Birational classification for algebraic tori (I)

Akinari Hoshi ${ }^{1} \quad$ Aiichi Yamasaki ${ }^{2}$

${ }^{1}$ Niigata University
${ }^{2}$ Kyoto University

March 17, 2023

Table of contents

1. Rationality problem for algebraic k-tori T
[HY17] A. Hoshi, A. Yamasaki,
Rationality problem for algebraic tori,
Mem. Amer. Math. Soc. 248 (2017), no. 1176, v+215 pp.
2. Birational classification for algebraic k-tori T
[HY] A. Hoshi, A. Yamasaki, Birational classification for algebraic tori, 175 pages, arXiv:2112.02280.

§1. Rationality problem for algebraic tori $T(1 / 3)$

- k : a base field which is NOT algebraically closed! (TODAY)
- T : algebraic k-torus, i.e. k-form of a split torus; an algebraic group over k (group k-scheme) with $T \times_{k} \bar{k} \simeq\left(\mathbb{G}_{m, \bar{k}}\right)^{n}$.

Rationality problem for algebraic tori

Whether T is k-rational?, i.e. $T \approx \mathbb{P}^{n}$? (birationally k-equivalent)
Let $R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ be the norm one torus of K / k, i.e. the kernel of the norm $\operatorname{map} N_{K / k}: R_{K / k}\left(\mathbb{G}_{m}\right) \rightarrow \mathbb{G}_{m}$ where $R_{K / k}$ is the Weil restriction:

$$
\begin{array}{ccc}
1 \longrightarrow R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right) \longrightarrow R_{K / k}\left(\mathbb{G}_{m}\right) \xrightarrow{N_{K / k}} \mathbb{G}_{m} \longrightarrow 1 . \\
\operatorname{dim} & n & 1
\end{array}
$$

- $\exists 2$ algebraic k-tori T with $\operatorname{dim}(T)=1$; the trivial torus \mathbb{G}_{m} and $R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ with $[K: k]=2$, are k-rational.

Rationality problem for algebraic tori $T(2 / 3)$

- $\exists 13$ algebraic k-tori T with $\operatorname{dim}(T)=2$.

Theorem (Voskresenskii, 1967) 2-dim. algebraic tori T

T is k-rational.

- $\exists 73$ algebraic k-tori T with $\operatorname{dim}(T)=3$.

Theorem (Kunyavskii, 1990) 3-dim. algebraic tori T

(i) $\exists 58$ algebraic k-tori T which are k-rational; (ii) $\exists 15$ algebraic k-tori T which are not k-rational.

- What happens in higher dimensions?

k-tori T and G-lattices

- T: algebraic k-torus
$\Longrightarrow \exists$ finite Galois extension L / k such that $T \times_{k} L \simeq\left(\mathbb{G}_{m, L}\right)^{n}$.
- $G=\operatorname{Gal}(L / k)$ where L is the minimal splitting field.

Category of algebraic k-tori which split $/ L \stackrel{\text { duality }}{\longleftrightarrow}$ Category of G-lattices (i.e. finitely generated \mathbb{Z}-free $\mathbb{Z}[G]$-module)

- $T \mapsto$ the character group $X(T)=\operatorname{Hom}\left(T, \mathbb{G}_{m}\right): G$-lattice.
- $T=\operatorname{Spec}\left(L[M]^{G}\right)$ which splits $/ L$ with $X(T) \simeq M \longleftrightarrow M: G$-lattice
- Tori of dimension $n \stackrel{1: 1}{\longleftrightarrow}$ elements of the set $H^{1}(\mathcal{G}, \operatorname{GL}(n, \mathbb{Z}))$ where $\mathcal{G}=\operatorname{Gal}(\bar{k} / k)$ since $\operatorname{Aut}\left(\mathbb{G}_{m}^{n}\right)=\operatorname{GL}(n, \mathbb{Z})$.
- k-torus T of dimension n is determined uniquely by the integral representation $h: \mathcal{G} \rightarrow \mathrm{GL}(n, \mathbb{Z})$ up to conjugacy, and the group $h(\mathcal{G})$ is a finite subgroup of $\mathrm{GL}(n, \mathbb{Z})$.
- The function field of $T \stackrel{\text { identified }}{\longleftrightarrow} L(M)^{G}$: invariant field.

Rationality problem for algebraic tori $T(3 / 3)$

- L / k : Galois extension with $G=\operatorname{Gal}(L / k)$.
- $M=\bigoplus_{1 \leq j \leq n} \mathbb{Z} \cdot u_{j}: G$-lattice with a \mathbb{Z}-basis $\left\{u_{1}, \ldots, u_{n}\right\}$.
- G acts on $L\left(x_{1}, \ldots, x_{n}\right)$ by

$$
\sigma\left(x_{j}\right)=\prod_{i=1}^{n} x_{i}^{a_{i, j}}, \quad 1 \leq j \leq n
$$

for any $\sigma \in G$, when $\sigma\left(u_{j}\right)=\sum_{i=1}^{n} a_{i, j} u_{i}, a_{i, j} \in \mathbb{Z}$.

- $L(M):=L\left(x_{1}, \ldots, x_{n}\right)$ with this action of G.
- The function field of algebraic k-torus $T \stackrel{\text { identified }}{\longleftrightarrow} L(M)^{G}$

Rationality problem for algebraic tori T (2nd form)

Whether $L(M)^{G}$ is k-rational?
(= purely transcendental over k ?; $L(M)^{G}=k\left(\exists t_{1}, \ldots, \exists t_{n}\right)$?)

Some definitions.

- K / k : a finite generated field extension.

Definition (stably rational)

K is called stably k-rational if $K\left(y_{1}, \ldots, y_{m}\right)$ is k-rational.

Definition (retract rational)

K is retract k-rational if $\exists k$-algebra (domain) $R \subset K$ such that
(i) K is the quotient field of R;
(ii) $\exists f \in k\left[x_{1}, \ldots, x_{n}\right] \exists k$-algebra hom. $\varphi: R \rightarrow k\left[x_{1}, \ldots, x_{n}\right][1 / f]$ and $\psi: k\left[x_{1}, \ldots, x_{n}\right][1 / f] \rightarrow R$ satisfying $\psi \circ \varphi=1_{R}$.

Definition (unirational)

K is k-unirational if $K \subset k\left(x_{1}, \ldots, x_{n}\right)$.

- k-rational \Rightarrow stably k-rational \Rightarrow retract k-rational $\Rightarrow k$-unirational.
- $L(M)^{G}$ (resp. T) is always k-unirational.

Rationality problem for algebraic tori T (2-dim., 3-dim.)

- The function field of n-dim. $T \stackrel{\text { identified }}{\longleftrightarrow} L(M)^{G}, G \leq \mathrm{GL}(n, \mathbb{Z})$
- $\exists 13$ algebraic k-tori T with $\operatorname{dim}(T)=2$.

Theorem (Voskresenskii, 1967) 2-dim. algebraic tori T (restated)

T is k-rational.

- $\exists 73 \mathbb{Z}$-coujugacy subgroups $G \leq \mathrm{GL}(3, \mathbb{Z})$ ($\exists 73$ 3-dim. algebraic k-tori T).

Theorem (Kunyavskii, 1990) 3-dim. algebraic tori T (precise form)

(i) T is k-rational $\Longleftrightarrow T$ is stably k-rational
$\Longleftrightarrow T$ is retract k-rational $\Longleftrightarrow \exists G$: 58 groups;
(ii) T is not k-rational $\Longleftrightarrow T$ is not stably k-rational
$\Longleftrightarrow T$ is not retract k-rational $\Longleftrightarrow \exists G$: 15 groups.

Rationality problem for algebraic tori T (4-dim.)

- The function field of n-dim. $T \stackrel{\text { identified }}{\longleftrightarrow} L(M)^{G}, G \leq \mathrm{GL}(n, \mathbb{Z})$
- $\exists 710 \mathbb{Z}$-coujugacy subgroups $G \leq \mathrm{GL}(4, \mathbb{Z})$ ($\exists 710$ 4-dim. algebraic k-tori T).

Theorem ([HY17]) 4-dim. algebraic tori T

(i) T is stably k-rational $\Longleftrightarrow \exists G$: 487 groups;
(ii) T is not stably but retract k-rational $\Longleftrightarrow \exists G$: 7 groups;
(iii) T is not retract k-rational $\Longleftrightarrow \exists G: 216$ groups.

- We do not know " k-rationality".
- Voskresenskii's conjecture: any stably k-rational torus is k-rational (Zariski problem).
- what happens for dimension 5 ?

Rationality problem for algebraic tori T (5-dim.)

- The function field of n-dim. $T \stackrel{\text { identified }}{\longleftrightarrow} L(M)^{G}, G \leq \mathrm{GL}(n, \mathbb{Z})$
- $\exists 6079 \mathbb{Z}$-coujugacy subgroups $G \leq \mathrm{GL}(5, \mathbb{Z})$ ($\exists 6079$ 5-dim. algebraic k-tori T).

Theorem ([HY17]) 5-dim. algebraic tori T

(i) T is stably k-rational $\Longleftrightarrow \exists G$: 3051 groups;
(ii) T is not stably but retract k-rational $\Longleftrightarrow \exists G$: 25 groups;
(iii) T is not retract k-rational $\Longleftrightarrow \exists G: 3003$ groups.

- what happens for dimension 6 ?
- BUT we do not know the answer for dimension 6.
- $\exists 85308 \mathbb{Z}$-coujugacy subgroups $G \leq \mathrm{GL}(6, \mathbb{Z})$ ($\exists 85308$ 6-dim. algebraic k-tori T).

Flabby (Flasque) resolution

- $M: G$-lattice, i.e. f.g. \mathbb{Z}-free $\mathbb{Z}[G]$-module.

Definition

(i) M is permutation $\stackrel{\text { def }}{\Longleftrightarrow} M \simeq \oplus_{1 \leq i \leq m} \mathbb{Z}\left[G / H_{i}\right]$.
(ii) M is stably permutation $\stackrel{\text { def }}{\Longleftrightarrow} M \oplus \exists P \simeq P^{\prime}, P, P^{\prime}$: permutation.
(iii) M is invertible $\stackrel{\text { def }}{\Longleftrightarrow} M \oplus \exists M^{\prime} \simeq P$: permutation.
(iv) M is coflabby $\stackrel{\text { def }}{\Longleftrightarrow} H^{1}(H, M)=0(\forall H \leq G)$.
(v) M is flabby $\stackrel{\text { def }}{\Longleftrightarrow} \widehat{H}^{-1}(H, M)=0(\forall H \leq G) .(\widehat{H}$: Tate cohomology $)$

- "permutation"
\Longrightarrow "stably permutation"
\Longrightarrow "invertible"
\Longrightarrow "flabby and coflabby".

Commutative monoid \mathcal{M}

$M_{1} \sim M_{2} \stackrel{\text { def }}{\Longleftrightarrow} M_{1} \oplus P_{1} \simeq M_{2} \oplus P_{2}\left(\exists P_{1}, \exists P_{2}\right.$: permutation $)$. \Longrightarrow commutative monoid $\mathcal{M}:\left[M_{1}\right]+\left[M_{2}\right]:=\left[M_{1} \oplus M_{2}\right], 0=[P]$.

Theorem (Endo-Miyata, 1974, Colliot-Thélène-Sansuc, 1977)

$\exists P$: permutation, $\exists F$: flabby such that

$$
0 \rightarrow M \rightarrow P \rightarrow F \rightarrow 0: \text { flabby resolution of } M
$$

- $[M]^{f l}:=[F]$; flabby class of M

Theorem (Endo-Miyata, 1973, Voskresenskii, 1974, Saltman, 1984)
(EM73) $[M]^{f l}=0 \Longleftrightarrow L(M)^{G}$ is stably k-rational.
$(\operatorname{Vos} 74)[M]^{f l}=\left[M^{\prime}\right]^{f l} \Longleftrightarrow L(M)^{G}\left(x_{1}, \ldots, x_{m}\right) \simeq L\left(M^{\prime}\right)^{G}\left(y_{1}, \ldots, y_{n}\right)$; stably k-equivalent.
(Sal84) $[M]^{f l}$ is invertible $\Longleftrightarrow L(M)^{G}$ is retract k-rational.

$$
M=M_{G} \simeq \widehat{T}, k(T) \simeq L(M)^{G}
$$

§2. Birational classification for algebraic tori

(Stably) birational classification for algebraic tori

For given two algebraic k-tori T and T^{\prime},
whether T and T^{\prime} are stably birationally k-equivalent?, i.e. $T \stackrel{\text { s.b. }}{\approx} T^{\prime}$?

Theorem (Colliot-Thélène and Sansuc, 1977) $\operatorname{dim}(T)=\operatorname{dim}\left(T^{\prime}\right)=3$

Let L / k and L^{\prime} / k be Galois extensions with $\operatorname{Gal}(L / k) \simeq \operatorname{Gal}\left(L^{\prime} / k\right) \simeq C_{2}^{2}$. Let $T=R_{L / k}^{(1)}\left(\mathbb{G}_{m}\right)$ and $T^{\prime}=R_{L^{\prime} / k}^{(1)}\left(\mathbb{G}_{m}\right)$ be the corresponding norm one tori. Then $T \stackrel{\text { s.b. }}{\approx} T^{\prime}$ (stably birationally k-equivalent) if and only if $L=L^{\prime}$.

- In particular, if k is a number field, then there exist infinitely many stably birationally k-equivalent classes of (non-rational: 1 st $/ 15) k$-tori which correspond to U_{1} (cf. Main theorem 1, later).
- \bar{k} : a fixed separable closure of k and $\mathcal{G}=\operatorname{Gal}(\bar{k} / k)$
- X : a smooth k-compactification of T, i.e. smooth projective k-variety X containing T as a dense open subvariety
- $\bar{X}=X \times{ }_{k} \bar{k}$

Theorem (Voskresenskii, 1969, 1970)

There exists an exact sequence of \mathcal{G}-lattices

$$
0 \rightarrow \widehat{T} \rightarrow \widehat{Q} \rightarrow \operatorname{Pic} \bar{X} \rightarrow 0
$$

where \widehat{Q} is permutation and $\operatorname{Pic} \bar{X}$ is flabby.

- $M_{G} \simeq \widehat{T},[\widehat{T}]^{f l}=[\operatorname{Pic} \bar{X}]$ as \mathcal{G}-lattices

Theorem (Voskresenskii, 1970, 1973)

(i) T is stably k-rational if and only if $[\operatorname{Pic} \bar{X}]=0$ as a \mathcal{G}-lattice.
(ii) $T \stackrel{\text { s.b. }}{\approx} T^{\prime}$ (stably birationally k-equivalent) if and only if
$[\operatorname{Pic} \bar{X}]=\left[\operatorname{Pic} \overline{X^{\prime}}\right]$ as \mathcal{G}-lattices.

- From \mathcal{G}-lattice to G-lattice

Let L be the minimal splitting field of T with $G=\operatorname{Gal}(L / k) \simeq \mathcal{G} / \mathcal{H}$. We obtain a flabby resolution of \widehat{T} :

$$
0 \rightarrow \widehat{T} \rightarrow \widehat{Q} \rightarrow \operatorname{Pic} X_{L} \rightarrow 0
$$

with $[\widehat{T}]^{f l}=\left[\operatorname{Pic} X_{L}\right]$ as G-lattices.
By the inflation-restriction exact sequence $0 \rightarrow H^{1}\left(G, \operatorname{Pic} X_{L}\right) \xrightarrow{\text { inf }} H^{1}(k, \operatorname{Pic} \bar{X}) \xrightarrow{\text { res }} H^{1}(L, \operatorname{Pic} \bar{X})$, we get inf : $H^{1}\left(G, \operatorname{Pic} X_{L}\right) \xrightarrow{\sim} H^{1}(k, \operatorname{Pic} \bar{X})$ because $H^{1}(L, \operatorname{Pic} \bar{X})=0$. We get:

Theorem (Voskresenskii, 1970, 1973)

(ii) ${ }^{\prime} T \stackrel{\text { s.b. }}{\approx} T^{\prime}$ (stably birationally k-equivalent) if and only if
$\left[\operatorname{Pic} X_{\widetilde{L}}\right]=\left[\operatorname{Pic} X_{\widetilde{L}}^{\prime}\right]$ as \widetilde{H}-lattices where $\widetilde{L}=L L^{\prime}$ and $\widetilde{H}=\operatorname{Gal}(\widetilde{L} / k)$.
The group \widetilde{H} becomes a subdirect product of $G=\operatorname{Gal}(L / k)$ and $G^{\prime}=\operatorname{Gal}\left(L^{\prime} / k\right)$, i.e. a subgroup H of $G \times G^{\prime}$ with surjections $\varphi_{1}: \widetilde{H} \rightarrow G$ and $\varphi_{2}: \widetilde{H} \rightarrow G^{\prime}$.

- This observation yields a concept of "weak stably k-equivalence".

Definition

(i) $[M]^{f l}$ and $\left[M^{\prime}\right]^{f l}$ are weak stably k-equivalent, if there exists a subdirect product $\widetilde{H} \leq G \times G^{\prime}$ of G and G^{\prime} with surjections $\varphi_{1}: \widetilde{H} \rightarrow G$ and $\varphi_{2}: \widetilde{H} \rightarrow G^{\prime}$ such that $[M]^{f l}=\left[M^{\prime}\right]^{f l}$ as \widetilde{H}-lattices where \widetilde{H} acts on $M\left(\right.$ resp. $\left.M^{\prime}\right)$ through the surjection φ_{1} (resp. φ_{2}).
(ii) Algebraic k-tori T and T^{\prime} are weak stably birationally k-equivalent, denoted by $T \stackrel{\text { s.b. }}{\sim} T^{\prime}$, if $[\widehat{T}]^{f l}$ and $\left[\widehat{T}^{\prime}\right]^{f l}$ are weak stably k-equivalent.

Remark

(1) $T \stackrel{\text { s.b. }}{\approx} T^{\prime}$ (birational k-equiv.) $\Rightarrow T \stackrel{\text { s.b. }}{\sim} T^{\prime}$ (weak birational k-equiv.). (2) $\stackrel{\text { s.b. }}{\sim}$ becomes an equivalence relation and we call this equivalent class the weak stably k-equivalent class of $[\widehat{T}]^{f l}$ (or T) denoted by WSEC_{r} $(r \geq 0)$ with the stably k-rational class WSEC_{0}.

Main theorem 1 ([HY, Theorem 1.22]) $\operatorname{dim}(T)=3$: up to s.b.

There exist exactly 14 weak stably birationally k-equivalent classes of algebraic k-tori T of dimension 3 which consist of the stably rational class WSEC_{0} and 13 classes $\mathrm{WSEC}_{r}(1 \leq r \leq 13)$ for $[\widehat{T}]^{f l}$ with $\widehat{T}=M_{G}$ and $G=N_{3, i}(1 \leq i \leq 15)$ as in the following:

r	$G=N_{3, i}:[\widehat{T}]^{f l}=\left[M_{G}\right]^{f l} \in \mathrm{WSEC}_{r}$	G
1	$N_{3,1}=U_{1}([\mathrm{CTS} \mathrm{1977])}$	C_{2}^{2}
2	$N_{3,2}=U_{2}$	C_{2}^{3}
3	$N_{3,3}=W_{2}$	C_{2}^{3}
4	$N_{3,4}=W_{1}$	$C_{4} \times C_{2}$
5	$N_{3,5}=U_{3}, N_{3,6}=U_{4}$	D_{4}
6	$N_{3,7}=U_{6}$	$D_{4} \times C_{2}$
7	$N_{3,8}=U_{5}$	A_{4}
8	$N_{3,9}=U_{7}$	$A_{4} \times C_{2}$
9	$N_{3,10}=W_{3}$	$A_{4} \times C_{2}$
10	$N_{3,11}=U_{9}, N_{3,13}=U_{10}$	S_{4}
11	$N_{3,12}=U_{8}$	S_{4}
12	$N_{3,14}=U_{12}$	$S_{4} \times C_{2}$
13	$N_{3,15}=U_{11}$	$S_{4} \times C_{2}$

Main theorem $2([\mathrm{HY}$, Theorem 1.23]) $\operatorname{dim}(T)=3$: up to $\stackrel{\text { s.b. }}{\approx}$

Let T_{i} and $T_{j}^{\prime}(1 \leq i, j \leq 15)$ be algebraic k-tori of dimension 3 with the minimal splitting fields L_{i} and L_{j}^{\prime}, and $\widehat{T}_{i}=M_{G}$ and $\widehat{T}_{j}^{\prime}=M_{G^{\prime}}$ which satisfy that G and G^{\prime} are $\mathrm{GL}(3, \mathbb{Z})$-conjugate to $N_{3, i}$ and $N_{3, j}$ respectively. For $1 \leq i, j \leq 15$, the following conditions are equivalent:
(1) $T_{i} \stackrel{\text { s.b. }}{\approx} T_{j}^{\prime}$ (stably birationally k-equivalent);
(2) $L_{i}=L_{j}^{\prime}, T_{i} \times_{k} K$ and $T_{j}^{\prime} \times_{k} K$ are weak stably birationally K-equivalent for any $k \subset K \subset L_{i}$;
(3) $L_{i}=L_{j}^{\prime}, T_{i} \times_{k} K$ and $T_{j}^{\prime} \times_{k} K$ are weak stably birationally K-equivalent for any $k \subset K \subset L_{i}$ corresponding to $\operatorname{WSEC}_{r}(r \geq 1)$; (4) $L_{i}=L_{j}^{\prime}, T_{i} \times_{k} K$ and $T_{j}^{\prime} \times_{k} K$ are weak stably birationally K-equivalent for any $k \subset K \subset L_{i}$ corresponding to $\operatorname{WSEC}_{r}(r \geq 1)$ with $[K: k]=d$ where

$$
d= \begin{cases}1 & (i=1,3,4,8,9,10,11,12,13,14) \\ 1,2 & (i=2,5,6,7,15)\end{cases}
$$

