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§1. Rationality problem for algebraic tori T (1/3)

▶ k: a base field which is NOT algebraically closed! (TODAY)

▶ T : algebraic k-torus, i.e. k-form of a split torus;
an algebraic group over k (group k-scheme) with T ×k k ≃ (Gm,k)

n.

.
Rationality problem for algebraic tori
..
......Whether T is k-rational?, i.e. T ≈ Pn? (birationally k-equivalent)

Let R
(1)
K/k(Gm) be the norm one torus of K/k, i.e. the kernel of the norm

map NK/k : RK/k(Gm)→ Gm where RK/k is the Weil restriction:

1 −→ R
(1)
K/k(Gm) −→ RK/k(Gm)

NK/k−→ Gm −→ 1.

dim n− 1 n 1

▶ ∃2 algebraic k-tori T with dim(T ) = 1;

the trivial torus Gm and R
(1)
K/k(Gm) with [K : k] = 2, are k-rational.
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Rationality problem for algebraic tori T (2/3)

▶ ∃13 algebraic k-tori T with dim(T ) = 2.

.
Theorem (Voskresenskii, 1967) 2-dim. algebraic tori T
..
......T is k-rational.

▶ ∃73 algebraic k-tori T with dim(T ) = 3.

.
Theorem (Kunyavskii, 1990) 3-dim. algebraic tori T
..

......

(i) ∃58 algebraic k-tori T which are k-rational;
(ii) ∃15 algebraic k-tori T which are not k-rational.

▶ What happens in higher dimensions?
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k-tori T and G-lattices

▶ T : algebraic k-torus
=⇒ ∃ finite Galois extension L/k such that T ×k L ≃ (Gm,L)

n.

▶ G = Gal(L/k) where L is the minimal splitting field.

Category of algebraic k-tori which split/L
duality←→ Category of G-lattices

(i.e. finitely generated Z-free Z[G]-module)

▶ T 7→ the character group X(T ) = Hom(T,Gm): G-lattice.

▶ T = Spec(L[M ]G) which splits/L with X(T ) ≃M 7→M : G-lattice

▶ Tori of dimension n
1:1←→ elements of the set H1(G,GL(n,Z))

where G = Gal(k/k) since Aut(Gn
m) = GL(n,Z).

▶ k-torus T of dimension n is determined uniquely by the integral
representation h : G → GL(n,Z) up to conjugacy, and the group
h(G) is a finite subgroup of GL(n,Z).

▶ The function field of T
identified←→ L(M)G: invariant field.

A. Hoshi, A. Yamasaki (Niigata, Kyoto) Birational classification for algebraic tori (I) March 17, 2023 5 / 18



Rationality problem for algebraic tori T (3/3)

▶ L/k: Galois extension with G = Gal(L/k).

▶ M =
⊕

1≤j≤nZ · uj : G-lattice with a Z-basis {u1, . . . , un}.
▶ G acts on L(x1, . . . , xn) by

σ(xj) =

n∏
i=1

x
ai,j
i , 1 ≤ j ≤ n

for any σ ∈ G, when σ(uj) =
∑n

i=1 ai,jui, ai,j ∈ Z.
▶ L(M) := L(x1, . . . , xn) with this action of G.

▶ The function field of algebraic k-torus T
identified←→ L(M)G

.
Rationality problem for algebraic tori T (2nd form)
..

......

Whether L(M)G is k-rational?
(= purely transcendental over k?; L(M)G = k(∃t1, . . . , ∃tn)?)
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Some definitions.

▶ K/k: a finite generated field extension.
.
Definition (stably rational)
..
......K is called stably k-rational if K(y1, . . . , ym) is k-rational.

.
Definition (retract rational)
..

......

K is retract k-rational if ∃k-algebra (domain) R ⊂ K such that
(i) K is the quotient field of R;
(ii) ∃f ∈ k[x1, . . . , xn] ∃k-algebra hom. φ : R→ k[x1, . . . , xn][1/f ] and
ψ : k[x1, . . . , xn][1/f ]→ R satisfying ψ ◦ φ = 1R.

.
Definition (unirational)
..
......K is k-unirational if K ⊂ k(x1, . . . , xn).

▶ k-rational ⇒ stably k-rational ⇒ retract k-rational ⇒ k-unirational.

▶ L(M)G (resp. T ) is always k-unirational.

A. Hoshi, A. Yamasaki (Niigata, Kyoto) Birational classification for algebraic tori (I) March 17, 2023 7 / 18



Rationality problem for algebraic tori T (2-dim., 3-dim.)

▶ The function field of n-dim. T
identified←→ L(M)G, G ≤ GL(n,Z)

▶ ∃13 algebraic k-tori T with dim(T ) = 2.

.
Theorem (Voskresenskii, 1967) 2-dim. algebraic tori T (restated)
..
......T is k-rational.

▶ ∃73 Z-coujugacy subgroups G ≤ GL(3,Z)
(∃73 3-dim. algebraic k-tori T ).

.
Theorem (Kunyavskii, 1990) 3-dim. algebraic tori T (precise form)
..

......

(i) T is k-rational ⇐⇒ T is stably k-rational
⇐⇒ T is retract k-rational ⇐⇒ ∃G: 58 groups;
(ii) T is not k-rational ⇐⇒ T is not stably k-rational
⇐⇒ T is not retract k-rational ⇐⇒ ∃G: 15 groups.
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Rationality problem for algebraic tori T (4-dim.)

▶ The function field of n-dim. T
identified←→ L(M)G, G ≤ GL(n,Z)

▶ ∃710 Z-coujugacy subgroups G ≤ GL(4,Z)
(∃710 4-dim. algebraic k-tori T ).

.
Theorem ([HY17]) 4-dim. algebraic tori T
..

......

(i) T is stably k-rational ⇐⇒ ∃G: 487 groups;
(ii) T is not stably but retract k-rational ⇐⇒ ∃G: 7 groups;
(iii) T is not retract k-rational ⇐⇒ ∃G: 216 groups.

▶ We do not know “k-rationality”.

▶ Voskresenskii’s conjecture:
any stably k-rational torus is k-rational (Zariski problem).

▶ what happens for dimension 5?
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Rationality problem for algebraic tori T (5-dim.)

▶ The function field of n-dim. T
identified←→ L(M)G, G ≤ GL(n,Z)

▶ ∃6079 Z-coujugacy subgroups G ≤ GL(5,Z)
(∃6079 5-dim. algebraic k-tori T ).

.
Theorem ([HY17]) 5-dim. algebraic tori T
..

......

(i) T is stably k-rational ⇐⇒ ∃G: 3051 groups;
(ii) T is not stably but retract k-rational ⇐⇒ ∃G: 25 groups;
(iii) T is not retract k-rational ⇐⇒ ∃G: 3003 groups.

▶ what happens for dimension 6?

▶ BUT we do not know the answer for dimension 6.

▶ ∃85308 Z-coujugacy subgroups G ≤ GL(6,Z)
(∃85308 6-dim. algebraic k-tori T ).
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Flabby (Flasque) resolution

▶ M : G-lattice, i.e. f.g. Z-free Z[G]-module.

.
Definition
..

......

(i) M is permutation
def⇐⇒ M ≃ ⊕1≤i≤mZ[G/Hi].

(ii) M is stably permutation
def⇐⇒ M ⊕ ∃P ≃ P ′, P, P ′: permutation.

(iii) M is invertible
def⇐⇒ M ⊕ ∃M ′ ≃ P : permutation.

(iv) M is coflabby
def⇐⇒ H1(H,M) = 0 (∀H ≤ G).

(v) M is flabby
def⇐⇒ Ĥ−1(H,M) = 0 (∀H ≤ G). (Ĥ: Tate cohomology)

▶ “permutation”
=⇒ “stably permutation”
=⇒ “invertible”
=⇒ “flabby and coflabby”.

A. Hoshi, A. Yamasaki (Niigata, Kyoto) Birational classification for algebraic tori (I) March 17, 2023 11 / 18



.
Commutative monoidM
..

......

M1 ∼M2
def⇐⇒ M1 ⊕ P1 ≃M2 ⊕ P2 (∃P1, ∃P2: permutation).

=⇒ commutative monoidM: [M1] + [M2] := [M1 ⊕M2], 0 = [P ].

.
Theorem (Endo-Miyata, 1974, Colliot-Thélène-Sansuc, 1977)
..

......

∃P : permutation, ∃F : flabby such that

0→M → P → F → 0: flabby resolution of M .

▶ [M ]fl := [F ]; flabby class of M

.
Theorem (Endo-Miyata, 1973, Voskresenskii, 1974, Saltman, 1984)
..

......

(EM73) [M ]fl = 0 ⇐⇒ L(M)G is stably k-rational.
(Vos74) [M ]fl = [M ′]fl ⇐⇒ L(M)G(x1, . . . , xm) ≃ L(M ′)G(y1, . . . , yn);

stably k-equivalent.
(Sal84) [M ]fl is invertible ⇐⇒ L(M)G is retract k-rational.

▶ M =MG ≃ T̂ , k(T ) ≃ L(M)G
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§2. Birational classification for algebraic tori

.
(Stably) birational classification for algebraic tori
..

......

For given two algebraic k-tori T and T ′,

whether T and T ′ are stably birationally k-equivalent?, i.e. T
s.b.≈ T ′?

.
Theorem (Colliot-Thélène and Sansuc, 1977) dim(T ) = dim(T ′) = 3
..

......

Let L/k and L′/k be Galois extensions with Gal(L/k) ≃ Gal(L′/k) ≃ C2
2 .

Let T = R
(1)
L/k(Gm) and T ′ = R

(1)
L′/k(Gm) be the corresponding norm one

tori. Then T
s.b.
≈ T ′ (stably birationally k-equivalent) if and only if L = L′.

▶ In particular, if k is a number field, then there exist infinitely many
stably birationally k-equivalent classes of (non-rational: 1st/15) k-tori
which correspond to U1 (cf. Main theorem 1, later).
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▶ k: a fixed separable closure of k and G = Gal(k/k)

▶ X: a smooth k-compactification of T , i.e. smooth projective
k-variety X containing T as a dense open subvariety

▶ X = X ×k k

.
Theorem (Voskresenskii, 1969, 1970)
..

......

There exists an exact sequence of G-lattices

0→ T̂ → Q̂→ PicX → 0

where Q̂ is permutation and Pic X is flabby.

▶ MG ≃ T̂ , [T̂ ]fl = [PicX] as G-lattices
.
Theorem (Voskresenskii, 1970, 1973)
..

......

(i) T is stably k-rational if and only if [PicX] = 0 as a G-lattice.
(ii) T

s.b.
≈ T ′ (stably birationally k-equivalent) if and only if

[PicX] = [PicX ′] as G-lattices.
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▶ From G-lattice to G-lattice

Let L be the minimal splitting field of T with G = Gal(L/k) ≃ G/H.
We obtain a flabby resolution of T̂ :

0→ T̂ → Q̂→ PicXL → 0

with [T̂ ]fl = [Pic XL] as G-lattices.

By the inflation-restriction exact sequence

0→ H1(G,PicXL)
inf−→ H1(k,PicX)

res−−→ H1(L,PicX), we get
inf : H1(G,PicXL)

∼−→ H1(k,PicX) because H1(L,PicX) = 0. We get:
.
Theorem (Voskresenskii, 1970, 1973)
..

......

(ii)′ T
s.b.≈ T ′ (stably birationally k-equivalent) if and only if

[PicX
L̃
] = [PicX ′

L̃
] as H̃-lattices where L̃ = LL′ and H̃ = Gal(L̃/k).

The group H̃ becomes a subdirect product of G = Gal(L/k) and
G′ = Gal(L′/k), i.e. a subgroup H̃ of G×G′ with surjections
φ1 : H̃ ↠ G and φ2 : H̃ ↠ G′.
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▶ This observation yields a concept of “weak stably k-equivalence”.

.
Definition
..

......

(i) [M ]fl and [M ′]fl are weak stably k-equivalent, if there exists a
subdirect product H̃ ≤ G×G′ of G and G′ with surjections φ1 : H̃ ↠ G
and φ2 : H̃ ↠ G′ such that [M ]fl = [M ′]fl as H̃-lattices where H̃ acts on
M (resp. M ′) through the surjection φ1 (resp. φ2).
(ii) Algebraic k-tori T and T ′ are weak stably birationally k-equivalent,

denoted by T
s.b.∼ T ′, if [T̂ ]fl and [T̂ ′]fl are weak stably k-equivalent.

.
Remark
..

......

(1) T
s.b.≈ T ′ (birational k-equiv.) ⇒ T

s.b.∼ T ′ (weak birational k-equiv.).

(2)
s.b.∼ becomes an equivalence relation and we call this equivalent class

the weak stably k-equivalent class of [T̂ ]fl (or T ) denoted by WSECr

(r ≥ 0) with the stably k-rational class WSEC0.
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.
Main theorem 1 ([HY, Theorem 1.22]) dim(T ) = 3: up to

s.b.∼
..

......

There exist exactly 14 weak stably birationally k-equivalent classes of
algebraic k-tori T of dimension 3 which consist of the stably rational class
WSEC0 and 13 classes WSECr (1 ≤ r ≤ 13) for [T̂ ]fl with T̂ =MG and
G = N3,i (1 ≤ i ≤ 15) as in the following:

r G = N3,i : [T̂ ]
fl = [MG]

fl ∈ WSECr G

1 N3,1 = U1 ([CTS 1977]) C2
2

2 N3,2 = U2 C3
2

3 N3,3 = W2 C3
2

4 N3,4 = W1 C4 × C2

5 N3,5 = U3, N3,6 = U4 D4

6 N3,7 = U6 D4 × C2

7 N3,8 = U5 A4

8 N3,9 = U7 A4 × C2

9 N3,10 = W3 A4 × C2

10 N3,11 = U9, N3,13 = U10 S4

11 N3,12 = U8 S4

12 N3,14 = U12 S4 × C2

13 N3,15 = U11 S4 × C2
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.

Main theorem 2 ([HY, Theorem 1.23]) dim(T ) = 3: up to
s.b.
≈

..

......

Let Ti and T
′
j (1 ≤ i, j ≤ 15) be algebraic k-tori of dimension 3 with the

minimal splitting fields Li and L
′
j , and T̂i =MG and T̂ ′

j =MG′ which
satisfy that G and G′ are GL(3,Z)-conjugate to N3,i and N3,j

respectively. For 1 ≤ i, j ≤ 15, the following conditions are equivalent:

(1) Ti
s.b.≈ T ′

j (stably birationally k-equivalent);
(2) Li = L′

j , Ti ×k K and T ′
j ×k K are weak stably birationally

K-equivalent for any k ⊂ K ⊂ Li;
(3) Li = L′

j , Ti ×k K and T ′
j ×k K are weak stably birationally

K-equivalent for any k ⊂ K ⊂ Li corresponding to WSECr (r ≥ 1);
(4) Li = L′

j , Ti ×k K and T ′
j ×k K are weak stably birationally

K-equivalent for any k ⊂ K ⊂ Li corresponding to WSECr (r ≥ 1)
with [K : k] = d where

d =

{
1 (i = 1, 3, 4, 8, 9, 10, 11, 12, 13, 14),

1, 2 (i = 2, 5, 6, 7, 15).

A. Hoshi, A. Yamasaki (Niigata, Kyoto) Birational classification for algebraic tori (I) March 17, 2023 18 / 18


	Rationality problem for algebraic tori
	Some definitions
	Flabby (Flasque) resolution

	Birational classification for algebraic tori

