Birational classification for algebraic tori (I)

Akinari Hoshi¹ Aiichi Yamasaki²

¹Niigata University

 2 Kyoto University

March 17, 2023

Table of contents

1. Rationality problem for algebraic k-tori T

[HY17] A. Hoshi, A. Yamasaki, Rationality problem for algebraic tori, Mem. Amer. Math. Soc. 248 (2017), no. 1176, v+215 pp.

2. Birational classification for algebraic k-tori T

[HY] A. Hoshi, A. Yamasaki, Birational classification for algebraic tori, 175 pages, arXiv:2112.02280.

§1. Rationality problem for algebraic tori T (1/3)

- \triangleright k: a base field which is **NOT** algebraically closed! (**TODAY**)
- ▶ T: algebraic k-torus, i.e. k-form of a split torus; an algebraic group over k (group k-scheme) with $T \times_k \overline{k} \simeq (\mathbb{G}_m \overline{k})^n$.

Rationality problem for algebraic tori

Whether T is k-rational?, i.e. $T \approx \mathbb{P}^n$? (birationally k-equivalent)

Let $R^{(1)}_{K/k}(\mathbb{G}_m)$ be the norm one torus of K/k, i.e. the kernel of the norm map $N_{K/k}: R_{K/k}(\mathbb{G}_m) \to \mathbb{G}_m$ where $R_{K/k}$ is the Weil restriction: $1 \longrightarrow R_{K/k}^{(1)}(\mathbb{G}_m) \longrightarrow R_{K/k}(\mathbb{G}_m) \xrightarrow{N_{K/k}} \mathbb{G}_m \longrightarrow 1.$

dim

n

- ▶ $\exists 2 \text{ algebraic } k \text{-tori } T \text{ with } \dim(T) = 1;$ the trivial torus \mathbb{G}_m and $R^{(1)}_{K/k}(\mathbb{G}_m)$ with [K:k] = 2, are k-rational.

n-1

Rationality problem for algebraic tori T (2/3)

▶ $\exists 13 \text{ algebraic } k \text{-tori } T \text{ with } \dim(T) = 2.$

Theorem (Voskresenskii, 1967) 2-dim. algebraic tori T is k-rational.

► $\exists 73 \text{ algebraic } k \text{-tori } T \text{ with } \dim(T) = 3.$

Theorem (Kunyavskii, 1990) 3-dim. algebraic tori T

(i) ∃58 algebraic k-tori T which are k-rational;
(ii) ∃15 algebraic k-tori T which are not k-rational.

What happens in higher dimensions?

k-tori T and G-lattices

- ► T: algebraic k-torus
 - $\implies \exists$ finite Galois extension L/k such that $T \times_k L \simeq (\mathbb{G}_{m,L})^n$.
- $G = \operatorname{Gal}(L/k)$ where L is the minimal splitting field.

Category of algebraic k-tori which split/ $L \stackrel{\text{duality}}{\longleftrightarrow}$ Category of G-lattices (i.e. finitely generated \mathbb{Z} -free $\mathbb{Z}[G]$ -module)

- ▶ $T \mapsto$ the character group $X(T) = Hom(T, \mathbb{G}_m)$: G-lattice.
- ▶ $T = \operatorname{Spec}(L[M]^G)$ which splits/L with $X(T) \simeq M \leftrightarrow M$: G-lattice
- ► Tori of dimension $n \stackrel{1:1}{\longleftrightarrow}$ elements of the set $H^1(\mathcal{G}, \operatorname{GL}(n, \mathbb{Z}))$ where $\mathcal{G} = \operatorname{Gal}(\overline{k}/k)$ since $\operatorname{Aut}(\mathbb{G}_m^n) = \operatorname{GL}(n, \mathbb{Z})$.
- ▶ *k*-torus *T* of dimension *n* is determined uniquely by the integral representation $h : \mathcal{G} \to \operatorname{GL}(n, \mathbb{Z})$ up to conjugacy, and the group $h(\mathcal{G})$ is a finite subgroup of $\operatorname{GL}(n, \mathbb{Z})$.
- The function field of $T \xrightarrow{\text{identified}} L(M)^G$: invariant field.

Rationality problem for algebraic tori T (3/3)

- L/k: Galois extension with $G = \operatorname{Gal}(L/k)$.
- $M = \bigoplus_{1 \le j \le n} \mathbb{Z} \cdot u_j$: *G*-lattice with a \mathbb{Z} -basis $\{u_1, \ldots, u_n\}$.
- G acts on $L(x_1, \ldots, x_n)$ by

$$\sigma(x_j) = \prod_{i=1}^n x_i^{a_{i,j}}, \quad 1 \le j \le n$$

for any
$$\sigma \in G$$
, when $\sigma(u_j) = \sum_{i=1}^n a_{i,j}u_i$, $a_{i,j} \in \mathbb{Z}$.
 $L(M) := L(x_1, \dots, x_n)$ with this action of G .

 $\blacktriangleright \quad \text{The function field of algebraic } k \text{-torus } T \quad \stackrel{\text{identified}}{\longleftrightarrow} L(M)^G$

Rationality problem for algebraic tori T (2nd form)

Whether $L(M)^G$ is *k*-rational?

(= purely transcendental over k?; $L(M)^G = k(\exists t_1, \dots, \exists t_n)$?)

Some definitions.

• K/k: a finite generated field extension.

Definition (stably rational)

K is called stably k-rational if $K(y_1, \ldots, y_m)$ is k-rational.

Definition (retract rational)

K is retract k-rational if $\exists k$ -algebra (domain) $R \subset K$ such that (i) K is the quotient field of R; (ii) $\exists f \in k[x_1, \dots, x_n] \exists k$ -algebra hom. $\varphi : R \to k[x_1, \dots, x_n][1/f]$ and $\psi : k[x_1, \dots, x_n][1/f] \to R$ satisfying $\psi \circ \varphi = 1_R$.

Definition (unirational)

K is k-unirational if $K \subset k(x_1, \ldots, x_n)$.

- k-rational \Rightarrow stably k-rational \Rightarrow retract k-rational \Rightarrow k-unitational.
- $L(M)^G$ (resp. T) is always k-unirational.

Rationality problem for algebraic tori T (2-dim., 3-dim.)

► The function field of *n*-dim. $T \xrightarrow{\text{identified}} L(M)^G$, $G \leq \text{GL}(n, \mathbb{Z})$

► $\exists 13 \text{ algebraic } k \text{-tori } T \text{ with } \dim(T) = 2.$

Theorem (Voskresenskii, 1967) 2-dim. algebraic tori T (restated) T is k-rational.

 ∃73 Z-coujugacy subgroups G ≤ GL(3, Z) (∃73 3-dim. algebraic k-tori T).

Theorem (Kunyavskii, 1990) 3-dim. algebraic tori T (precise form) (i) T is k-rational $\iff T$ is stably k-rational $\iff T$ is retract k-rational $\iff \exists G: 58$ groups; (ii) T is not k-rational $\iff T$ is not stably k-rational $\iff T$ is not retract k-rational $\iff \exists G: 15$ groups.

Rationality problem for algebraic tori T (4-dim.)

- The function field of *n*-dim. $T \xrightarrow{\text{identified}} L(M)^G$, $G \leq \operatorname{GL}(n, \mathbb{Z})$
- ∃710 Z-coujugacy subgroups G ≤ GL(4, Z) (∃710 4-dim. algebraic k-tori T).

Theorem ([HY17]) 4-dim. algebraic tori T

(i) T is stably k-rational $\iff \exists G: 487 \text{ groups};$ (ii) T is not stably but retract k-rational $\iff \exists G: 7 \text{ groups};$ (iii) T is not retract k-rational $\iff \exists G: 216 \text{ groups}.$

- ▶ We do not know "k-rationality".
- Voskresenskii's conjecture: any stably k-rational torus is k-rational (Zariski problem).
- what happens for dimension 5?

Rationality problem for algebraic tori T (5-dim.)

- The function field of *n*-dim. $T \xrightarrow{\text{identified}} L(M)^G$, $G \leq \operatorname{GL}(n, \mathbb{Z})$
- → ∃6079 Z-coujugacy subgroups G ≤ GL(5, Z) (∃6079 5-dim. algebraic k-tori T).

Theorem ([HY17]) 5-dim. algebraic tori T

(i) T is stably k-rational $\iff \exists G: 3051 \text{ groups};$ (ii) T is not stably but retract k-rational $\iff \exists G: 25 \text{ groups};$ (iii) T is not retract k-rational $\iff \exists G: 3003 \text{ groups}.$

- what happens for dimension 6?
- BUT we do not know the answer for dimension 6.
- ► ∃85308 Z-coujugacy subgroups G ≤ GL(6, Z) (∃85308 6-dim. algebraic k-tori T).

Flabby (Flasque) resolution

▶ M: G-lattice, i.e. f.g. \mathbb{Z} -free $\mathbb{Z}[G]$ -module.

Definition

(i) M is permutation $\stackrel{\text{def}}{\iff} M \simeq \bigoplus_{1 \le i \le m} \mathbb{Z}[G/H_i].$ (ii) M is stably permutation $\stackrel{\text{def}}{\iff} M \oplus \exists P \simeq P', P, P'$: permutation. (iii) M is invertible $\stackrel{\text{def}}{\iff} M \oplus \exists M' \simeq P$: permutation. (iv) M is coflabby $\stackrel{\text{def}}{\iff} H^1(H, M) = 0 \ (\forall H \le G).$ (v) M is flabby $\stackrel{\text{def}}{\iff} \widehat{H}^{-1}(H, M) = 0 \ (\forall H \le G).$ (\widehat{H} : Tate cohomology)

- "permutation"
 - \implies "stably permutation"
 - \implies "invertible"
 - \implies "flabby and coflabby".

Commutative monoid \mathcal{M}

 $M_1 \sim M_2 \iff M_1 \oplus P_1 \simeq M_2 \oplus P_2 \ (\exists P_1, \exists P_2: \text{ permutation}).$ $\implies \text{ commutative monoid } \mathcal{M}: \ [M_1] + [M_2] := [M_1 \oplus M_2], \ 0 = [P].$

Theorem (Endo-Miyata, 1974, Colliot-Thélène-Sansuc, 1977)

 $\exists P$: permutation, $\exists F$: flabby such that

 $0 \to M \to P \to F \to 0$: flabby resolution of M.

• $[M]^{fl} := [F]$; flabby class of M

Theorem (Endo-Miyata, 1973, Voskresenskii, 1974, Saltman, 1984)

 $\begin{array}{l} (\text{EM73}) \ [M]^{fl} = 0 \iff L(M)^G \text{ is stably } k\text{-rational.} \\ (\text{Vos74}) \ [M]^{fl} = [M']^{fl} \iff L(M)^G(x_1, \ldots, x_m) \simeq L(M')^G(y_1, \ldots, y_n); \\ \text{ stably } k\text{-equivalent.} \\ (\text{Sal84}) \ [M]^{fl} \text{ is invertible } \iff L(M)^G \text{ is retract } k\text{-rational.} \end{array}$

•
$$M = M_G \simeq \widehat{T}, \ k(T) \simeq L(M)^G$$

$\S2$. Birational classification for algebraic tori

(Stably) birational classification for algebraic tori

For given two algebraic k-tori T and T',

whether T and T' are stably birationally k-equivalent?, i.e. $T \stackrel{\text{s.b.}}{\approx} T'$?

Theorem (Colliot-Thélène and Sansuc, 1977) $\dim(T) = \dim(T') = 3$ Let L/k and L'/k be Galois extensions with $\operatorname{Gal}(L/k) \simeq \operatorname{Gal}(L'/k) \simeq C_2^2$. Let $T = R_{L/k}^{(1)}(\mathbb{G}_m)$ and $T' = R_{L'/k}^{(1)}(\mathbb{G}_m)$ be the corresponding norm one tori. Then $T \stackrel{\text{s.b.}}{\approx} T'$ (stably birationally *k*-equivalent) if and only if L = L'.

▶ In particular, if k is a number field, then there exist infinitely many stably birationally k-equivalent classes of (non-rational: 1st/15) k-tori which correspond to U₁ (cf. Main theorem 1, later).

- \overline{k} : a fixed separable closure of k and $\mathcal{G} = \operatorname{Gal}(\overline{k}/k)$
- ► X: a smooth k-compactification of T, i.e. smooth projective k-variety X containing T as a dense open subvariety
- $\blacktriangleright \ \overline{X} = X \times_k \overline{k}$

Theorem (Voskresenskii, 1969, 1970)

There exists an exact sequence of \mathcal{G} -lattices

$$0 \to \widehat{T} \to \widehat{Q} \to \operatorname{Pic} \overline{X} \to 0$$

where \widehat{Q} is permutation and $\operatorname{Pic} \overline{X}$ is flabby.

•
$$M_G \simeq \widehat{T}$$
, $[\widehat{T}]^{fl} = [\operatorname{Pic} \overline{X}]$ as \mathcal{G} -lattices

Theorem (Voskresenskii, 1970, 1973)

(i) T is stably k-rational if and only if $[\operatorname{Pic} \overline{X}] = 0$ as a \mathcal{G} -lattice. (ii) $T \stackrel{\text{s.b.}}{\approx} T'$ (stably birationally k-equivalent) if and only if $[\operatorname{Pic} \overline{X}] = [\operatorname{Pic} \overline{X'}]$ as \mathcal{G} -lattices.

► From *G*-lattice to *G*-lattice

Let L be the minimal splitting field of T with $G = \operatorname{Gal}(L/k) \simeq \mathcal{G}/\mathcal{H}$. We obtain a flabby resolution of \widehat{T} :

$$0 \to \widehat{T} \to \widehat{Q} \to \operatorname{Pic} X_L \to 0$$

with $[\widehat{T}]^{fl} = [\text{Pic } X_L]$ as *G*-lattices.

By the inflation-restriction exact sequence $0 \to H^1(G, \operatorname{Pic} X_L) \xrightarrow{\inf} H^1(k, \operatorname{Pic} \overline{X}) \xrightarrow{\operatorname{res}} H^1(L, \operatorname{Pic} \overline{X})$, we get $\inf : H^1(G, \operatorname{Pic} X_L) \xrightarrow{\sim} H^1(k, \operatorname{Pic} \overline{X})$ because $H^1(L, \operatorname{Pic} \overline{X}) = 0$. We get:

Theorem (Voskresenskii, 1970, 1973)

(ii)' $T \stackrel{\text{s.b.}}{\approx} T'$ (stably birationally *k*-equivalent) if and only if $[\operatorname{Pic} X_{\widetilde{L}}] = [\operatorname{Pic} X'_{\widetilde{L}}]$ as \widetilde{H} -lattices where $\widetilde{L} = LL'$ and $\widetilde{H} = \operatorname{Gal}(\widetilde{L}/k)$.

The group \widetilde{H} becomes a subdirect product of $G = \operatorname{Gal}(L/k)$ and $G' = \operatorname{Gal}(L'/k)$, i.e. a subgroup \widetilde{H} of $G \times G'$ with surjections $\varphi_1 : \widetilde{H} \twoheadrightarrow G$ and $\varphi_2 : \widetilde{H} \twoheadrightarrow G'$.

▶ This observation yields a concept of "weak stably k-equivalence".

Definition

(i) $[M]^{fl}$ and $[M']^{fl}$ are *weak stably k-equivalent*, if there exists a subdirect product $\widetilde{H} \leq G \times G'$ of G and G' with surjections $\varphi_1 : \widetilde{H} \twoheadrightarrow G$ and $\varphi_2 : \widetilde{H} \twoheadrightarrow G'$ such that $[M]^{fl} = [M']^{fl}$ as \widetilde{H} -lattices where \widetilde{H} acts on M (resp. M') through the surjection φ_1 (resp. φ_2). (ii) Algebraic k-tori T and T' are *weak stably birationally k-equivalent*, denoted by $T \stackrel{\text{s.b.}}{\sim} T'$, if $[\widehat{T}]^{fl}$ and $[\widehat{T}']^{fl}$ are weak stably k-equivalent.

Remark

(1) $T \stackrel{\text{s.b.}}{\approx} T'$ (birational *k*-equiv.) $\Rightarrow T \stackrel{\text{s.b.}}{\sim} T'$ (weak birational *k*-equiv.). (2) $\stackrel{\text{s.b.}}{\sim}$ becomes an equivalence relation and we call this equivalent class the weak stably *k*-equivalent class of $[\widehat{T}]^{fl}$ (or *T*) denoted by WSEC_r ($r \geq 0$) with the stably *k*-rational class WSEC_0 .

Main theorem 1 ([HY, Theorem 1.22]) $\dim(T) = 3$: up to $\stackrel{\mathrm{s.b.}}{\sim}$

There exist exactly 14 weak stably birationally k-equivalent classes of algebraic k-tori T of dimension 3 which consist of the stably rational class $WSEC_0$ and 13 classes $WSEC_r$ $(1 \le r \le 13)$ for $[\hat{T}]^{fl}$ with $\hat{T} = M_G$ and $G = N_{3,i}$ $(1 \le i \le 15)$ as in the following:

r	$G = N_{3,i} : [\widehat{T}]^{fl} = [M_G]^{fl} \in WSEC_r$	G
1	$N_{3,1} = U_1$ ([CTS 1977])	C_{2}^{2}
2	$N_{3,2} = U_2$	C_2^3
3	$N_{3,3} = W_2$	C_{2}^{3}
4	$N_{3,4} = W_1$	$C_4 \times C_2$
5	$N_{3,5} = U_3$, $N_{3,6} = {m U_4}$	D_4
6	$N_{3,7} = U_6$	$D_4 \times C_2$
7	$N_{3,8} = U_5$	A_4
8	$N_{3,9} = U_7$	$A_4 \times C_2$
9	$N_{3,10} = W_3$	$A_4 \times C_2$
10	$N_{3,11} = U_9, \ N_{3,13} = U_{10}$	S_4
11	$N_{3,12} = U_8$	S_4
12	$N_{3,14} = U_{12}$	$S_4 \times C_2$
13	$N_{3,15} = U_{11}$	$S_4 \times C_2$

Main theorem 2 ([HY, Theorem 1.23]) $\dim(T) = 3$: up to $\stackrel{s.b.}{\approx}$

Let T_i and T'_i $(1 \le i, j \le 15)$ be algebraic k-tori of dimension 3 with the minimal splitting fields L_i and L'_i , and $\widehat{T}_i = M_G$ and $\widehat{T}'_i = M_{G'}$ which satisfy that G and G' are $GL(3,\mathbb{Z})$ -conjugate to $N_{3,i}$ and $N_{3,i}$ respectively. For $1 \le i, j \le 15$, the following conditions are equivalent: (1) $T_i \stackrel{\text{s.b.}}{\approx} T'_i$ (stably birationally k-equivalent); (2) $L_i = L'_i$, $T_i \times_k K$ and $T'_i \times_k K$ are weak stably birationally K-equivalent for any $k \subset K \subset L_i$; (3) $L_i = L'_i$, $T_i \times_k K$ and $T'_i \times_k K$ are weak stably birationally *K*-equivalent for any $k \in K \subset L_i$ corresponding to WSEC_r $(r \ge 1)$; (4) $L_i = L'_i$, $T_i \times_k K$ and $T'_i \times_k K$ are weak stably birationally K-equivalent for any $k \subset K \subset L_i$ corresponding to WSEC_r $(r \geq 1)$ with [K:k] = d where

$$d = \begin{cases} 1 & (i = 1, 3, 4, 8, 9, 10, 11, 12, 13, 14), \\ 1, 2 & (i = 2, 5, 6, 7, 15). \end{cases}$$