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Aim: To provide NEW METHOD to solve Thue equations!

(splitting field method)

▶ On correspondence between solutions of a family of cubic Thue
equations and isomorphism classes of the simplest cubic fields,

J. Number Theory 131 (2011) 2135–2150.
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§1 Introduction: known results of cubic case

We consider Thomas’ family of cubic Thue equations�
�

�

F

(3)
m (X,Y ) := X3 −mX2Y − (m+ 3)XY 2 − Y 3 = λ

for m ∈ Z and λ ∈ Z (λ ̸= 0).

▶ For fixed m,λ ∈ Z, ∃<∞ (x, y) ∈ Z2 s.t. F
(3)
m (x, y) = λ

(Thue’s theorem, 1909)

▶ The splitting fields L
(3)
m := SplQF

(3)
m (X, 1) are totally

real cyclic cubic fields called Shanks’ simplest cubic.

▶ We may assume that −1 ≤ m and 0 < λ because

F
(3)
−m−3(X,Y ) = F (3)

m (−Y,−X),

−F (3)
m (X,Y ) = F (3)

m (−X,−Y ).

▶ L
(3)
m = L

(3)
−m−3 (m ∈ Z).
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�
�

�

F

(3)
m (X,Y ) := X3 −mX2Y − (m+ 3)XY 2 − Y 3 = λ

for m ∈ Z and λ ∈ Z (λ ̸= 0).

▶ λ = a3 for some a ∈ Z, F (3)
m (x, y) = a3 has three trivial

solutions (a, 0), (0,−a), (−a, a), i.e. xy(x+ y) = 0.

▶ If (x, y) ∈ Z2 is solution, then (y,−x− y), (−x− y, x)

are also solutions because F
(3)
m (x, y) is invariant under

the action x 7−→ y 7−→ −x− y 7−→ x of order three.

▶ 3 | #{(x, y) | F (3)
m (x, y) = λ}.

▶ discXF
(3)
m (X, 1) = (m2 + 3m+ 9)2.

▶ For λ = 1, Thomas and Mignotte solved completely a
family of the equations (∀m) as follows:
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Thomas’ theorem for a family of Thue equations�
�

�

F

(3)
m (X,Y ) = X3 −mX2Y − (m+ 3)XY 2 − Y 3 = 1

By using Baker’s theory, Thomas proved:

Theorem (Thomas 1990)

If −1 ≤ m ≤ 103 or 1.365× 107 ≤ m, then all solutions of
F

(3)
m (x, y) = 1 are given by trivial solutions

(x, y) = (0,−1), (−1, 1), (1, 0) for ∀m and additionally

(x, y) = (−1,−1), (−1, 2), (2,−1) for m = −1,
(x, y) = (5, 4), (4,−9), (−9, 5) for m = −1,
(x, y) = (2, 1), (1,−3), (−3, 2) for m = 0,

(x, y) = (−7,−2), (−2, 9), (9,−7) for m = 2.

Theorem (Mignotte 1993)

For the remaining case, ∃ only trivial solutions.
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Mignotte-Pethö-Lemmermeyer (1996)�
�

�

F

(3)
m (X,Y ) = X3 −mX2Y − (m+ 3)XY 2 − Y 3 = λ

By using Baker’s theory, they proved:

Theorem Mignotte-Pethö-Lemmermeyer (1996)

Let m ≥ 1649 and λ > 1. If F
(3)
m (x, y) = λ, then

log |y| < c1 log
2(m+ 3) + c2 log(m+ 1) log λ

where

c1 = 700 + 476.4

(
1− 1432.1

m+ 1

)−1(
1.501− 1902

m+ 1

)
< 1956.4,

c2 = 29.82 +

(
1− 1432.1

m+ 1

)−1 1432

(m+ 1) log(m+ 1)
< 30.71.

Example (much smaller than previous bounds)

▶ If m = 1649 and λ = 109, then |y| < 1048698.
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Mignotte-Pethö-Lemmermeyer (1996)

�
�

�

F

(3)
m (X,Y ) = X3 −mX2Y − (m+ 3)XY 2 − Y 3 = λ

Theorem Mignotte-Pethö-Lemmermeyer (1996)

For −1 ≤ m and 1 < λ ≤ 2m+ 3, all solutions to
F

(3)
m (x, y) = λ are given by trivial solutions for λ = a3 and

(x, y) ∈ {(−1, 2), (2,−1), (−1,−1),
(−1,m+ 2), (m+ 2,−m− 1), (−m− 1,−1)}

for λ = 2m+ 3,
except for m = 1 in which case ∃extra solutions:

(x, y) ∈ {(1,−4), (−4, 3), (3, 1), (3,−11), (−11, 8), (8, 3)}

for λ = 5 (= 2m+ 3).



Lettl-Pethö-Voutier (1999)

Let θ2 be a root of fm(X) := Fm(X, 1) with −1
2 < θ2 < 0.

By using hypergeometric method, they proved:

Theorem Lettl-Pethö-Voutier (1999)

Let m ≥ 1 and assume that (x, y) ∈ Z2 is a primitive

solution to |F (3)
m (x, y)| ≤ λ(m) with −y

2 < x ≤ y and
8λ(m)
2m+3 ≤ y where λ(m) : Z→ N. Then

(i) x/y is a convergent to θ2, and we have either y = 1 or∣∣∣∣xy − θ2

∣∣∣∣ < λ(m)

y3(m+ 1)
and y ≥ m+ 2.

(ii) Define
κ =

log(
√
m2 + 3m+ 9) + 0.83

log(m+ 3
2)− 1.3

.

If m ≥ 30, then y2−κ < 17.78 · 2.59κλ(m).

Example (comparing with MPL (1996))

▶ For m = 1649, |y| < 635λ(m)1.54 instead of |y| < 1046649λ(m)288.
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§2 Main thms: Thm C and Thm S�



�
	f

(3)
m (X) := F

(3)
m (X, 1), L

(3)
m := SplQf

(3)
m (X)

Go back to

Theorem (Thomas 1990, Mignotte 1993)
All solutions of F

(3)
m (x, y) = 1 are given by trivial solutions

(x, y) = (0,−1), (−1, 1), (1, 0) for ∀m and additionally

(x, y) = (−1,−1), (−1, 2), (2,−1) for m = −1,
(x, y) = (5, 4), (4,−9), (−9, 5) for m = −1,
(x, y) = (2, 1), (1,−3), (−3, 2) for m = 0,

(x, y) = (−7,−2), (−2, 9), (9,−7) for m = 2.

Q. Why ∃ 12 (non-trivial) solutions? meaning?

▶ L
(3)
−1 = L

(3)
12 , L

(3)
−1 = L

(3)
1259, L

(3)
0 = L

(3)
54 , L

(3)
2 = L

(3)
2389.�



�
	Splitting fields L

(3)
m know solutions!
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�
	f

(3)
m (X) := F

(3)
m (X, 1), L

(3)
m := SplQf

(3)
m (X)

▶ L
(3)
m = L

(3)
−m−3 for m ∈ Z. discXf

(3)
m = (m2+3m+9)2.'

&

$

%

Theorem C (Correspondence)

For a given m ∈ Z,
∃(x, y) ∈ Z2 with xy(x+ y) ̸= 0 s.t. F

(3)
m (x, y) = λ

for some λ ∈ N with λ |m2 + 3m+ 9

⇐⇒ ∃n ∈ Z \ {m,−m− 3} s.t. L(3)
m = L

(3)
n .

Moreover integers n,m and (x, y) ∈ Z2 satisfy

N = m+
(m2 + 3m+ 9)xy(x+ y)

F
(3)
m (x, y)

where N is either n or −n− 3.

▶ (⇒) Using Theorem (Morton 1994, Chapman 1996,
Hoshi-Miyake 2009) (⇐) Using resultant method.
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Theorem C

For a fixed m ∈ Z, we obtain the correspondence

∃n ∈ Z \ {m,−m− 3} s.t. L(3)
m = L

(3)
n (I)

1 : 3 ⇕ Theorem C

∃(x, y) ∈ Z2 with xy(x+ y) ̸= 0

s.t. F
(3)
m (x, y) = λ |m2 + 3m+ 9

(II)

▶ disc(F
(3)
m (X,Y )) = (m2 + 3m+ 9)2.
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R. Okazaki’s theorems O1, O2

Okazaki announced the following theorems in 2002.
He use his result on gaps between sol’s (2002) which is based
on Baker’s theory: Laurent-Mignotte-Nesterenko (1995).

R. Okazaki, Geometry of a cubic Thue equation,
Publ. Math. Debrecen 61 (2002) 267–314.�
�

�

Theorem O1 (Okazaki 2002+α)

For −1 ≤ m < n ∈ Z, if L(3)
m = L

(3)
n then m ≤ 35731.�

�
�
�

Theorem O2 (Okazaki unpublished)
For −1 ≤ m < n ∈ Z, if L(3)

m = L
(3)
n then

m,n ∈ {−1, 0, 1, 2, 3, 5, 12, 54, 66, 1259, 2389}.
In particular, we get�
�

�



L
(3)
−1 = L

(3)
5 = L

(3)
12 = L

(3)
1259,

L
(3)
0 = L

(3)
3 = L

(3)
54 , L

(3)
1 = L

(3)
66 , L

(3)
2 = L

(3)
2389.
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Thomas’ 4× 3 = 12 non-trivial solutions for λ = 1

(x, y) = (−1,−1), (−1, 2), (2,−1) for m = −1,
(x, y) = (5, 4), (4,−9), (−9, 5) for m = −1,
(x, y) = (2, 1), (1,−3), (−3, 2) for m = 0,

(x, y) = (−7,−2), (−2, 9), (9,−7) for m = 2

correspond to�



�
	L

(3)
−1 = L

(3)
12 , L

(3)
−1 = L

(3)
1259, L

(3)
0 = L

(3)
54 , L

(3)
2 = L

(3)
2389.�

�
�
�

L
(3)
−1 = L

(3)
5 , L

(3)
0 = L

(3)
3 , L

(3)
1 = L

(3)
66 , L

(3)
3 = L

(3)
54 ,

L
(3)
5 = L

(3)
12 , L

(3)
5 = L

(3)
1259, L

(3)
12 = L

(3)
1259

correspond to 7× 3 = ∃21 (non-trivial) solutions for λ > 1.

L
(3)
m = L

(3)
n (33 solutions), L

(3)
n = L

(3)
m (33 solutions)

Conclusion: in total ∃66 solutions.
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Theorem S: Solutions

�
�

�

F

(3)
m (X,Y ) = X3 −mX2Y − (m+ 3)XY 2 − Y 3 = λ

By Theorem C and Theorem O2, we get:'

&

$

%

Theorem S (Solutions)

For m ≥ −1,
all integer solutions (x, y) ∈ Z2 with xy(x+ y) ̸= 0

to F
(3)
m (x, y) = λ with λ ∈ N and λ |m2 + 3m+ 9

are given in Table 1. (66 solutions)



Table 1

m n −n − 3 2m + 3 λ m2 + 3m + 9 (x, y)
−1 −15 12 1 1 7 (−1, 2), (2,−1), (−1,−1)
−1 1259 −1262 1 1 7 (4,−9), (−9, 5), (5, 4)
−1 5 −8 1 7 7 (1,−3), (−3, 2), (2, 1)
0 54 −57 3 1 9 (1,−3), (−3, 2), (2, 1)
0 −6 3 3 3 9 (−1, 2), (2,−1), (−1,−1)
1 −69 66 5 13 13 (−2, 7), (7,−5), (−5,−2)
2 −2392 2389 7 1 19 (−2, 9), (9,−7), (−7,−2)
3 −3 0 9 9 27 (−1, 2), (2,−1), (−1,−1)
3 −57 54 9 9 27 (−1, 5), (5,−4), (−4,−1)
5 1259 −1262 13 49 49 (3,−22), (−22, 19), (19, 3)
5 −15 12 13 49 49 (−1, 5), (5,−4), (−4,−1)
5 −1 −2 13 49 49 (−1,−2), (−2, 3), (3,−1)

12 −2 −1 27 27 33 · 7 (−1, 2), (2,−1), (−1,−1)

12 −1262 1259 27 27 33 · 7 (−1, 14), (14,−13), (−13,−1)

12 −8 5 27 33 · 7 33 · 7 (−1, 5), (5,−4), (−4,−1)

54 0 −3 111 73 32 · 73 (−1,−2), (−2, 3), (3,−1)

54 −6 3 111 3 · 73 32 · 73 (−1, 5), (5,−4), (−4,−1)

66 −4 1 135 33 · 132 33 · 132 (−2, 7), (7,−5), (−5,−2)

1259 −1 −2 2521 613 7 · 613 (−4,−5), (−5, 9), (9,−4)

1259 −15 12 2521 613 7 · 613 (−1, 14), (14,−13), (−13,−1)

1259 5 −8 2521 7 · 613 7 · 613 (−3,−19), (−19, 22), (22,−3)

2389 −5 2 4781 673 19 · 673 (−2, 9), (9,−7), (−7,−2)
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§3 Theorem O1: Okazaki’s Theorem

For m ∈ Z, we take

F (3)
m (X,Y ) = (X − θ

(m)
1 Y )(X − θ

(m)
2 Y )(X − θ

(m)
3 Y ),

and Lm = Q(θ
(m)
1 ). We see

−2 < θ
(m)
3 < −1, −1

2 < θ
(m)
2 < 0, 1 < θ

(m)
1 .

Take the exterior product

δ = t(δ1, δ2, δ3) := 1× θ = t(θ2 − θ3, θ3 − θ1, θ1 − θ2)

where 1 = t(1, 1, 1), θ = t(θ1, θ2, θ3) ∈ R3.

The norm N(δ) = δ1δ2δ3 = −
√
D where

D = ((θ1 − θ2)(θ1 − θ3)(θ2 − θ3))
2.
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The canonical lattice

L♮ = δ(Z1+ Zθ)

of F is orthogonal to 1, where the product of vectors is the
component-wise product. We consider the curve H

H : z1 + z2 + z3 = 0, z1z2z3 =
√
D.

on the plane Π = {t(z1, z2, z3) ∈ R3 | z1 + z2 + z3 = 0}.
For (x, y) with F

(3)
m (x, y) = 1, we see x1− yθ ∈ (O×

Lm
)3

because N(x1− yθ) = 1. Then we get a bijection

(x, y)←→ z = δ(−x1+ yθ) ∈ L♮ ∩H

via N(z) = N(δ)N(−x1+ yθ) = (−
√
D)(−1) =

√
D. Let

log : (R×)3 ∋ t(z1, z2, z3) 7→ t(log |z1|, log |z2|, log |z3|) ∈ R3

be the logarithmic map. By Dirichlet’s unit theorem, the set

E(Lm) := {log ε | ε = t(ε, εσ, εσ
2
), ε ∈ O×

Lm
}

is a lattice of rank 2 on the plane
Πlog := {t(u1, u2, u3) ∈ R3 |u1 + u2 + u3 = 0}.
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We use the modified logarithmic map

ϕ : (R×)3 ∋ z 7→ u = t(u1, u2, u3) = log(D−1/6z) ∈ R3.

For (x, y) with F
(3)
m (x, y) = 1 and

z = δ(−x1+ yθ) ∈ L♮ ∩H,
u = ϕ(z) = ϕ(δ(−x1+ yθ)) ∈ ϕ(δ) + E(Lm) ⊂ Πlog; the
displaced lattice, since −x1+ yθ ∈ (O×

Lm
)3. We can show

▶ 3ϕ(δ) ∈ E(Lm).

We now assume that Lm = Ln for −1 ≤ m < n and take a
common trivial solution (x, y) = (1, 0). Then

u(m),u(n) ∈M = Zϕ(δ(m)) + Zϕ(δ(n)) + E(Lm) ⊂ Πlog

whereM is a lattice with discriminant
d(M) = d(E(Lm)), 1

3d(E(Lm)) or 1
9d(E(Lm)). We may get:

▶ d(M) = d(E(Lm)) or 1
3d(E(Lm)).



We adopt local coordinates for C := ϕ(H) ⊂ Πlog by

s = s(u) :=
u2 − u3√

2
, t = t(u) := −

√
6u1
2

.

Then

s =
√
2 arcsinh

(
exp

(
−
√
6t/2

)
/2

)
, 0 ≤ s ≤

√
3t.

Example

m −1 0 1 2 3 4 5

s 0.4163 0.3016 0.2263 0.1773 0.1444 0.1212 0.1042
t 0.4206 0.6893 0.9267 1.1269 1.2952 1.4385 1.5624



m = -1

m = 5

m = 1259

s= 2ArcSinh H Exp H - 6t� 2L � 2 L

s

t

L-1= L5= L1259

5 10 15

-4

-2

2

4

6
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Using a result of Laurent-Mignotte-Nesterenko (1995) in
Baker’s theory, Okazaki proved:

Theorem 1 (Okazaki 2002)

Assume distinct points u = u(m) and u′ = u(n) ofM on C.
Assume t = t(u) ≤ t′ = t(u′). Then

√
2 d(M) exp(

√
6t/2)

1 + exp(−2(t′ − t)/
√
6 log 2)

≤ t′.

Theorem 2 (Okazaki 2002)

For z′ ∈ L♮ ∩H and t′ = t(z′), we have

t′

d(Zϕ(δ) + E(Lm))
≤ 5.04× 104.

Combining these two theorems, we have: (Theorem O1)

L
(3)
m = L

(3)
n (−1 ≤ m < n)⇒ t ≤ 8.56 and m ≤ 35731.



Cubic Thue
equations and
simplest cubic

fields

Akinari Hoshi
Niigata University

(Japan)

§1 Introduction:
known results of
cubic case

§2 Main thms:
Thm C and Thm S
(Correspondence
and Solutions)

§3 Thm O1, O2:
Okazaki’s Theorem

§4 Thm C+Thm
O1 ⇒ Thm S

§5 Higher degree
cases

Indeed, we can show

0.14 exp(
√
6t/2)− t < t′ − t.

Then it follows
√
2 exp(

√
6t/2)

1 + exp(−2(0.14 exp(
√
6t/2)− t)/

√
6 log 2)

<

√
2 exp(

√
6t/2)

1 + exp(−2(t′ − t)/
√
6 log 2)

≤ t′

d(M)
≤ 5.04× 104.

Thm 1 Thm 2

We get t ≤ 8.56 and hence m ≤ 35731.
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§4 Theorem C+Theorem O1 ⇒ Theorem S

It is enough to find all non-trivial solutions (x, y) ∈ Z2 to

F
(3)
m (x, y) = λ | m2 + 3m+ 9 for −1 ≤ m ≤ 35731.

Indeed if there exists a non-trivial solution (x, y) ∈ Z2 to

F
(3)
n (x, y) = λ | n2 + 3n+ 9 for n ≥ 35732 then there exists
−1 ≤ m ≤ 35731 such that Lm = Ln (by Thms C and O1).
(i) −1 ≤ m ≤ 2407. For small m, we can use a computer
(Bilu-Hanrot method).
(ii) 2408 ≤ m ≤ 35731 and 2(2m+ 3 + 27

2m+3) ≤ y. We

consider |F (3)
m (x, y)| ≤ m2 + 3m+ 9. Applying

Lettel-Pethö-Voutier Theorem λ(m) = m2 + 3m+ 9,
8λ(m)
2m+3 = 2

(
2m+ 3 + 27

2m+3

)
, x/y is a convergent to θ2.

But we see that this case has no solution.
(iii) 2408 ≤ m ≤ 35731 and y < 2(2m+ 3 + 27

2m+3). The
bound is small enough to reach using a computer.

▶ This gives another proof of Thm O2

because Thm C+Thm S ⇒ Thm O2. .. Theorem O2
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§5 Higher degree cases: Degree 6 case�
�

�
�

F
(6)
m (x, y) = x6 − 2mx5y − (5m+ 15)x4y2

−20x3y3 + 5mx2y4 + (2m+ 6)xy5 + y6 = λ

▶ f
(6)
m (X) := F

(6)
m (X, 1).

▶ f
(6)
m (X) is irreducible/Q for m ∈ Z \ {−8,−3, 0, 5}.

▶ L
(6)
m := SplQf

(6)
m (X), then L

(6)
m = L

(6)
−m−3

; the simplest sextic fields.

▶ L
(3)
m ⊂ L

(6)
m for ∀m ∈ Z.

Theorem (Theorem C)

For a given m ∈ Z, ∃n ∈ Z\{m,−m− 3} s.t. L(6)
m = L

(6)
n

⇐⇒ ∃(x, y) ∈ Z2 with

xy(x+ y)(x− y)(x+ 2y)(2x+ y) ̸= 0 s.t F
(6)
m (x, y) = λ

for some λ ∈ N with λ | 27(m2 + 3m+ 9).
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Moreover integers n,m and (x, y) ∈ Z2 satisfy

N = m+
(m2 + 3m+ 9)xy(x+ y)(x− y)(x+ 2y)(2x+ y)

F
(6)
m (x, y)

where N is either n or −n− 3.

By Theorem O2 and the fact L
(3)
m ⊂ L

(6)
m , we get:

Theorem
For m,n ∈ Z, L(6)

m = L
(6)
n ⇐⇒ m = n or m = −n− 3.

Theorem (Theorem S)

For m ∈ Z, F (6)
m (x, y) = λ with λ | 27(m2+3m+9) has only

trivial solutions, i.e. xy(x+ y)(x− y)(x+ 2y)(2x+ y) = 0.

▶ (Compare) F
(6)
m (x, y) = ±1, ±27 is solved by

Lettl-Pethö-Voutier (1998). |F (6)
m (x, y)| ≤ 120m+ 323

is solved by Lettl-Pethö-Voutier (1999).
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Degree 4 case: unsolved�
�

�

F

(4)
m (x, y) = x4 −mx3y − 6x2y2 +mxy3 + y4 = λ

▶ f
(4)
m (X) := F

(4)
m (X, 1).

▶ f
(4)
m (X) is irreducible/Q for m ∈ Z \ {0,±3}.

▶ L
(4)
m := SplQf

(4)
m (X), then L

(4)
m = L

(4)
−m

; the simplest quartic fields.

Theorem (Theorem C)

For a given m ∈ Z, ∃n ∈ Z\{m,−m} s.t. L(4)
m = L

(4)
n

⇐⇒ ∃(x, y) ∈ Z2 with xy(x+ y)(x− y) ̸= 0 s.t

F
(4)
m (x, y) = λ for some λ ∈ N with λ | 4(m2 + 16).

Moreover integers n,m and (x, y) ∈ Z2 satisfy

N = m+
(m2 + 16)xy(x+ y)(x− y)

F
(4)
m (x, y)

where N is either n or −n.
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BUT we do not know

▶ For m,n ∈ Z, L(4)
m = L

(4)
n ⇐⇒ ?? (analog of Thm O2)

▶ L
(4)
1 = L

(4)
103, L

(4)
2 = L

(4)
22 , L

(4)
4 = L

(4)
956.

▶ For 0 ≤ m < n ≤ 100000,
L
(4)
m = L

(4)
n ⇐⇒ (m,n) ∈ {(1, 103), (2, 22), (4, 956)}.

By using PARI/GP or Magma, we may check:

Theorem
For 0 ≤ m ≤ 1000, all solutions with xy(x+ y)(x− y) ̸= 0

and gcd(x, y) = 1 to F
(4)
m (x, y) = λ where λ | 4(m2 + 16)

are given as in Table 2.
In particular, for 0 ≤ m ≤ 1000, m ̸∈ {1, 2, 4, 22, 103, 956}
and n ∈ Z, L(4)

m = L
(4)
n ⇒ m = ±n.

▶ (Compare) F
(4)
m (x, y) = ±1, ±4 is solved by Lettl-Pethö

(1995) and Chen-Voutier (1997). |F (4)
m (x, y)| ≤ 6m+ 7

is solved by Lettl-Pethö-Voutier (1999).



Table 2

m n 6m+ 7 F
(4)
m (x, y) = λ m2 + 16 (x, y)

1 103 13 −1 17 (±1,±2), (±2,∓1)
1 103 13 4 17 (∓1,±3), (±3,±1)
2 −22 19 5 20 (±1,±2), (±2,∓1)
2 −22 19 −20 20 (∓1,±3), (±3,±1)
4 −956 31 1 32 (±2,±3), (±3,∓2)
4 −956 31 −4 32 (∓1,±5), (±5,±1)
22 −2 139 125 500 (±1,±2), (±2,∓1)
22 −2 139 −500 500 (∓1,±3), (±3,±1)
103 1 54 −54 54 · 17 (∓1,±2), (±2,±1)
103 1 54 22 · 54 54 · 17 (±1,±3), (±3,∓1)
956 −4 5743 134 25 · 134 (±2,±3), (±3,∓2)
956 −4 5743 −22 · 134 25 · 134 (∓1,±5), (±5,±1)
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