'(G, [Jg/u)'") #0
where G = nTm with 2 <n < 15 and n # 12

G H'(k,PicX) ~ H*(G, [Ja/u)'")
9T2 ~ (Cs)? 7)3Z
9T'5 ~ (C3)? x Cy 7.)37Z
9T7 ~ (C3)? x C3 7.)37
9T9 ~ (C3)? x Cy 7./37
9T11 ~ (C3)? % Cs 7/3Z
9T14 ~ (C3)* x Qs 7./37
9723 ~ ((C3)? X Qg) x Cs 7.)37Z
1077 ~ As 7.)27.
10726 ~ PSLz(Fy) ~ As 7.)27.
10732 ~ Ss 7.)27.
14730 ~ PSLz(F13) 7.)27.
1579 ~ (C5)? x C3 7./57

15714 ~ (C5)* % S 7/5Z
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Main theorems 1,2,3,4 (3/3)

» L : anumber field, K/k : a separable field extension of [K : k] = n.
> T = Rg}k(Gm) X : a smooth k-compactification of 7.

Theorem 3 ([HKY22, Theorem 1.18], [HKY23, Theorem 1.3])

Let 2 < n < 15 be an integer. For the cases in [HKY22, Table 1] (n # 12)
or [HKY23,Table 1] (n = 12),

II[(T) = 0 <= G = nT'm satisfies | some conditions | of G,

where G, is the decomposition group of G at v.

» By Ono's theorem III(T") ~ Obs(K/k), Theorem 3 gives a necessary
and sufficient condition for HNP for K/k with [K : k] < 15.

Theorem 4 ([HKY22, Theorem 1.17])

Assume that G = M,, < S,, (n = 11,12,22,23,24) is the Mathieu group
of degree n. Then H'(k,Pic X) = 0. In particular, II1(7") = 0.
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Examples of Theorem 3

Example (G = 874 ~ Dy, 8713 ~ Ay x Cy, 8T'14 ~ Sy,

8T37 ~ PSLy(F;), 1077 ~ As, 14T30 ~ PSLy(F13) )
III(T) = 0 <= Fv € V} such that V; < G,.

Example (G = 10726 ~ PSLy(Fy) )

III(T) = 0 <= Fv € V} such that Dy < G,

Example (G = 10732 ~ Sg < Sy)

II(T) = 0 <= v € V; such that

(i) Va < G, where Ng(Vy) == Cg x (Ca x C3) for the normalizer Nz (Vy)
of V4 in G with the normalizer G = Ng,,(G) ~ Aut(G) of G in Sig or
(ii) D4 < GU where D4 < [G, G] ~ Aﬁ.

» 45/165 subgroups Vi < G satisfy (i).
> 45/180 subgroups D4 < G satisfy (ii).
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Definition of some rationalities

» L/k : f.g. field extension. L is k-rational PN R kE(x1,...,xn).

Definition (stably rational)
L is called stably k-rational if L(y;,...,Ym) is k-rational.

Definition (retract rational)

Let k be an infinite field.

L is called retract k-rational if dk-algebra R C L such that

(i) L is the quotient field of R;

(i) 3f € k[xy, ..., xy,], Jk-algebra hom. ¢ : R — k[z1,...,z,][1/f] and
¥ k[xy,...,xn][1/f] — R satisfying ¥ o ¢ = 1p.

Definition (unirational)

L is called k-unirational if L C k(t1,...,t,).

> ‘“rational” = “stably rational” = “retract rational” = “unirational”.
P algebraic k-torus 1" is k-unirational.
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§2 Rationality problem for algebraic tori (1/3)

Problem (Rationality problem for algebraic tori)

Whether an algebraic torus T is k-rational?

» 32 algebraic tori with dim(7") = 1; the trivial torus G,, and
R, (G) with [K : k] = 2, which are k-rational.
» 313 algebraic tori with dim(7") = 2;
Theorem (Voskresenskii 1967)
All the algebraic tori 7" with dim(7") = 2 are k-rational.

» 373 algebraic tori with dim(7T") = 3;
Theorem (Kunyavskii 1990)

(i) 358 algebraic tori 7' with dim(7") = 3 which are k-rational;
(ii) 315 algebraic tori T' with dim(7") = 3 which are not k-rational;
(iii) T is k-rational < T is stably k-rational < T is retract k-rational.
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» 3710 algebraic tori with dim(7") = 4;
Theorem (Hoshi-Yamasaki 2017)

(1) 3487 algebraic tori T" with dim(7") = 4 which are stably k-rational;
(ii) 37 algebraic tori T" with dim(7") = 4 which are not stably k-rational
but retract k-rational;

(iii) 3216 algebraic tori T' with dim(T") = 4 which are not retract
k-rational.

» 36079 algebraic tori with dim(7") = 5;
Theorem (Hoshi-Yamasaki 2017)

(i) 33051 algebraic tori 7" with dim(7") = 5 which are stably k-rational;
(ii) 325 algebraic tori T' with dim(7") = 5 which are not stably k-rational
but retract k-rational;

(iii) 33003 algebraic tori T" with dim(7") = 5 which are not retract
k-rational.

> We do not know “k-rationality”.
» Voskresenskii's conjecture: any stably k-rational torus is k-rational
(Zariski problem). 16 /39



Rationality problem for algebraic tori 7" (2/3)

> T': algebraic k-torus
= 3 finite Galois extension L/k such that T x; L >~ (G, 1,)".

» G = Gal(L/k) where L is the minimal splitting field.

Category of algebraic k-tori which split/L dpality Category of G-lattices
(i.e. finitely generated Z-free Z[G]-module)
» T+ the character group X (7T') = Hom(T, G,,): G-lattice.
» T = Spec(L[M]%) which splits/L with X (T) ~ M <+ M: G-lattice.
> Tori of dimension 1 < elements of the set H'(G, GL(n,Z))
where G = Gal(k/k) since Aut(Gl},) = GL(n,Z).
» k-torus T' of dimension n is determined uniquely by the integral

representation h : G — GL(n,Z) up to conjugacy, and the group
h(G) is a finite subgroup of GL(n,Z).

> The function field of 7 ¢ L(M)%: invariant field.
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Rationality problem for algebraic tori 7" (3/3)

» L/k: Galois extension with G = Gal(L/k).
> M =D <<, Z uj: G-lattice with a Z-basis {u1, ..., ux}.
» G actson L(zy,...,x,) by
n
o(x;) = Hx?i’j, 1<i<n
j=1
for any o € G, when o(u;) = >77_; aijuj, a;; € Z.
» L(M):= L(x1,...,zy,) with this action of G.

identified
—

» | The function field of algebraic k-torus T L(M)E

Rationality problem for algebraic tori 7" (2nd form)

Whether L(M)® is k-rational?
(= purely transcendental over k?; L(M)% = k(3tq,...,3t,)?)

18/39



Flabby (Flasque) resolution (1/3)

> M: G-lattice, i.e. f.g. Z-free Z|G]-module.

Definition

(i) M is permutation FLUNSVES ®1<i<mZ|G/H];

(ii) M is stably permutation Ay @3P ~ P, P,P' : permutation;
(iii) M is invertible & MeIM ~P: permutation;
(
(

iv) M is coflabby €% H(H, M) =0 (VH < G);

v) M is flabby &% F-Y(H,F) =0 (VH < G).

> ‘“permutation” = “stably permutationl” = “invertible”
= “flabby and coflabby".

Definition (Commutative monoid of G-lattices mod. permutation)

My ~ M, PN M, ® P, ~ My ® P, (3P;,3P, : permutation)

= commutative monoid L : [M1] + [Ms] := [M; & M>],0 = [P].
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Flabby (Flasque) resolution (2/3)

Theorem (Endo-Miyata 1975, Colliot-Thélene and Sansuc 1977)
For any G-lattice M, there exists a short exact sequence of G-lattices
0O—+M-—=P—=F—=0

where P is permutation and F' is flabby.

> called a flabby resolution of the G-lattice M.
» [M]/ := [F]: flabby class of M (well-defined).

Theorem (Endo-Miyata 1973, Voskresenskii 1974, Saltman 1984)

(EM73) [M]/! = 0 <= L(M)% is stably k-rational.
(Vos74) [M]! = M1 <= L(M)®(x1,. .., 2m) =~ L(M)C (31,

c s Yn)-
(Salg4) [M]/! is invertible <= L(M)% is retract k-rational.
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Flabby (Flasque) resolution (3/3)

Theorem (Voskresenskii 1969)

Let k be a field and G = Gal(k/k). Let T be an algebraic k-torus, X be a
smooth k-compactification of 7" and X = X xj k. Then

07— Q—PicX =0

is an exact seq. of G-lattice where @ is permutation and Pic X is flabby.

> [T)#! = [Pic X]; flabby class of T.

Theorem (Endo-Miyata 1973, Voskresenskii 1974, Saltman 1984)

(EM73) [Pic X| = 0 <= T is stably k-rational.

(Vos74) [Pic X| = [Pic X'] <= T and T are stably bir. k-equivalent.
(Sal84) [Pic X] is invertible <=> T is retract k-rational.
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Voskresenskii's theorem (1969) (1/2)

Theorem (Voskresenskii 1969)

Let k be a global field, 7" be an algebraic k-torus and X be a smooth
k-compactification of T'. Then there exists an exact sequence

0— A(T) - H'(k,PicX)V — III(T) = 0
where MY = Hom(M, Q/Z) is the Pontryagin dual of M.

» The group A(T) := <Hver T(kv)) /m is called the kernel of the
weak approximation of T'.
> T : retract rational <= [T]f! = [Pic X] is invertible
= Pic X is flabby and coflabby
= HY(k,PicX)V=0 = A(T)=11(T)=0.
> when T = R\ (Gyn), by Ono's theorem I11(7") ~ Obs(K/k),

Kk
T : retract k-rational = Obs(K/k) = 0 (HNP for K/k holds).
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Voskresenskii's theorem (1969) (2/2)

> when T = Rg}k(Gm) by Ono's theorem III(T") ~ Obs(K/k),

T : retract k-rational = Obs(K/k) = 0 (HNP for K/k holds).

» when T = Rg}k(Gm)' T = Ja/u where
Jayug = (Ig/u)° = Hom(Ig/ g, Z) is the dual lattice of

Ig g = Ker(e) and € : Z|G/H] — Z is the augmentation map.

» (Hoshi-Yamasaki, 2018, Hasegawa-Hoshi-Yamasaki, 2020)

For [K : k] =n < 15 except 9727 ~ PSLy(Fs), the classificasion of

stably/retract rational Rg}k(([}m) was given.

» when T = R%}k(Gm)' T : retract k-rational = H'(k,Pic X) =0
(use this to get Theorem 2).
» H'(k,Pic X) ~ Br(X)/Br(k) ~ Bry(k(X)/k)/Br(k)

where Br(X) is the étale cohomological/Azumaya Brauer group of X
by Colliot-Thélene-Sansuc 1987.
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§3 Proof of Theorem 3

» We use Drakokhrust-Platonov's method :

Definition (first obstruction to the HNP)

Let L D K D k be a tower of finite extensions where L is normal over k.
We call the group

Obsy(L/K/k) = (Ngu(A%) NEX) / (Npm(AT) NE*)Ngyi(KX))

the first obstruction to the HNP for K /k corresponding to the tower
L>KDEk. y

» Obsi(L/K/k) = Obs(K/k) / (Np/i(Af) NEX).
» Obs;(L/K/k) is easier than Obs(K/k).

» We use GAP. The related algorithms/functions we made
are available from ’https://doi.0rg/10.57723/289563‘

(KURENAI: repository of Kyoto University).
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Drakokhrust-Platonov’s method (1/3)

Theorem (Drakokhrust-Platonov 1987)

Let L D K D k be a tower of finite extensions where L is Galois over k.
Let G = Gal(L/k) and H = Gal(L/K). Then

Obsy (L/K/k) ~ Ker ¢ / 1 (Ker 1))

where
H/[H, H] 28 G/6,q)
T@lewHH Tcp2:Gv<—>G
P | PHHH) | —2 @ Go/ICo, Gl
veEVE \ wlv vEVE

and 1o is defined by
1/}2(h[HUH Hw]) = l‘i_th:i[GU, Gv]
for h € H, = HNzGyz~! (z € G).
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Drakokhrust-Platonov’s method (2/3)

» )5 : the restriction of the map 3 to @w|v H,/[Hy, Hy).
» Obsi(L/K/k) = Ker v /o1(Ker 5" )1 (Ker ¢5).

Proposition (Drakokhrust-Platonov 1987)

(i) Gu <G, = pr(Kerdhy') C 1 (Kery?);

(ii) ¢1(Kery¥¥) = ([h,z] |h € HNzHz ',z € G)/[H, H};
(iii) Let H; SGZSG(lg’lSm), H;, < HNG,, ki:LGi and
K; = L. If Obs( l/k‘) =1forany 1 <i<m and

@H (Gs,7) = H3(G, Z)

is surjective, then Obs(K/k) = Obs;(L/K/k). In particular,
[K : k] = n is square-free = Obs(K/k) = Obs;(L/K/k).
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Drakokhrust-Platonov’s method (3/3)

Theorem (Drakokhrust 1989; Opolka 1980)

Let L> L D k be a tower of Galois extensions with G = Gal(L/k) and
H = Gal(L/K) which correspond to a central extension

1+ A—G—G—1with AN[G,G] ~ M(G) = H*(G,C*);
the Schur multiplier of G. Then
Obs(K /k) = Obs, (L/K/k).

In particular, if € is a Schur cover of G, i.e. A~ M(G), then
Obs(K/k) = Obs1(L/K/k).

> This theorem is useful, but G may become large!

» We use GAP. The related algorithms/functions we made
are available from ’https://doi.org/10.57723/289563

(KURENAI: repository of Kyoto University).
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Example : G = 127261 ~ (S3)* x Vj ~ S35 V4 (1/2)

Example (G = 127261 ~ (S3)* x Vi ~ S51 V4)

[II(7T") = 0 <= there exists a place v of k such that

(i) Va < G, where V4 N D(G) = 1 for the unique characteristic subgroup
D(G) = (C3)* % (C2)* < G,

(ii) Cy x Cy < G, where (C4 x C2) N D(G1) >~ C5 with

(G) = (C3)* % (C2)° <G,

( ) D, < G, where DyN (Sg) ~ (5 with (53)4 <G,

(iv) Qs < Gy, or

(v) (C2)2 x C3 < G,

» H'(k,PicX) ~ Z/27.

> |G| =6% x4 =5184.

> H3(G,7) ~ M(G) ~ (Z/2Z)®* : Schur multiplier of G.
G « too large | |G] = 6% x 4 x 24 = 82944,
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Example : G = 127261 ~ (S3)* x Vj ~ S35V} (2/2)

We can take a minimal stem ext. G = é/A’ (ie. A< Z(G)N|[G,G]) of
G in the commutative diagram

1 —— A=MG) — G ", G > 1
I | |
1 —— A=A/ — G=G/A ——— G 1

with A ~ Z/27. There exists 15 minimal stem extensions. Then we can
find exactly one (1/15) minimal stem extension which satisfies that

o H3(G,,2) 2% H=(G, 2)
is surjective. By Drakorust-Platonov's Proposition (iii), we have
ObS(K/k‘) = ObSl(Zj/K/k)
> Kervy = (Z/27)%.
> o (Ker i) = (2/22)%°.
> o (Ker ) = 7Z/27Z (819/891 cases) or 0 (72/891 cases).
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Sketch of the proof of Theorem 3 (1/2)

e For G = Gal(L/k) =nTm < S, and H = Gal(L/K) < G with
G : H|] = n, determine T = Rg}k(Gm) satisfying H'(k, Pic X) # 0.
(Make Table 1)

» We shoud treat n = (4,6),8,9, 10, 12, 14, 15 because
H'(k,Pic X) = 0 when n = p: prime.

e For the cases in Tablel, determine III(7") ~ Obs(K/k).
(2-1)
(a) n=pq (p # q : primes) — Obs(K/k) =~ Obs1(L/K/k).
(b) otherwise — Find a Schur cover G. N
Then we get L/k s.t. Obs(K/k) ~ Obsy(L/K/k).
(2-2) Calculation Obs, (L/K/k) for suitable L C L.
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Sketch of the proof of Theorem 3 (2/2)

(2-2) Calculation Obs;(L/K/k).
By Drakokhrust-Platonov's Thmeorem,

Obsy(L/K/k) ~ Ker 1 /o1 (Ker ¢3") o1 (Ker 1),

H/[H, H] %, G/[G,G]
D (@Hw/[Hw,Hw]) —2 5 P Gu/IGy, Gl
veVy \ wlv veVy

We compute the following:

(i) Kery;

(ii) ¢1(Keryy¥) = ([h,z] | h € HNzHz™',2 € G)/[H, H};
(by Drakokhrust-Platonov's Proposition (ii))

(iii) ¢1(Keres) (in terms of G,).
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84 Application 1: R-equivalence in algebraic k-tori (1/2)

Definition ( R-equivalence, Manin 1974, in Cubic Forms)

» f:Z — X : rational map of k-varieties covers a point x € X (k).
L% there exists a point z € Z(k) such that f is defined at z and
f(z) =x.

> x,y € X(k) are R-equivalent.

L there exist a fin. seq. of points x = z1,...,x, = y and rational
maps fi : P! — X (1 <i<r —1) such that f; covers z;, T;1.

Theorem (Colliot-Thélene and Sansuc 1977)

Let k be a field, T' be an algebraic k-torusand 1 - S —- @ — T — 1 be a
flabby resolution of 7. Then T'(k) = HY(k,T) LN H'(k, S) induces

T(k)/R~ H'(k,S).
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Application 1: R-equivalence in algebraic k-tori (2/2)

> Let k be a local field. Using Tate-Nakayama duality, we have
T(k)/R ~ H'(k,S) ~ H'(k,S) ~ H' (k, Pic X)

for norm one tori 7' = Rg}k((@m) where [K : k| =n < 15.

Theorem ([HKY22], [HKY23])

Let 2 < n < 15 be an integer. Let k be a local field, K/k be a separable

field extension of degree n, and T' = Rg}k((}m) be the norm one torus of
K/k. Then, T'(k)/R ~ H'(k,Pic X) # 0 <= G is given as in [HKY22,

Table 1] of [HKY23, Table 1].
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Application 2: Tamagawa number of k-tori (1/2)

Theorem (Ono 1963)

Let k& be a global field, T be an algebraic k-torus and 7(T") be the
Tamagawa number of 7. Then

In particular, if T is retract k-rational, then 7(T) = |H'(k,T)|.

> Let k be a number field, K/k be a field extension of degree n,

T= Rg}k((@m) be the norm one torus of K/k. By Ono's formula, we

can calculate Tamagawa number of T explicitly.
» Example. G = 1579 = 7(T) = g or 3 because III(T") < Z/5Z.
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Application 2: Tamagawa number of k-tori (2/2)

> 7(T) = |H'(k,T)|/|II(T)].

Theorem ([HKY22, Theorem 8.2])

Let k& be a global field and T be an algebraic k-torus of dimension 4 (resp.
5). Among 710 (reps. 6079) cases of algebraic k-tori T', if T' is one of the
688 (resp. 5805) cases with H'(k,Pic X) = 0, then 7(T) = |H'(k,T)|.

Theorem ([HKY22, Theorem 8.3], [HKY23, Remark 1.4])

Let 2 < n < 15 be an integer. Let k be a number field, K/k be a field
extension of degree n, L/k be the Galois closure of K/k, and

T = R),(Gyn) be the norm one torus of K/k. Then 7(T) = |H!(k, T)|

except for the cases in [HKY22, Table 1] and [HKY23, Table 1]. For the
exceptional cases, we have 7(T') = [HY(G, Jg,u)|/|II(T)|.
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Sporadic simple group cases: Mj; and J; (1/3)

» L : a numberl field.
» K/k : a separable field extension of [K : k] = n (not fixed).
» L/k : Galois closure of K/k with G = Gal(L/k) and
H = Gal(L/K) < G with [G : H] =n.
> T =R, (Gy) with dim(T) =n — 1.
» X : a smooth k-compactification of T'.
> G~ My with |G| =7920 =2%.3%2.5.11 or
G ~ J; with |G| = 175560 =23-3-5-7-11-19
= M(G) ~ H3(G,Z) = 0 : Schur multiplier of G.

Theorem ([HKY2, Theorem 1.6]) G ~ My,

Asume that G ~ M;; and H = Gal(L/K) < G.
0 if Syly(H) # Cs,Cl4,Cs,

H'(k,PicX) = '
Z/27 if Syly(H) ~ Cy, Cy, Cs.
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Sporadic simple group cases: Mj; and J; (2/3)

Theorem ([HKY2, Theorem 1.8]) G ~ My,

Asume that G ~ M;; and H = Gal(L/K) < G.

(1) If Syly(H) % C3,C4, Cg, then A(T) ~ II(T) ~ H'(k,Pic X) = 0.
(2) If Syl,(H) ~ Cy,Cy, Cs, then either

(a) A(T) =0 and III(T) ~ H'(k, Pic X) ~ Z/27Z or

(b) A(T) ~ H'(k,Pic X) ~ Z/27 and III(T) = 0,

and the condition (b) is equivalent to:

(c) there exists a place v of k such that

‘/4 SGU or QS SG’U if Sle(H) :CQv
D4 < Gv or QS < Gv if Sy]Q(H) ~ 04,
QDs < Gy if Syly(H) ~ Cs

where G, is the decomposition group of G at a place v of k.

> 0— A(T) — H'(k,Pic X)V — HII(T) — 0 (Voskresenskii 1969).
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Sporadic simple group cases: Mj; and J; (3/3)

Theorem ([HKY2, Theorem 1.7]) G ~ J;
Asume that G ~ J; and H = Gal(L/K) < G.
0 if Syl(H)# O,

H'(k,PicX) = .
Z/2Z if Syly(H) ~ Cs.

Theorem ([HKY2, Theorem 1.9]) G ~ J;

Asume that G ~ J; and H = Gal(L/K) < G.

(1) If Syly(H) 2 Cy, then A(T) ~ II(T) ~ H'(k,Pic X) = 0.
(2) If Syly(H) ~ Cy, then either

(a) A(T) =0 and III(T) ~ H'(k,Pic X) ~ Z/2Z or

(b) A(T) ~ H'(k,Pic X) ~ Z/27 and III(T) = 0,

and the condition (b) is equivalent to:

(c) there exists a place v of k such that V; < G, where G, is the
decomposition group of GG at a place v of k.
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Proof: Macedo and Newton [MN22, Corollary 3.4]

» L/K/E: a tower of finite extensions with L/k Galois.
» G =Gal(L/k) and H = Gal(L/K) < G.

> H, =Syl,(H) and K, = L*».

» X and X,,: smooth compactifications of

T= R%}k((@m) and T}, = R%/k((@m) respectively.

Theorem (Macedo and Newton [MN22, Corollary 3.4])

We obtain a commutative diagram with exact rows as follows:

0— A(T) () — H'(k, Pic 7){@ —— 1I(T) ) —0

0 — A(T}) () — H*(k, Pic Yp)(vp) — II(T},) () — 0

where (p) stands for the p-primary part and the vertical isomorphisms are
induced by the natural inclusion 7" < T,.
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