Cubic Thue equations and simplest cubic fields

Akinari Hoshi Niigata University (Japan)

Journées Algophantiennes Bordelaises 2017, Bordeaux 8 June, 2017 Cubic Thue equations and simplest cubic fields

Akinari Hoshi Niigata University (Japan)

§1 Introduction: known results of cubic case

§2 Main thms: Thm C and Thm S (Correspondence and Solutions)

3 Thm O₁, O₂: Okazaki's Theorem

 $\begin{array}{l} 4 \text{ Thm } \mathsf{C} + \mathsf{Thm} \\ \mathsf{D}_1 \Rightarrow \mathsf{Thm } \mathsf{S} \end{array}$

Table of contents

 $\S1$ Introduction: known results of cubic case

§2 Main thms: Thm C and Thm S (Correspondence and Solutions)

 $\S3$ Thm O₁, O₂: Okazaki's Theorem

- §4 Thm C+Thm $O_1 \Rightarrow$ Thm S
- §5 Higher degree cases

Aim: To provide NEW METHOD to solve Thue equations! (splitting field method)

- On correspondence between solutions of a family of cubic Thue equations and isomorphism classes of the simplest cubic fields,
 - J. Number Theory 131 (2011) 2135-2150.

Cubic Thue equations and simplest cubic fields

Akinari Hoshi Niigata University (Japan)

§1 Introduction: known results of cubic case

§2 Main thms: Thm C and Thm S (Correspondence and Solutions)

 $\S3$ Thm O₁, O₂: Okazaki's Theorem

 $\begin{array}{l} 4 \text{ Thm } \mathsf{C} + \mathsf{Thm} \\ \mathsf{D}_1 \Rightarrow \mathsf{Thm } \mathsf{S} \end{array}$

§5 Higher degree

$\S1$ Introduction: known results of cubic case

We consider Thomas' family of cubic Thue equations

$$F_m^{(3)}(X,Y) := X^3 - mX^2Y - (m+3)XY^2 - Y^3 = \lambda$$

for $m \in \mathbb{Z}$ and $\lambda \in \mathbb{Z}$ $(\lambda \neq 0)$.

- ► For fixed $m, \lambda \in \mathbb{Z}$, $\exists^{<\infty} (x, y) \in \mathbb{Z}^2$ s.t. $F_m^{(3)}(x, y) = \lambda$ (Thue's theorem, 1909)
- ► The splitting fields L⁽³⁾_m := Spl_Q F⁽³⁾_m(X, 1) are totally real cyclic cubic fields called Shanks' simplest cubic.
- We may assume that $-1 \le m$ and $0 < \lambda$ because

$$\begin{split} F^{(3)}_{-m-3}(X,Y) &= F^{(3)}_m(-Y,-X), \\ &-F^{(3)}_m(X,Y) = F^{(3)}_m(-X,-Y). \end{split}$$

$$\blacktriangleright \ L^{(3)}_m &= L^{(3)}_{-m-3} \ (m \in \mathbb{Z}). \end{split}$$

Cubic Thue equations and simplest cubic fields

Akinari Hoshi Niigata University (Japan)

§1 Introduction: known results of cubic case

§2 Main thms: Thm C and Thm S (Correspondence and Solutions)

3 Thm O₁, O₂: Okazaki's Theorem

4 Thm C+Thm $D_1 \Rightarrow$ Thm S

$$F_m^{(3)}(X,Y) := X^3 - mX^2Y - (m+3)XY^2 - Y^3 = \lambda$$

for $m \in \mathbb{Z}$ and $\lambda \in \mathbb{Z}$ $(\lambda \neq 0)$.

- ► $\lambda = a^3$ for some $a \in \mathbb{Z}$, $F_m^{(3)}(x, y) = a^3$ has three trivial solutions (a, 0), (0, -a), (-a, a), i.e. xy(x + y) = 0.
- ▶ If $(x, y) \in \mathbb{Z}^2$ is solution, then (y, -x y), (-x y, x)are also solutions because $F_m^{(3)}(x, y)$ is invariant under the action $x \longmapsto y \longmapsto -x - y \longmapsto x$ of order three.

► 3 | #{(x,y) |
$$F_m^{(3)}(x,y) = \lambda$$
}.

• disc_X
$$F_m^{(3)}(X,1) = (m^2 + 3m + 9)^2$$
.

For λ = 1, Thomas and Mignotte solved completely a family of the equations (∀m) as follows:

Cubic Thue equations and simplest cubic fields

Akinari Hoshi Niigata University (Japan)

§1 Introduction: known results of cubic case

§2 Main thms: Thm C and Thm S (Correspondence and Solutions)

 $\S3$ Thm O₁, O₂: Okazaki's Theorem

 $\begin{array}{l} 4 \text{ Thm C+Thm} \\ D_1 \Rightarrow \text{Thm S} \end{array}$

Thomas' theorem for a family of Thue equations

$$F_m^{(3)}(X,Y) = X^3 - mX^2Y - (m+3)XY^2 - Y^3 = 1$$

By using Baker's theory, Thomas proved:

Theorem (Thomas 1990)

If $-1 \le m \le 10^3$ or $1.365 \times 10^7 \le m$, then all solutions of $F_m^{(3)}(x,y) = 1$ are given by trivial solutions (x,y) = (0,-1), (-1,1), (1,0) for $\forall m$ and additionally

$$\begin{split} (x,y) &= (-1,-1), (-1,2), (2,-1) & \text{ for } m = -1, \\ (x,y) &= (5,4), (4,-9), (-9,5) & \text{ for } m = -1, \\ (x,y) &= (2,1), (1,-3), (-3,2) & \text{ for } m = 0, \\ (x,y) &= (-7,-2), (-2,9), (9,-7) & \text{ for } m = 2. \end{split}$$

Theorem (Mignotte 1993)

For the remaining case, \exists only trivial solutions.

Cubic Thue equations and simplest cubic fields

Akinari Hoshi Niigata University (Japan)

§1 Introduction: known results of cubic case

§2 Main thms: Thm C and Thm S (Correspondence and Solutions)

 $\S3$ Thm O $_1$, O $_2$: Okazaki's Theorem

4 Thm C+Thm $D_1 \Rightarrow$ Thm S

Mignotte-Pethö-Lemmermeyer (1996)

$$F_m^{(3)}(X,Y) = X^3 - mX^2Y - (m+3)XY^2 - Y^3 = \lambda$$

By using Baker's theory, they proved:

Theorem Mignotte-Pethö-Lemmermeyer (1996) Let $m \ge 1649$ and $\lambda > 1$. If $F_m^{(3)}(x, y) = \lambda$, then $\log |y| < c_1 \log^2(m+3) + c_2 \log(m+1) \log \lambda$

where

$$c_{1} = 700 + 476.4 \left(1 - \frac{1432.1}{m+1}\right)^{-1} \left(1.501 - \frac{1902}{m+1}\right) < 1956.4,$$

$$c_{2} = 29.82 + \left(1 - \frac{1432.1}{m+1}\right)^{-1} \frac{1432}{(m+1)\log(m+1)} < 30.71.$$

Example (much smaller than previous bounds)

• If m = 1649 and $\lambda = 10^9$, then $|y| < 10^{48698}$.

Cubic Thue equations and simplest cubic fields

Akinari Hoshi Niigata University (Japan)

§1 Introduction: known results of cubic case

§2 Main thms: Thm C and Thm S (Correspondence and Solutions)

3 Thm O₁, O₂: Okazaki's Theorem

 $\begin{array}{l} \text{4 Thm C+Thm} \\ 1 \Rightarrow \text{Thm S} \end{array}$

35 Higher degree

Mignotte-Pethö-Lemmermeyer (1996)

$$F_m^{(3)}(X,Y) = X^3 - mX^2Y - (m+3)XY^2 - Y^3 = \lambda$$

Theorem Mignotte-Pethö-Lemmermeyer (1996) For $-1 \le m$ and $1 < \lambda \le 2m + 3$, all solutions to $F_m^{(3)}(x,y) = \lambda$ are given by trivial solutions for $\lambda = a^3$ and $(x,y) \in \{(-1,2), (2,-1), (-1,-1), (-1,-1), (-1,-1), (-m+2), (m+2,-m-1), (-m-1,-1)\}$

for $\lambda = 2m + 3$, except for m = 1 in which case \exists extra solutions:

$$(x,y) \in \{(1,-4), (-4,3), (3,1), (3,-11), (-11,8), (8,3)\}$$

for $\lambda = 5 \ (= 2m + 3).$

Cubic Thue equations and simplest cubic fields

Akinari Hoshi Niigata University (Japan)

§1 Introduction: known results of cubic case

§2 Main thms: Thm C and Thm S (Correspondence and Solutions)

 $\S3$ Thm O₁, O₂: Okazaki's Theorem

4 Thm C+Thm $D_1 \Rightarrow$ Thm S

Lettl-Pethö-Voutier (1999)

Let θ_2 be a root of $f_m(X) := F_m(X, 1)$ with $-\frac{1}{2} < \theta_2 < 0$. By using hypergeometric method, they proved:

Theorem Lettl-Pethö-Voutier (1999)

Let $m \geq 1$ and assume that $(x, y) \in \mathbb{Z}^2$ is a primitive solution to $|F_m^{(3)}(x,y)| \leq \lambda(m)$ with $-\frac{y}{2} < x \leq y$ and $\frac{8\lambda(m)}{2m+3} \leq y$ where $\lambda(m): \mathbb{Z} \to \mathbb{N}$. Then (i) x/y is a convergent to θ_2 , and we have either y = 1 or $\left|\frac{x}{u}-\theta_2\right|<\frac{\lambda(m)}{u^3(m+1)}$ and $y\geq m+2$. (ii) Define $\kappa = \frac{\log(\sqrt{m^2 + 3m + 9}) + 0.83}{\log(m + \frac{3}{2}) - 1.3}.$ If $m \ge 30$, then $y^{2-\kappa} < 17.78 \cdot 2.59^{\kappa} \lambda(m)$.

Example (comparing with MPL (1996))

► For m = 1649, $|y| < 635\lambda(m)^{1.54}$ instead of $|y| < 10^{46649}\lambda(m)^{288}$.

$\S2$ Main thms: Thm C and Thm S

$$f_m^{(3)}(X) := F_m^{(3)}(X, 1), \quad L_m^{(3)} := \operatorname{Spl}_{\mathbb{Q}} f_m^{(3)}(X)$$

Go back to

Theorem (Thomas 1990, Mignotte 1993) All solutions of $F_m^{(3)}(x, y) = 1$ are given by trivial solutions (x, y) = (0, -1), (-1, 1), (1, 0) for $\forall m$ and additionally (x, y) = (-1, -1), (-1, 2), (2, -1)for m = -1, (x, y) = (5, 4), (4, -9), (-9, 5)for m = -1, (x, y) = (2, 1), (1, -3), (-3, 2)for m=0, (x, y) = (-7, -2), (-2, 9), (9, -7)for m=2. Q. Why $\exists 12$ (non-trivial) solutions? meaning? • $L_{1}^{(3)} = L_{12}^{(3)}, L_{1}^{(3)} = L_{1250}^{(3)}, L_{0}^{(3)} = L_{54}^{(3)}, L_{2}^{(3)} = L_{2320}^{(3)}$

Splitting fields $L_m^{(3)}$ know solutions!

Cubic Thue equations and simplest cubic fields

Akinari Hoshi Niigata University (Japan)

§1 Introduction: known results of cubic case

§2 Main thms: Thm C and Thm S (Correspondence and Solutions)

 $\S3$ Thm O $_1$, O $_2$: Okazaki's Theorem

 $\begin{array}{l} 4 \text{ Thm C+Thm} \\ D_1 \Rightarrow \text{Thm S} \end{array}$

$$\begin{split} f_m^{(3)}(X) &:= F_m^{(3)}(X,1), \quad L_m^{(3)} := \operatorname{Spl}_{\mathbb{Q}} f_m^{(3)}(X) \\ & \cdot L_m^{(3)} = L_{-m-3}^{(3)} \text{ for } m \in \mathbb{Z}. \ \operatorname{disc}_X f_m^{(3)} = (m^2 + 3m + 9)^2. \\ \hline \\ & \mathsf{L}_m^{(3)} = L_{-m-3}^{(3)} \text{ for } m \in \mathbb{Z}. \ \operatorname{disc}_X f_m^{(3)} = (m^2 + 3m + 9)^2. \\ \hline \\ & \mathsf{Theorem C (Correspondence)} \\ & \mathsf{For a given } m \in \mathbb{Z}, \\ & \exists (x,y) \in \mathbb{Z}^2 \text{ with } xy(x+y) \neq 0 \text{ s.t. } F_m^{(3)}(x,y) = \lambda \\ & \mathsf{for some } \lambda \in \mathbb{N} \text{ with } \lambda \mid m^2 + 3m + 9 \\ & \Leftrightarrow \exists n \in \mathbb{Z} \setminus \{m, -m - 3\} \text{ s.t. } L_m^{(3)} = L_n^{(3)}. \\ & \mathsf{Moreover integers } n, m \text{ and } (x,y) \in \mathbb{Z}^2 \text{ satisfy} \\ & N = m + \frac{(m^2 + 3m + 9)xy(x+y)}{F_m^{(3)}(x,y)} \\ & \mathsf{where } N \text{ is either } n \text{ or } -n - 3. \end{split}$$

 (⇒) Using Theorem (Morton 1994, Chapman 1996, Hoshi-Miyake 2009) (⇐) Using resultant method.

For a fixed $m \in \mathbb{Z}$, we obtain the correspondence

$$\exists n \in \mathbb{Z} \setminus \{m, -m - 3\} \text{ s.t. } L_m^{(3)} = L_n^{(3)}$$
(I)

$$1: 3 \ \ \text{Theorem C}$$

$$\exists (x, y) \in \mathbb{Z}^2 \text{ with } xy(x + y) \neq 0$$

s.t.
$$F_m^{(3)}(x, y) = \lambda \mid m^2 + 3m + 9$$
(II)

• disc
$$(F_m^{(3)}(X,Y)) = (m^2 + 3m + 9)^2$$
.

Cubic Thue equations and simplest cubic fields

Akinari Hoshi Niigata University (Japan)

1 Introduction: nown results of ubic case

§2 Main thms: Thm C and Thm S (Correspondence and Solutions)

 $\S3$ Thm O₁, O₂: Okazaki's Theorem

 $\begin{array}{l} \text{Thm C+Thm} \\ 1 \Rightarrow \text{Thm S} \end{array}$

R. Okazaki's theorems O_1 , O_2

Okazaki announced the following theorems in 2002. He use his result on gaps between sol's (2002) which is based on Baker's theory: Laurent-Mignotte-Nesterenko (1995).

R. Okazaki, Geometry of a cubic Thue equation, Publ. Math. Debrecen 61 (2002) 267–314.

Theorem O₁ (Okazaki 2002+ α) For $-1 \le m < n \in \mathbb{Z}$, if $L_m^{(3)} = L_n^{(3)}$ then $m \le 35731$.

Theorem O₂ (Okazaki unpublished) For $-1 \le m < n \in \mathbb{Z}$, if $L_m^{(3)} = L_n^{(3)}$ then $m, n \in \{-1, 0, 1, 2, 3, 5, 12, 54, 66, 1259, 2389\}$.

In particular, we get

$$\begin{array}{c} \begin{array}{c} L_{-1}^{(3)} = L_{5}^{(3)} = L_{12}^{(3)} = L_{1259}^{(3)}, \\ L_{0}^{(3)} = L_{3}^{(3)} = L_{54}^{(3)}, & L_{1}^{(3)} = L_{66}^{(3)}, & L_{2}^{(3)} = L_{2389}^{(3)}. \end{array} \end{array}$$

Cubic Thue equations and simplest cubic fields

Akinari Hoshi Niigata University (Japan)

§1 Introduction: known results of cubic case

§2 Main thms: Thm C and Thm S (Correspondence and Solutions)

§3 Thm O₁, O₂: Okazaki's Theorem

 $\begin{array}{l} 4 \text{ Thm } \mathsf{C} + \mathsf{Thm} \\ \mathsf{D}_1 \Rightarrow \mathsf{Thm } \mathsf{S} \end{array}$

Thomas' $4 \times 3 = 12$ non-trivial solutions for $\lambda = 1$

(x,y) = (-1,-1), (-1,2), (2,-1) for	m=-1,
$(x,y)=(5,4),(4,-9),(-9,5) \qquad \qquad {\rm for} \qquad \qquad$	m = -1,
$(x,y)=(2,1),(1,-3),(-3,2) \qquad \qquad {\rm for} \qquad \qquad$	m = 0,
$(x,y)=(-7,-2),(-2,9),(9,-7) \qquad \ {\rm for} \qquad \qquad $	m=2

correspond to

L

$$L_{-1}^{(3)} = L_{12}^{(3)}, \quad L_{-1}^{(3)} = L_{1259}^{(3)}, \quad L_{0}^{(3)} = L_{54}^{(3)}, \quad L_{2}^{(3)} = L_{2389}^{(3)}.$$

$$L_{-1}^{(3)} = L_{5}^{(3)}, \quad L_{0}^{(3)} = L_{3}^{(3)}, \quad L_{1}^{(3)} = L_{66}^{(3)}, \quad L_{3}^{(3)} = L_{54}^{(3)},$$

correspond to $7 \times 3 = \exists 21$ (non-trivial) solutions for $\lambda > 1$. $L_m^{(3)} = L_n^{(3)}$ (33 solutions), $L_n^{(3)} = L_m^{(3)}$ (33 solutions)

Conclusion: in total $\exists 66$ solutions.

Cubic Thue equations and simplest cubic fields

Akinari Hoshi Niigata University (Japan)

§2 Main thms: Thm C and Thm S (Correspondence and Solutions)

Theorem S: Solutions

$$F_m^{(3)}(X,Y) = X^3 - mX^2Y - (m+3)XY^2 - Y^3 = \lambda$$

By Theorem C and Theorem O_2 , we get:

Theorem S (Solutions)

For
$$m \ge -1$$
,
all integer solutions $(x, y) \in \mathbb{Z}^2$ with $xy(x+y) \ne 0$
to $F_m^{(3)}(x, y) = \lambda$ with $\lambda \in \mathbb{N}$ and $\lambda \mid m^2 + 3m + 9$
are given in Table 1. (66 solutions)

Cubic Thue equations and simplest cubic fields

Akinari Hoshi Niigata University (Japan)

§1 Introduction: known results of cubic case

§2 Main thms: Thm C and Thm S (Correspondence and Solutions)

3 Thm O₁, O₂: Okazaki's Theorem

4 Thm C+Thm $D_1 \Rightarrow$ Thm S

§5 Higher degree

Table 1	
-----------	--

m	n	-n - 3	2m + 3	λ	$m^2 + 3m + 9$	(x, y)
-1	-15	12	1	1	7	(-1,2), (2,-1), (-1,-1)
-1	1259	-1262	1	1	7	(4, -9), (-9, 5), (5, 4)
-1	5	$^{-8}$	1	7	7	(1, -3), (-3, 2), (2, 1)
0	54	-57	3	1	9	(1, -3), (-3, 2), (2, 1)
0	-6	3	3	3	9	(-1,2), (2,-1), (-1,-1)
1	-69	66	5	13	13	(-2,7), (7,-5), (-5,-2)
2	-2392	2389	7	1	19	(-2,9), (9,-7), (-7,-2)
3	-3	0	9	9	27	(-1,2), (2,-1), (-1,-1)
3	-57	54	9	9	27	(-1,5), (5,-4), (-4,-1)
5	1259	-1262	13	49	49	(3, -22), (-22, 19), (19, 3)
5	-15	12	13	49	49	(-1,5), (5,-4), (-4,-1)
5	-1	-2	13	49	49	(-1, -2), (-2, 3), (3, -1)
12	-2	-1	27	27	$3^3 \cdot 7$	(-1, 2), (2, -1), (-1, -1)
12	-1262	1259	27	27	$3^3 \cdot 7$	(-1, 14), (14, -13), (-13, -1)
12	-8	5	27	$3^3 \cdot 7$	$3^3 \cdot 7$	(-1,5), $(5,-4)$, $(-4,-1)$
54	0	-3	111	7^3	$3^2 \cdot 7^3$	(-1, -2), $(-2, 3)$, $(3, -1)$
54	-6	3	111	$3 \cdot 7^3$	$3^2 \cdot 7^3$	(-1,5), $(5,-4)$, $(-4,-1)$
66	-4	1	135	$3^{3} \cdot 13^{2}$	$3^{3} \cdot 13^{2}$	(-2,7), $(7,-5)$, $(-5,-2)$
1259	-1	-2	2521	61^{3}	$7 \cdot 61^{3}$	(-4, -5), (-5, 9), (9, -4)
1259	-15	12	2521	61^{3}	$7 \cdot 61^3$	(-1,14), (14, -13), (-13, -1)
1259	5	-8	2521	$7 \cdot 61^{3}$	$7 \cdot 61^{3}$	(-3, -19), (-19, 22), (22, -3)
2389	-5	2	4781	67^{3}	$19 \cdot 67^{3}$	(-2,9), (9,-7), (-7,-2)

$\S3$ Theorem O₁: Okazaki's Theorem

For $m \in \mathbb{Z}$, we take

$$F_m^{(3)}(X,Y) = (X - \theta_1^{(m)}Y)(X - \theta_2^{(m)}Y)(X - \theta_3^{(m)}Y),$$

and
$$L_m = \mathbb{Q}(\theta_1^{(m)})$$
. We see
 $-2 < \theta_3^{(m)} < -1, \quad -\frac{1}{2} < \theta_2^{(m)} < 0, \quad 1 < \theta_1^{(m)}.$
Take the exterior product

$$\boldsymbol{\delta} = {}^{t}(\delta_{1}, \delta_{2}, \delta_{3}) := \mathbf{1} \times \boldsymbol{\theta} = {}^{t}(\theta_{2} - \theta_{3}, \theta_{3} - \theta_{1}, \theta_{1} - \theta_{2})$$

where $\mathbf{1} = {}^{t}(1, 1, 1)$, $\boldsymbol{\theta} = {}^{t}(\theta_1, \theta_2, \theta_3) \in \mathbb{R}^3$.

The norm $N(\boldsymbol{\delta}) = \delta_1 \delta_2 \delta_3 = -\sqrt{D}$ where $D = ((\theta_1 - \theta_2)(\theta_1 - \theta_3)(\theta_2 - \theta_3))^2$.

Cubic Thue equations and simplest cubic fields

Akinari Hoshi Niigata University (Japan)

§1 Introduction: known results of cubic case

§2 Main thms: Thm C and Thm S (Correspondence and Solutions)

§3 Thm O₁, O₂: Okazaki's Theorem

34 Thm C+Thm $O_1 \Rightarrow \text{Thm S}$

§5 Higher degree

The canonical lattice

$$\mathcal{L}^{
atural} = oldsymbol{\delta}(\mathbb{Z}\mathbf{1} + \mathbb{Z}oldsymbol{ heta})$$

of F is orthogonal to 1, where the product of vectors is the component-wise product. We consider the curve \mathcal{H}

$$\mathcal{H}: z_1 + z_2 + z_3 = 0, \quad z_1 z_2 z_3 = \sqrt{D}.$$

on the plane $\Pi = \{^t(z_1, z_2, z_3) \in \mathbb{R}^3 \mid z_1 + z_2 + z_3 = 0\}.$ For (x, y) with $F_m^{(3)}(x, y) = 1$, we see $x\mathbf{1} - y\boldsymbol{\theta} \in (\mathcal{O}_{L_m}^{\times})^3$ because $N(x\mathbf{1} - y\boldsymbol{\theta}) = 1$. Then we get a bijection

$$(x, y) \longleftrightarrow \mathbf{z} = \mathbf{\delta}(-x\mathbf{1} + y\mathbf{\theta}) \in \mathcal{L}^{\natural} \cap \mathcal{H}$$

via $N(\mathbf{z}) = N(\mathbf{\delta})N(-x\mathbf{1} + y\mathbf{\theta}) = (-\sqrt{D})(-1) = \sqrt{D}$. Let
 $\log : (\mathbb{R}^{\times})^3 \ni {}^t(z_1, z_2, z_3) \mapsto {}^t(\log |z_1|, \log |z_2|, \log |z_3|) \in \mathbb{R}^3$
be the logarithmic map. By Dirichlet's unit theorem, the set

$$\mathcal{E}(L_m) := \{ \log \boldsymbol{\varepsilon} \, | \, \boldsymbol{\varepsilon} = {}^t(\varepsilon, \varepsilon^{\sigma}, \varepsilon^{\sigma^2}), \varepsilon \in \mathcal{O}_{L_m}^{\times} \}$$

is a lattice of rank 2 on the plane $\Pi_{\log} := \{ {}^t(u_1, u_2, u_3) \in \mathbb{R}^3 \, | \, u_1 + u_2 + u_3 = 0 \}.$ Cubic Thue equations and simplest cubic fields

Akinari Hoshi Niigata University (Japan)

§1 Introduction: known results of cubic case

§2 Main thms: Thm C and Thm S (Correspondence and Solutions)

§3 Thm O₁, O₂: Okazaki's Theorem

34 Thm C+Thm $O_1 \Rightarrow \text{Thm S}$

We use the modified logarithmic map

$$\phi: (\mathbb{R}^{\times})^3 \ni \boldsymbol{z} \mapsto \boldsymbol{u} = {}^t(u_1, u_2, u_3) = \log(D^{-1/6}\boldsymbol{z}) \in \mathbb{R}^3.$$

For (x, y) with $F_m^{(3)}(x, y) = 1$ and $\boldsymbol{z} = \boldsymbol{\delta}(-x \mathbf{1} + y \boldsymbol{\theta}) \in \mathcal{L}^{\natural} \cap \mathcal{H},$ $\boldsymbol{u} = \phi(\boldsymbol{z}) = \phi(\boldsymbol{\delta}(-x \mathbf{1} + y \boldsymbol{\theta})) \in \phi(\boldsymbol{\delta}) + \mathcal{E}(L_m) \subset \Pi_{\log};$ the displaced lattice, since $-x \mathbf{1} + y \boldsymbol{\theta} \in (\mathcal{O}_{L_m}^{\times})^3$. We can show

•
$$3\phi(\boldsymbol{\delta}) \in \mathcal{E}(L_m).$$

We now assume that $L_m = L_n$ for $-1 \le m < n$ and take a common trivial solution (x, y) = (1, 0). Then

$$\boldsymbol{u}^{(m)}, \boldsymbol{u}^{(n)} \in \mathcal{M} = \mathbb{Z} \phi(\boldsymbol{\delta}^{(m)}) + \mathbb{Z} \phi(\boldsymbol{\delta}^{(n)}) + \mathcal{E}(L_m) \subset \Pi_{\log}$$

where \mathcal{M} is a lattice with discriminant $d(\mathcal{M}) = d(\mathcal{E}(L_m))$, $\frac{1}{3}d(\mathcal{E}(L_m))$ or $\frac{1}{9}d(\mathcal{E}(L_m))$. We may get: $\blacktriangleright d(\mathcal{M}) = d(\mathcal{E}(L_m))$ or $\frac{1}{3}d(\mathcal{E}(L_m))$. Cubic Thue equations and simplest cubic fields

Akinari Hoshi Niigata University (Japan)

§1 Introduction: known results of cubic case

§2 Main thms: Thm C and Thm S (Correspondence and Solutions)

 $\S3$ Thm O₁, O₂: Okazaki's Theorem

 $\begin{array}{l} 4 \text{ Thm C+Thm} \\ D_1 \Rightarrow \text{Thm S} \end{array}$

We adopt local coordinates for $\mathcal{C}:=\phi(\mathcal{H})\subset\varPi_{\mathrm{log}}$ by

$$s = s(\boldsymbol{u}) := \frac{u_2 - u_3}{\sqrt{2}}, \quad t = t(\boldsymbol{u}) := -\frac{\sqrt{6}u_1}{2}.$$

Then

$$s = \sqrt{2} \operatorname{arcsinh}\left(\exp\left(-\sqrt{6}t/2\right)/2\right), \quad 0 \le s \le \sqrt{3}t.$$

Example

m	-1	0	1	2	3	4	5
s	0.4163	0.3016	0.2263	0.1773	0.1444	0.1212	0.1042
t	0.4206	0.6893	0.9267	1.1269	1.2952	1.4385	1.5624

Using a result of Laurent-Mignotte-Nesterenko (1995) in Baker's theory, Okazaki proved:

Theorem 1 (Okazaki 2002)

Assume distinct points $u = u^{(m)}$ and $u' = u^{(n)}$ of \mathcal{M} on \mathcal{C} . Assume $t = t(u) \leq t' = t(u')$. Then

$$\frac{\sqrt{2} \, d(\mathcal{M}) \exp(\sqrt{6}t/2)}{1 + \exp(-2(t'-t)/\sqrt{6}\log 2)} \le t'.$$

Theorem 2 (Okazaki 2002)

For $\boldsymbol{z}' \in \mathcal{L}^{\natural} \cap \mathcal{H}$ and $t' = t(\boldsymbol{z}')$, we have

$$\frac{t'}{d(\mathbb{Z}\phi(\boldsymbol{\delta}) + \mathcal{E}(L_m))} \le 5.04 \times 10^4.$$

Combining these two theorems, we have: (Theorem O₁) $L_m^{(3)} = L_n^{(3)}$ $(-1 \le m < n) \Rightarrow t \le 8.56$ and $m \le 35731$.

Cubic Thue equations and simplest cubic fields

Akinari Hoshi Niigata University (Japan)

§1 Introduction: known results of cubic case

§2 Main thms: Thm C and Thm S (Correspondence and Solutions)

§3 Thm O₁, O₂: Okazaki's Theorem

34 Thm C+Thm $O_1 \Rightarrow \text{Thm S}$

Indeed, we can show

 $0.14 \exp(\sqrt{6}t/2) - t < t' - t.$

Then it follows

 $\frac{\sqrt{2}\exp(\sqrt{6}t/2)}{1+\exp(-2(0.14\exp(\sqrt{6}t/2)-t)/\sqrt{6}\log 2)} < \frac{\sqrt{2}\exp(\sqrt{6}t/2)}{1+\exp(-2(t'-t)/\sqrt{6}\log 2)} \le \frac{t'}{d(\mathcal{M})} \le 5.04 \times 10^4.$ Thm 1 Thm 2

We get $t \leq 8.56$ and hence $m \leq 35731$.

Cubic Thue equations and simplest cubic fields

Akinari Hoshi Niigata University (Japan)

§1 Introduction: known results of cubic case

§2 Main thms: Thm C and Thm S (Correspondence and Solutions)

\$3 Thm O₁, O₂: Okazaki's Theorem

 $\begin{array}{l} 4 \text{ Thm } C+\text{Thm} \\ D_1 \Rightarrow \text{Thm } S \end{array}$

$\S4$ Theorem C+Theorem $\mathsf{O}_1 \Rightarrow \mathsf{Theorem}\ \mathsf{S}$

It is enough to find all non-trivial solutions $(x, y) \in \mathbb{Z}^2$ to $F_m^{(3)}(x, y) = \lambda \mid m^2 + 3m + 9$ for $-1 \leq m \leq 35731$. Indeed if there exists a non-trivial solution $(x, y) \in \mathbb{Z}^2$ to $F_n^{(3)}(x, y) = \lambda \mid n^2 + 3n + 9$ for $n \geq 35732$ then there exists $-1 \leq m \leq 35731$ such that $L_m = L_n$ (by Thms C and O₁). (i) $-1 \leq m \leq 2407$. For small m, we can use a computer (Bilu-Hanrot method). (ii) $2408 \leq m \leq 35731$ and $2(2m + 3 + \frac{27}{2m + 3}) \leq y$. We consider $|F_m^{(3)}(x, y)| \leq m^2 + 3m + 9$. Applying

Consider $|F_m^{-1}(x,y)| \leq m^2 + 3m + 9$. Applying Lettel-Pethö-Voutier Theorem $\lambda(m) = m^2 + 3m + 9$, $\frac{8\lambda(m)}{2m+3} = 2\left(2m + 3 + \frac{27}{2m+3}\right)$, x/y is a convergent to θ_2 . But we see that this case has no solution. (iii) $2408 \leq m \leq 35731$ and $y < 2(2m + 3 + \frac{27}{2m+3})$. The bound is small enough to reach using a computer.

► This gives another proof of Thm O_2 because Thm C+Thm S \Rightarrow Thm O_2 . ► Theorem O_2 Cubic Thue equations and simplest cubic fields

Akinari Hoshi Niigata University (Japan)

§1 Introduction: known results of cubic case

§2 Main thms: Thm C and Thm S (Correspondence and Solutions)

 $\S3$ Thm O₁, O₂: Okazaki's Theorem

§4 Thm C+Thm $O_1 \Rightarrow$ Thm S

$\S5$ Higher degree cases: Degree 6 case

$$F_m^{(6)}(x,y) = x^6 - 2mx^5y - (5m+15)x^4y^2 - 20x^3y^3 + 5mx^2y^4 + (2m+6)xy^5 + y^6 = \lambda$$

For a given
$$m \in \mathbb{Z}$$
, $\exists n \in \mathbb{Z} \setminus \{m, -m - 3\}$ s.t. $L_m^{(6)} = L_n^{(6)}$
 $\iff \exists (x, y) \in \mathbb{Z}^2$ with
 $xy(x+y)(x-y)(x+2y)(2x+y) \neq 0$ s.t $F_m^{(6)}(x, y) = \lambda$
for some $\lambda \in \mathbb{N}$ with $\lambda \mid 27(m^2 + 3m + 9)$.

Cubic Thue equations and simplest cubic fields

Akinari Hoshi Niigata University (Japan)

§1 Introduction: known results of cubic case

§2 Main thms: Thm C and Thm S (Correspondence and Solutions)

§3 Thm O₁, O₂: Okazaki's Theorem

 $\S4 \text{ Thm C+Thm}$ $O_1 \Rightarrow \text{Thm S}$

Moreover integers n, m and $(x, y) \in \mathbb{Z}^2$ satisfy

$$N = m + \frac{(m^2 + 3m + 9)xy(x + y)(x - y)(x + 2y)(2x + y)}{F_m^{(6)}(x, y)}$$

where N is either n or -n-3.

By Theorem O_2 and the fact $L_m^{(3)} \subset L_m^{(6)}$, we get:

Theorem

For $m, n \in \mathbb{Z}$, $L_m^{(6)} = L_n^{(6)} \iff m = n$ or m = -n - 3.

Theorem (Theorem S) For $m \in \mathbb{Z}$, $F_m^{(6)}(x, y) = \lambda$ with $\lambda \mid 27(m^2 + 3m + 9)$ has only trivial solutions, i.e. xy(x + y)(x - y)(x + 2y)(2x + y) = 0.

 Compare) F_m⁽⁶⁾(x, y) = ±1, ±27 is solved by Lettl-Pethö-Voutier (1998). |F_m⁽⁶⁾(x, y)| ≤ 120m + 323 is solved by Lettl-Pethö-Voutier (1999). Cubic Thue equations and simplest cubic fields

Akinari Hoshi Niigata University (Japan)

§1 Introduction: known results of cubic case

§2 Main thms: Thm C and Thm S (Correspondence and Solutions)

 $\S3$ Thm O $_1$, O $_2$: Okazaki's Theorem

§4 Thm C+Thm $O_1 \Rightarrow$ Thm S

Degree 4 case: unsolved

$$F_m^{(4)}(x,y) = x^4 - mx^3y - 6x^2y^2 + mxy^3 + y^4 = \lambda$$

Theorem (Theorem C)

For a given $m \in \mathbb{Z}$, $\exists n \in \mathbb{Z} \setminus \{m, -m\}$ s.t. $L_m^{(4)} = L_n^{(4)}$ $\iff \exists (x, y) \in \mathbb{Z}^2$ with $xy(x + y)(x - y) \neq 0$ s.t $F_m^{(4)}(x, y) = \lambda$ for some $\lambda \in \mathbb{N}$ with $\lambda \mid 4(m^2 + 16)$. Moreover integers n, m and $(x, y) \in \mathbb{Z}^2$ satisfy

$$N = m + \frac{(m^2 + 16)xy(x+y)(x-y)}{F_m^{(4)}(x,y)}$$

where N is either n or -n.

Cubic Thue equations and simplest cubic fields

Akinari Hoshi Niigata University (Japan)

§1 Introduction: known results of cubic case

§2 Main thms: Thm C and Thm S (Correspondence and Solutions)

§3 Thm O₁, O₂: Okazaki's Theorem

34 Thm C+Thm $O_1 \Rightarrow \text{Thm S}$

BUT we do not know

▶ For $m, n \in \mathbb{Z}$, $L_m^{(4)} = L_n^{(4)} \iff$?? (analog of Thm O₂)

By using PARI/GP or Magma, we may check:

Theorem

For $0 \le m \le 1000$, all solutions with $xy(x+y)(x-y) \ne 0$ and gcd(x,y) = 1 to $F_m^{(4)}(x,y) = \lambda$ where $\lambda \mid 4(m^2 + 16)$ are given as in Table 2. In particular, for $0 \le m \le 1000$, $m \notin \{1, 2, 4, 22, 103, 956\}$ and $n \in \mathbb{Z}_+$ $L_m^{(4)} = L_m^{(4)} \Rightarrow m = +n$.

 (Compare) F_m⁽⁴⁾(x, y) = ±1, ±4 is solved by Lettl-Pethö (1995) and Chen-Voutier (1997). |F_m⁽⁴⁾(x, y)| ≤ 6m + 7 is solved by Lettl-Pethö-Voutier (1999). Cubic Thue equations and simplest cubic fields

Akinari Hoshi Niigata University (Japan)

1 Introduction: nown results of ubic case

§2 Main thms: Thm C and Thm S (Correspondence and Solutions)

3 Thm O₁, O₂: Okazaki's Theorem

 $\begin{array}{l} 4 \text{ Thm } \mathsf{C} + \mathsf{Thm} \\ \mathsf{D}_1 \Rightarrow \mathsf{Thm } \mathsf{S} \end{array}$

Table 2

m	n	6m + 7	$F_m^{(4)}(x,y) = \lambda$	$m^2 + 16$	(x,y)
1	103	13	-1	17	$(\pm 1, \pm 2)$, $(\pm 2, \mp 1)$
1	103	13	4	17	$(\mp 1, \pm 3)$, $(\pm 3, \pm 1)$
2	-22	19	5	20	$(\pm 1, \pm 2)$, $(\pm 2, \mp 1)$
2	-22	19	-20	20	$(\mp 1, \pm 3)$, $(\pm 3, \pm 1)$
4	-956	31	1	32	$(\pm 2, \pm 3)$, $(\pm 3, \mp 2)$
4	-956	31	-4	32	$(\mp 1, \pm 5)$, $(\pm 5, \pm 1)$
22	-2	139	125	500	$(\pm 1, \pm 2)$, $(\pm 2, \mp 1)$
22	-2	139	-500	500	$(\mp 1, \pm 3)$, $(\pm 3, \pm 1)$
103	1	5^{4}	-5^{4}	$5^4 \cdot 17$	$(\mp 1, \pm 2)$, $(\pm 2, \pm 1)$
103	1	5^{4}	$2^2 \cdot 5^4$	$5^4 \cdot 17$	$(\pm 1, \pm 3)$, $(\pm 3, \mp 1)$
956	-4	5743	13^{4}	$2^{5} \cdot 13^{4}$	$(\pm 2, \pm 3)$, $(\pm 3, \mp 2)$
956	-4	5743	$-2^2 \cdot 13^4$	$2^{5} \cdot 13^{4}$	$(\mp 1, \pm 5)$, $(\pm 5, \pm 1)$