Rationality problem for fields of invariants

Akinari Hoshi

Niigata University

March 9, 2021

Table of contents

- Introduction: rationality problem for quasi-monomial actions
- 1 Monomial action & Noether's problem
- 2 Noether's problem over ${\mathbb C}$
 - Unramified Brauer/cohomology groups
- 3 Quasi-monomial action
- 4 Rationality problem for algebraic tori
 - Flabby resolution
 - Krull-Schmidt Theorem

 $\mathrm{Br}_{\mathrm{nr}}(X/\mathbb{C}) \simeq H^3(X,\mathbb{Z})_{\mathrm{tors}};$ Artin-Mumford invariant (X:RC) $H^3_{\mathrm{nr}}(X,\mathbb{Q}/\mathbb{Z}) \simeq \mathrm{Hdg}^4(X,\mathbb{Z})/\mathrm{Hdg}^4(X,\mathbb{Z})_{\mathrm{alg}} \leftrightarrow \mathrm{integral}$ Hodge conjecture cf. Colliot-Thélène and Voisin, Duke Math. J. **161** (2012) 735–801.

§0. Introduction

Inverse Galois problem (IGP)

Does every finite group occur as a quotient group of the absolute Galois group $\mathrm{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$?

► Related to rationality problem (Emmy Noether's strategy: 1913)

A finite group $G \curvearrowright k(x_g \mid g \in G)$: rational function field over k by permutation

 $k(x_g \mid g \in G)^G$ is rational over k, i.e. $k(x_g \mid g \in G)^G \simeq k(t_1, \dots, t_n)$ (Noether's problem has an affirmative answer)

 $\implies k(x_q \mid g \in G)^G$ is retract rational over k (weaker concept)

 \iff \exists generic extension (polynomial) for (G,k) (Saltman's sense)

 $\stackrel{k: Hilbertian}{\Longrightarrow}$ IGP for (k,G) has an affirmative answer

Rationality problem for quasi-monomial actions

Definition (quasi-monomial action)

Let K/k be a finite field extension and $G \leq \operatorname{Aut}_k(K(x_1,\ldots,x_n))$; finite where $K(x_1,\ldots,x_n)$ is the rational function field of n variables over K. The action of G on $K(x_1,\ldots,x_n)$ is called quasi-monomial if

(i) $\sigma(K) \subset K$ for any $\sigma \in G$;

(ii)
$$K^G = k$$
;

(iii) for any
$$\sigma \in G$$
, $\sigma(x_j) = c_j(\sigma) \prod_{i=1}^n x_i^{a_{ij}}$

where $c_j(\sigma) \in K^{\times}$, $1 \leq j \leq n$, $[a_{i,j}]_{1 \leq i,j \leq n} \in GL_n(\mathbb{Z})$.

Rationality problem

Under what situation the fixed field $K(x_1,\ldots,x_n)^G$ is rational over k, i.e. $K(x_1,\ldots,x_n)^G\simeq k(t_1,\ldots,t_n)$ (=purely transcendental over k), if G acts on $K(x_1,\ldots,x_n)$ by quasi-monomial k-automorphisms.

Rationality problem for quasi-monomial actions

Definition (quasi-monomial action)

Let K/k be a finite field extension and $G \leq \operatorname{Aut}_k(K(x_1,\ldots,x_n))$; finite where $K(x_1,\ldots,x_n)$ is the rational function field of n variables over K. The action of G on $K(x_1,\ldots,x_n)$ is called quasi-monomial if

- (i) $\sigma(K) \subset K$ for any $\sigma \in G$;
- (ii) $K^G = k$;
- (iii) for any $\sigma \in G$, $\sigma(x_j) = c_j(\sigma) \prod_{i=1}^{n} x_i^{a_{ij}}$

where $c_j(\sigma) \in K^{\times}$, $1 \leq j \leq n$, $[a_{i,j}]_{1 \leq i,j \leq n} \in GL_n(\mathbb{Z})$.

- ▶ When $G \curvearrowright K$; trivial (i.e. K = k), called (just) monomial action.
- ▶ When $G \curvearrowright K$; trivial and permutation \leftrightarrow Noether's problem.
- ▶ When $c_i(\sigma) = 1 \ (\forall \sigma \in G, \forall j)$, called purely (quasi-)monomial.
- ▶ $G = \operatorname{Gal}(K/k)$ and purely \leftrightarrow Rationality problem for algebraic tori.

Exercises (1/2): Noether's problem

- $A_n \curvearrowright \mathbb{Q}(x_1, \dots, x_n); \text{ permutation}$ $\boxed{\mathbb{Q}.} \text{ Is } \mathbb{Q}(x_1, \dots, x_n)^{A_n} \text{ rational over } \mathbb{Q}? \qquad \boxed{\text{Ans.}} \text{ Yes? } ??$ $\mathbb{Q}(x_1, \dots, x_n)^{A_n} = \mathbb{Q}(s_1, \dots, s_n, \Delta); \text{ but } \dots$
 - Open problem Is $\mathbb{Q}(x_1,\ldots,x_n)^{A_n}$ rational over \mathbb{Q} ? $(n \geq 6)$
- $ightharpoonup \mathbb{Q}(x_1,\ldots,x_5)^{A_5}$ is rational over \mathbb{Q} (Maeda, 1989).

Exercises (2/2): Noether's problem

- $\mathbb{Q}(x_1, x_2, x_3)^{A_3} = \mathbb{Q}(x_1, x_2, x_3)^{C_3} = \mathbb{Q}(t_1, t_2, t_3), \mathbb{Q}.$ $(C_3: x_1 \mapsto x_2 \mapsto x_3 \mapsto x_1)$
- Ans. $\begin{aligned} \mathbb{Q}(x_1,x_2,x_3)^{C_3} &= \mathbb{Q}(t_1,t_2,t_3) \text{ where} \\ t_1 &= x_1 + x_2 + x_3, \\ t_2 &= \frac{x_1x_2^2 + x_2x_3^2 + x_3x_1^2 3x_1x_2x_3}{x_1^2 + x_2^2 + x_3^2 x_1x_2 x_2x_3 x_3x_1}, \\ t_3 &= \frac{x_1^2x_2 + x_2^2x_3 + x_3^2x_1 3x_1x_2x_3}{x_1^2 + x_2^2 + x_3^2 x_1x_2 x_2x_3 x_3x_1}. \end{aligned}$
- $\mathbb{Q}(x_1, x_2, \dots, x_8)^{C_8} = \mathbb{Q}(t_1, t_2, \dots, t_8), \mathbb{Q}.$ $(C_8 : x_1 \mapsto x_2 \mapsto x_3 \mapsto \dots \mapsto x_8 \mapsto x_1)$
- ▶ Ans. None: $\mathbb{Q}(x_1, x_2, \dots, x_8)^{C_8}$ is not rational over $\mathbb{Q}!$

Today's talk (1/2)

Definition (quasi-monomial action)

Let K/k be a finite field extension and $G \leq \operatorname{Aut}_k(K(x_1,\ldots,x_n))$; finite where $K(x_1,\ldots,x_n)$ is the rational function field of n variables over K. The action of G on $K(x_1,\ldots,x_n)$ is called quasi-monomial if

- (i) $\sigma(K) \subset K$ for any $\sigma \in G$;
- (ii) $K^G = k$;
- (iii) for any $\sigma \in G$, $\sigma(x_j) = c_j(\sigma) \prod_{i=1}^n x_i^{a_{ij}}$
- where $c_j(\sigma) \in K^{\times}$, $1 \leq j \leq n$, $[a_{i,j}]_{1 \leq i,j \leq n} \in GL_n(\mathbb{Z})$.
- §1. $G \curvearrowright K$; trivial: monomial action & Noether's problem
- §2. $G \curvearrowright K$; trivial and permutation: Noether's problem over $\mathbb C$
- §3. (general) quasi-monomial actions (1-dim. and 2-dim. cases)
- §4. $G = \operatorname{Gal}(K/k)$ and purely: rationality problem for algebraic tori

Today's talk (2/2)

- §1. $G \curvearrowright K$; trivial: monomial action & Noether's problem Hoshi-Kitayama-Yamasaki, J. Algebra **341** (2011) 45–108.
- $\S 2.$ $G \curvearrowright K;$ trivial and permutation: Noether's problem over $\mathbb C$
- Hoshi-Kang-Kunyavskii, Asian J. Math. 17 (2013) 689–714.
- Chu-Hoshi-Hu-Kang, J. Algebra 442 (2015) 233-259.
- Hoshi, J. Algebra 445 (2016) 394-432.
- Hoshi-Kang-Yamasaki, J. Algebra 458 (2016) 120-133.
- Hoshi-Kang-Yamasaki, to appear in Mem. AMS, arXiv:1609.04142, 104 pp.
- Hoshi-Kang-Yamasaki, J. Algebra 544 (2020) 262-301.
- §3. (general) quasi-monomial actions (1-dim. and 2-dim. cases)
- Hoshi-Kang-Kitayama, J. Algebra 403 (2014) 363-400.
- §4. G = Gal(K/k) and purely: rationality problem for algebraic tori Hoshi-Yamasaki, Mem. AMS **248** (2017) no. 1176, 215 pp.

Various rationalities: definitions

 $k \subset L$; f.g. field extension, L is rational over $k \iff L \simeq k(x_1, \dots, x_n)$.

Definition (stably rational)

L is called stably rational over $k \iff L(y_1, \ldots, y_m)$ is rational over k.

Definition (retract rational)

L is retract rational over $k \iff \exists k$ -algebra $R \subset L$ such that

- (i) L is the quotient field of R;
- (ii) $\exists f \in k[x_1,\ldots,x_n] \; \exists k$ -algebra hom. $\varphi:R \to k[x_1,\ldots,x_n][1/f]$ and $\psi:k[x_1,\ldots,x_n][1/f] \to R$ satisfying $\psi\circ\varphi=1_R$.

Definition (unirational)

L is unirational over $k \iff L \subset k(t_1, \ldots, t_n)$.

- Assume $L_1(x_1, \ldots, x_n) \simeq L_2(y_1, \ldots, y_m)$; stably isomorphic. If L_1 is retract rational over k, then so is L_2 over k.
- "rational" ⇒ "stably rational" ⇒ "retract rational "⇒ "unirational"

"rational" \Longrightarrow "stably rational" \Longrightarrow "retract rational " \Longrightarrow "unirational"

- ▶ The direction of the implication cannot be reversed.
- ▶ (Lüroth's problem) "unirational" ⇒ "rational" ? YES if trdeg= 1
- ► (Castelnuovo, 1894) L is unirational over $\mathbb C$ and $\operatorname{trdeg}_{\mathbb C} L = 2 \Longrightarrow L$ is rational over $\mathbb C$.
- ▶ (Zariski, 1958) Let k be an alg. closed field and $k \subset L \subset k(x,y)$. If k(x,y) is separable algebraic over L, then L is rational over k.
- ▶ (Zariski cancellation problem) $V_1 \times \mathbb{P}^n \approx V_2 \times \mathbb{P}^n \Longrightarrow V_1 \approx V_2$? In particular, "stably rational" \Longrightarrow "rational"?
- ▶ (Beauville, Colliot-Thélène, Sansuc, Swinnerton-Dyer, 1985, Ann. Math.) $L = \mathbb{Q}(x,y,t)$ with $x^2 + 3y^2 = t^3 2$ (Châtelet surface) $\Longrightarrow L$ is not rational but stably rational over \mathbb{Q} . Indeed, $L(y_1,y_2,y_3)$ is rational over \mathbb{Q} .
- ▶ $L(y_1, y_2)$ is rational over \mathbb{Q} (Shepherd-Barron, 2002, Fano Conf.).
- $ightharpoonup \mathbb{Q}(x_1,\ldots,x_{47})^{C_{47}}$ is not stably but retract rational over \mathbb{Q} .
- $ightharpoonup \mathbb{Q}(x_1,\ldots,x_8)^{C_8}$ is not retract but unirational over \mathbb{Q} .

Châtelet surface as an invariant field

- ▶ (Beauville, Colliot-Thélène, Sansuc, Swinnerton-Dyer, 1985, Ann. Math.) $L = \mathbb{Q}(x,y,t)$ with $x^2 + 3y^2 = t^3 2$ (Châtelet surface) $\implies L$ is not rational but stably rational over \mathbb{Q} .
- $L=\mathbb{Q}(x,y,t)=\mathbb{Q}(\sqrt{-3})(X,Y)^{\langle\sigma\rangle}$ where

$$\sigma: \sqrt{-3} \mapsto -\sqrt{-3}, X \mapsto X, Y \mapsto \frac{X^3 - 2}{Y}.$$

Indeed, we have

$$\begin{split} x &= \frac{1}{2} \left(Y + \frac{X^3 - 2}{Y} \right), \\ y &= \frac{1}{2\sqrt{-3}} \left(Y - \frac{X^3 - 2}{Y} \right), \\ t &= X. \end{split}$$

Retract rationality and generic extension

Theorem (Saltman, 1982, DeMeyer)

Let k be an infinite field and G be a finite group.

The following are equivalent:

- (i) $k(x_q \mid g \in G)^G$ is retract rational over k.
- (ii) There is a generic G-Galois extension over k;
- (iii) There exists a generic G-polynomial over k.
 - ightharpoonup related to Inverse Galois Problem (IGP). (i) \Longrightarrow IGP(G/k): true

Definition (generic polynomial)

A polynomial $f(t_1, \ldots, t_n; X) \in k(t_1, \ldots, t_n)[X]$ is generic for G over k if

- (1) $\operatorname{\mathsf{Gal}}(f/k(t_1,\ldots,t_n)) \simeq G;$
- (2) $\forall L/M \supset k$ with $\operatorname{Gal}(L/M) \simeq G$,
- $\exists a_1, \ldots, a_n \in M \text{ such that } L = \mathsf{SpI}(f(a_1, \ldots, a_n; X)/M).$
 - ▶ By Hilbert's irreducibility theorem, $\exists L/\mathbb{Q}$ such that $\operatorname{Gal}(L/\mathbb{Q}) \simeq G$.

§1. Monomial action & Noether's problem

Definition (monomial action) $G \curvearrowright K$; trivial, $k = K^G = K$

An action of G on $k(x_1,\ldots,x_n)$ is monomial $\stackrel{\mathrm{def}}{\Longleftrightarrow}$

$$\sigma(x_j) = c_j(\sigma) \prod_{i=1}^n x_i^{a_{i,j}}, \ 1 \le j \le n, \forall \sigma \in G$$

where $[a_{i,j}]_{1 \leq i,j \leq n} \in \mathrm{GL}_n(\mathbb{Z})$, $c_j(\sigma) \in k^{\times} := k \setminus \{0\}$.

If $c_j(\sigma) = 1$ for any $1 \le j \le n$ then σ is called purely monomial.

► Application to Noether's problem (permutation action)

Noether's problem (1/3) [G = A; abelian case]

- ▶ *k*; field, *G*; finite group
- ▶ $G \curvearrowright k$; trivial, $G \curvearrowright k(x_q \mid g \in G)$; permutation.
- $\blacktriangleright k(G) := k(x_q \mid g \in G)^G$; invariant field

Noether's problem (Emmy Noether, 1913)

Is k(G) rational over k?, i.e. $k(G) \simeq k(t_1, \ldots, t_n)$?

- ▶ Is the quotient variety \mathbb{P}^n/G rational over k?
- ▶ Assume G = A; abelian group.
- ▶ (Fisher, 1915) $\mathbb{C}(A)$ is rational over \mathbb{C} .
- ▶ (Masuda, 1955, 1968) $\mathbb{Q}(C_p)$ is rational over \mathbb{Q} for $p \leq 11$.
- ► (Swan, 1969, Invent. Math.) $\mathbb{Q}(C_{47}), \mathbb{Q}(C_{113}), \mathbb{Q}(C_{233})$ are not rational over \mathbb{Q} .
- ▶ S. Endo and T. Miyata (1973), V.E. Voskresenskii (1973), ... e.g. $\mathbb{Q}(C_8)$ is not rational over \mathbb{Q} .
- ► (Lenstra, 1974, Invent. Math.) k(A) is rational over $k \iff$ some condition;

Noether's problem (2/3) [G = A; abelian case]

- ▶ (Endo-Miyata, 1973) $\mathbb{Q}(C_{p^r})$ is rational over \mathbb{Q} $\iff \exists \alpha \in \mathbb{Z}[\zeta_{\varphi(p^r)}]$ such that $N_{\mathbb{Q}(\zeta_{\varphi(p^r)})/\mathbb{Q}}(\alpha) = \pm p$
- ▶ $h(\mathbb{Q}(\zeta_m)) = 1$ if m < 23 $\Rightarrow \mathbb{Q}(C_p)$ is rational over \mathbb{Q} for $p \le 43$ and p = 61, 67, 71.
- ▶ (Endo-Miyata, 1973) For $p=47,79,113,137,167,\ldots$, $\mathbb{Q}(C_p)$ is not rational over \mathbb{Q} .
- ▶ However, for $p=59,83,89,97,107,163,\ldots$, unknown. Under the GRH, $\mathbb{Q}(C_p)$ is not rational for the above primes. But it was unknown for $p=251,347,587,2459,\ldots$
- For $p \le 20000$, see speaker's paper (using PARI/GP): Proc. Japan Acad. Ser. A 91 (2015) 39-44.

Theorem (Plans, 2017, Proc. AMS)

 $\mathbb{Q}(C_p)$ is rational over $\mathbb{Q} \iff p \leq 43$ or p = 61, 67, 71.

▶ Using lower bound of height, $\mathbb{Q}(C_p)$ is rational $\Rightarrow p < 173$.

Noether's problem (3/3) [G; non-abelian case]

Noether's problem (Emmy Noether, 1913)

Is k(G) rational over k?, i.e. $k(G) \simeq k(t_1, \ldots, t_n)$?

- ▶ Assume *G*; non-abelian group.
- ▶ (Maeda, 1989) $k(A_5)$ is rational over k;
- ▶ (Rikuna, 2003; Plans, 2007) $k(GL_2(\mathbb{F}_3))$ and $k(SL_2(\mathbb{F}_3))$ is rational over k;
- ► (Serre, 2003) if 2-Sylow subgroup of $G \simeq C_{8m}$, then $\mathbb{Q}(G)$ is not rational over \mathbb{Q} ; if 2-Sylow subgroup of $G \simeq Q_{16}$, then $\mathbb{Q}(G)$ is not rational over \mathbb{Q} ; e.g. $G = Q_{16}, SL_2(\mathbb{F}_7), SL_2(\mathbb{F}_9)$, $SL_2(\mathbb{F}_q)$ with $q \equiv 7$ or $9 \pmod{16}$.

From Noether's problem to monomial actions (1/2)

▶ $k(G) := k(x_g \mid g \in G)^G$; invariant field

Noether's problem (Emmy Noether, 1913)

Is k(G) rational over k?, i.e. $k(G) \simeq k(t_1, \ldots, t_n)$?

By Hilbert 90, we have:

No-name lemma (e.g. Miyata, 1971, Remark 3)

Let G act faithfully on k-vector space V, $W \subset V$ faithful k[G]-submodule. Then $K(V)^G = K(W)^G(t_1, ..., t_m)$.

Rationality problem: linear action

Let G act on finite-dimensional k-vector space V and $\rho: G \to GL(V)$ be a representation. Whether $k(V)^G$ is rational over k?

• the quotient variety V/G is rational over k?

From Noether's problem to monomial actions (2/2)

For $\rho:G \to GL(V)$; monomial representation, i.e. matrix rep. has exactly one non-zero entry in each row and each column, G acts on $k(\mathbb{P}(V))=k(\frac{w_1}{w_n},\ldots,\frac{w_{n-1}}{w_n})$ by monomial action.

By Hilbert 90, we have:

Lemma (e.g. Miyata, 1971, Lemma)

$$k(V)^G = k(\mathbb{P}(V))^G(t).$$

- $V/G \approx \mathbb{P}(V)/G \times \mathbb{P}^1$ (birational)
- ▶ $k(\mathbb{P}(V))^G$ (monomial action) is rational over k $\implies k(V)^G$ (linear action) is rational over k $\implies k(G)$ (permutation action) is rational over k(Noether's problem has an affirmative answer)

Example: Noether's problem for $GL_2(\mathbb{F}_3)$ and $SL_2(\mathbb{F}_3)$

- $G = GL_2(\mathbb{F}_3) = \langle A, B, C, D \rangle \subset GL_4(\mathbb{Q}), |G| = 48,$
- ▶ $H = SL_2(\mathbb{F}_3) = \langle A, B, C \rangle \subset GL_4(\mathbb{Q})$, |H| = 24, where

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix}, \ B = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}, \ C = \begin{bmatrix} 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ D = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}.$$

• G and H act on $k(V) = k(w_1, w_2, w_3, w_4)$ by

$$A: w_1 \mapsto -w_2 \mapsto -w_1 \mapsto w_2 \mapsto w_1, \ w_3 \mapsto -w_4 \mapsto -w_3 \mapsto w_4 \mapsto w_3,$$

$$B: w_1 \mapsto -w_3 \mapsto -w_1 \mapsto w_3 \mapsto w_1, \ w_2 \mapsto w_4 \mapsto -w_2 \mapsto -w_4 \mapsto w_2,$$

$$C: w_1 \mapsto -w_2 \mapsto w_3 \mapsto w_1, w_4 \mapsto w_4, \quad D: w_1 \mapsto w_1, w_2 \mapsto -w_2, w_3 \leftrightarrow w_4.$$

▶ $k(\mathbb{P}(V)) = k(x, y, z)$, $x = w_1/w_4$, $y = w_2/w_4$, $z = w_3/w_4$. ▶ G and H act on k(x, y, z) as $G/Z(G) \simeq S_4$ and $H/Z(H) \simeq A_4$:

$$A: x \mapsto \frac{y}{z}, \ y \mapsto \frac{-x}{z}, \ z \mapsto \frac{-1}{z}, \ B: x \mapsto \frac{-z}{y}, \ y \mapsto \frac{-1}{y}, \ z \mapsto \frac{x}{y},$$

$$C: x \mapsto y \mapsto z \mapsto x, \ D: x \mapsto \frac{x}{z}, \, y \mapsto \frac{-y}{z}, \, z \mapsto \frac{1}{z}.$$

 $\blacktriangleright k(\mathbb{P}(V))^G$: rational $\Longrightarrow k(V)^G$: rational $\Longrightarrow k(G)$: rational.

Monomial action (1/3) [3-dim. case]

Theorem (Hajja,1987) 2-dim. monomial action

 $k(x_1, x_2)^G$ is rational over k.

Theorem (Hajja-Kang 1994, H-Rikuna 2008) 3-dim. purely monomial $k(x_1, x_2, x_3)^G$ is rational over k.

Theorem (Prokhorov, 2010) 3-dim. monomial action over $k=\mathbb{C}$

 $\mathbb{C}(x_1, x_2, x_3)^G$ is rational over \mathbb{C} .

However, $\mathbb{Q}(x_1,x_2,x_3)^{\langle\sigma\rangle}$, $\sigma:x_1\mapsto x_2\mapsto x_3\mapsto \frac{-1}{x_1x_2x_3}$ is not rational over \mathbb{Q} (Hajja,1983).

Monomial action (2/3) [3-dim. case]

Theorem (Saltman, 2000) char $k \neq 2$

If $[k(\sqrt{a_1}, \sqrt{a_2}, \sqrt{a_3}) : k] = 8$, then $k(x_1, x_2, x_3)^{\langle \sigma \rangle}$,

$$\sigma: x_1 \mapsto \frac{a_1}{x_1}, x_2 \mapsto \frac{a_2}{x_2}, x_3 \mapsto \frac{a_3}{x_3}$$

is not retract rational over k (hence not rational over k).

Theorem (Kang, 2004)

 $k(x_1, x_2, x_3)^{\langle \sigma \rangle}$, $\sigma: x_1 \mapsto x_2 \mapsto x_3 \mapsto \frac{c}{x_1 x_2 x_3} \mapsto x_1$, is rational over k

 \iff at least one of the following conditions is satisfied:

(i) char k = 2; (ii) $c \in k^2$; (iii) $-4c \in k^4$; (iv) $-1 \in k^2$.

If $k(x,y,z)^{\langle\sigma\rangle}$ is not rational over k, then it is not retract rational over k.

Recall that

▶ "rational" ⇒ "stably rational" ⇒ "retract rational" ⇒ "unirational"

Monomial action (3/3) [3-dim. case]

Theorem (Yamasaki, 2012) 3-dim. monomial, char $k \neq 2$

 \exists 8 cases $G \leq GL_3(\mathbb{Z})$ s.t $k(x_1, x_2, x_3)^G$ is not retract rational over k. Moreover, the necessary and sufficient conditions are given.

- ▶ Two of 8 cases are Saltman's and Kang's cases.
- ▶ $\exists G \leq GL_3(\mathbb{Z})$; 73 finite subgroups (up to conjugacy)

Theorem (H-Kitayama-Yamasaki, 2011) 3-dim. monomial, char $k \neq 2$

 $k(x_1, x_2, x_3)^G$ is rational over k except for the 8 cases and $G = A_4$.

For $G = A_4$, if $[k(\sqrt{a}, \sqrt{-1}) : k] \le 2$, then it is rational over k.

Corollary

 $\exists L = k(\sqrt{a})$ such that $L(x_1, x_2, x_3)^G$ is rational over L.

▶ However, $\exists 4$ -dim. $\mathbb{C}(x_1, x_2, x_3, x_4)^{C_2 \times C_2}$ is not retract rational.

$\S 2$. Noether's problem over \mathbb{C} (1/3)

Let G be a p-group. $\mathbb{C}(G) := \mathbb{C}(x_g \mid g \in G)^G$.

- ▶ (Fisher, 1915) $\mathbb{C}(A)$ is rational over \mathbb{C} if A; finite abelian group.
- ▶ (Saltman, 1984, Invent. Math.) For $\forall p$; prime, \exists meta-abelian p-group G of order p^9 such that $\mathbb{C}(G)$ is not retract rational over \mathbb{C} .
- ▶ (Bogomolov, 1988) For $\forall p$; prime, $\exists p$ -group G of order p^6 such that $\mathbb{C}(G)$ is not retract rational over \mathbb{C} .

Indeed they showed $\mathrm{Br}_{\mathrm{nr}}(\mathbb{C}(G)/\mathbb{C}) \neq 0$; unramified Brauer group

- ▶ rational \Longrightarrow stably rational \Longrightarrow retract rational \Longrightarrow $\mathrm{Br}_{\mathrm{nr}}(\mathbb{C}(G)) = 0.$ not rational \Leftarrow not stably rational \Leftarrow not retract rational \Leftarrow $\mathrm{Br}_{\mathrm{nr}}(\mathbb{C}(G)) \neq 0.$
 - $\blacktriangleright k(G)$; retract rational \Longrightarrow IGP for (k,G) has an affirmative answer.

Unramified Brauer group

Definition (Unramified Brauer group) Saltman (1984)

Let $k \subset K$ be an extension of fields.

 $\mathrm{Br}_{\mathrm{nr}}(K/k) = \cap_R \mathrm{Image}\{\mathrm{Br}(R) \to \mathrm{Br}(K)\}$ where $\mathrm{Br}(R) \to \mathrm{Br}(K)$ is the natural map of Brauer groups and R runs over all the DVR such that $k \subset R \subset K$ and $K = \mathrm{Quot}(R)$.

- ▶ If K is retract rational over k, then $\operatorname{Br}(k) \xrightarrow{\sim} \operatorname{Br}_{\operatorname{nr}}(K/k)$. In particular, if K is retract rational over $\mathbb C$, then $\operatorname{Br}_{\operatorname{nr}}(K/\mathbb C)=0$.
- ▶ For a smooth projective variety X over $\mathbb C$ with function field K, $\mathrm{Br}_{\mathrm{nr}}(K/\mathbb C) \simeq H^3(X,\mathbb Z)_{\mathrm{tors}}$ which is given by Artin-Mumford (1972).

Theorem (Bogomolov 1988, Saltman 1990) $\mathrm{Br}_{\mathrm{nr}}(\mathbb{C}(G)/\mathbb{C}) \simeq B_0(G)$

Let G be a finite group. Then $\mathrm{Br}_{\mathrm{nr}}(\mathbb{C}(G)/\mathbb{C})$ is isomorphic to

$$B_0(G) = \bigcap_A \operatorname{Ker} \{ \operatorname{res} : H^2(G, \mathbb{Q}/\mathbb{Z}) \to H^2(A, \mathbb{Q}/\mathbb{Z}) \}$$

where A runs over all the bicyclic subgroups of G (bicyclic = cyclic or direct product of two cyclic groups).

- ▶ $\mathbb{C}(G)$: "retract rational" $\Longrightarrow B_0(G) = 0$. $B_0(G) \neq 0 \Longrightarrow \mathbb{C}(G)$: not (retract) rational over k.
- ▶ $B_0(G) \le H^2(G, \mu) \simeq H_2(G, \mathbb{Z})$; Schur multiplier.
- ▶ $B_0(G)$ is called Bogomolov multiplier.

Noether's problem over \mathbb{C} (2/3)

▶ (Chu-Kang, 2001) G is p-group ($|G| \le p^4$) $\Longrightarrow \mathbb{C}(G)$ is rational.

Theorem (Moravec, 2012, Amer. J. Math.)

Assume $|G|=3^5=243$. $B_0(G)\neq 0\iff G=G(243,i)$, $28\leq i\leq 30$. In particular, $\exists 3$ groups G such that $\mathbb{C}(G)$ is not retract rational over \mathbb{C} .

▶ $\exists G$: 67 groups such that |G| = 243.

Theorem (H-Kang-Kunyavskii, 2013, Asian J. Math.)

Assume $|G|=p^5$ where p is odd prime. $B_0(G) \neq 0 \iff G$ belongs to the isoclinism family Φ_{10} . In particular, $\exists \gcd(4,p-1)+\gcd(3,p-1)+1$ (resp. $\exists 3$) groups G of order p^5 $(p \geq 5)$ (resp. p=3) s.t. $\mathbb{C}(G)$ is not retract rational over \mathbb{C} .

▶ $\exists 2p + 61 + \gcd(4, p - 1) + 2 \gcd(3, p - 1)$ groups such that $|G| = p^5(p \ge 5)$. $(\exists \Phi_1, \dots, \Phi_{10})$

From the proof (1/3)

Definition (isoclinic)

p-groups G_1 and G_2 are isoclinic $\stackrel{\det}{\Longleftrightarrow}$ isom. $\theta:G_1/Z(G_1)\stackrel{\sim}{\to} G_2/Z(G_2)$, $\phi:[G_1,G_1]\stackrel{\sim}{\to} [G_2,G_2]$ such that

$$G_1/Z(G_1) \times G_1/Z(G_1) \xrightarrow{(\theta,\theta)} G_2/Z(G_2) \times G_2/Z(G_2)$$

$$[\ ,\] \downarrow \qquad \qquad \qquad \downarrow [\ ,\]$$

$$[G_1,G_1] \xrightarrow{\phi} \qquad [G_2,G_2]$$

Invariants

- lower central series
- \blacktriangleright # of conj. classes with precisely p^i members
- # of irr. complex rep. of G of degree p^i

From the proof (2/3)

- ▶ $|G| = p^4(p > 2)$. $\exists 15$ groups (Φ_1, Φ_2, Φ_3)
- ▶ $|G| = 2^4 = 16$. $\exists 14$ groups (Φ_1, Φ_2, Φ_3)
- ▶ $|G|=p^5(p>3)$. $\exists 2p+61+(4,p-1)+2\times(3,p-1)$ groups $(\Phi_1,\ldots,\Phi_{10})$

$ \begin{array}{c c} & \# \\ (p=3) \end{array} $	Φ_1	Φ_2	Φ_3	Φ_4	Φ_5	Φ_6	Φ_7	Φ_8
#	7	15	13	p+8	2	p+7	5	1
(p=3)						7		
	Φ_9			Φ_{10}				
#	2 + (3, p - 1)			$\frac{1 + (4, p - 1) + (3, p - 1)}{3}$				
(p = 3)						3		

From the proof (3/3)

[HKK, Question 1.11] (2013) (arXiv:1202.5812)

Let G_1 and G_2 be isoclinic p-groups.

Is it true that the fields $k(G_1)$ and $k(G_2)$ are stably isomorphic, or, at least, that $B_0(G_1)$ is isomorphic to $B_0(G_2)$?

Theorem (Moravec, 2013) (arXiv:1203.2422)

 G_1 and G_2 are isoclinic $\Longrightarrow B_0(G_1) \simeq B_0(G_2)$.

Theorem (Bogomolov-Böhning, 2013) (arXiv: 1204.4747)

 G_1 and G_2 are isoclinic $\Longrightarrow \mathbb{C}(G_1)$ and $\mathbb{C}(G_2)$ are stably isomorphic.

Proof (Φ_{10}) : $B_0(G) \neq 0$

Lemma 1. $N \triangleleft G$.

- (i) $\operatorname{tr}: H^1(N, \mathbb{Q}/\mathbb{Z})^G \to H^2(G/N, \mathbb{Q}/\mathbb{Z})$ is not surjective where tr is the transgression map.
- (ii) $AN/N \leq G/N$ is cyclic ($\forall A \leq G$; bicyclic).

$$\Longrightarrow B_0(G) \neq 0.$$

Proof. Consider the Hochschild-Serre 5-term exact sequence

$$0 \to H^1(G/N, \mathbb{Q}/\mathbb{Z}) \to H^1(G, \mathbb{Q}/\mathbb{Z}) \to H^1(N, \mathbb{Q}/\mathbb{Z})^G$$

$$\xrightarrow{\operatorname{tr}} H^2(G/N, \mathbb{Q}/\mathbb{Z}) \xrightarrow{\psi} H^2(G, \mathbb{Q}/\mathbb{Z})$$

where ψ is an inflation map.

(i)
$$\Longrightarrow \psi$$
 is not zero-map $\Longrightarrow \operatorname{Image}(\psi) \neq 0$.

We will show that $\operatorname{Image}(\psi) \subset B_0(G)$ by (ii).

It suffices to show that $H^2(G/N,\mathbb{Q}/\mathbb{Z}) \xrightarrow{\psi} H^2(G,\mathbb{Q}/\mathbb{Z}) \xrightarrow{\mathrm{res}} H^2(A,\mathbb{Q}/\mathbb{Z})$ is zero-map $(\forall A \leq G : \text{bicyclic})$.

Consider the following commutative diagram:

$$\begin{split} H^2(G/N,\mathbb{Q}/\mathbb{Z}) &\xrightarrow{\psi} H^2(G,\mathbb{Q}/\mathbb{Z}) \xrightarrow{\mathrm{res}} H^2(A,\mathbb{Q}/\mathbb{Z}) \\ &\downarrow^{\psi_0} \qquad \qquad \qquad \uparrow^{\psi_1} \\ &H^2(AN/N,\mathbb{Q}/\mathbb{Z}) &\overset{\widetilde{\psi}}{\simeq} H^2(A/A \cap N,\mathbb{Q}/\mathbb{Z}) \end{split}$$

where ψ_0 is the restriction map, ψ_1 is the inflation map, $\widetilde{\psi}$ is the natural isomorphism.

(ii)
$$\Longrightarrow AN/N \simeq C_m \Longrightarrow H^2(C_m, \mathbb{Q}/\mathbb{Z}) = 0.$$

 $\Longrightarrow \psi_0$ is zero-map.

$$\Longrightarrow \operatorname{res} \circ \psi \colon H^2(G/N, \mathbb{Q}/\mathbb{Z}) \to H^2(A, \mathbb{Q}/\mathbb{Z})$$
 is zero-map.

$$\therefore \operatorname{Image}(\psi) \subset B_0(G)$$

$$\operatorname{Image}(\psi) \subset B_0(G) \text{ and } \operatorname{Image}(\psi) \neq 0 \text{ (by (i))} \Longrightarrow B_0(G) \neq 0.$$

Proof (Φ_6) : $B_0(G) = 0$

►
$$G = \Phi_6(211)a = \langle f_1, f_2, f_0, h_1, f_2 \rangle, f_1^p = h_1, f_2^p = h_2,$$

 $Z(G) = \langle h_1, h_2 \rangle, f_0^p = h_1^p = h_2^p = 1$
 $[f_1, f_2] = f_0, [f_0, f_1] = h_1, [f_0, f_2] = h_2$

Hochschild-Serre 5-term exact sequence:

$$0 \to H^1(G/N, \mathbb{Q}/\mathbb{Z}) \to H^1(G, \mathbb{Q}/\mathbb{Z}) \to H^1(N, \mathbb{Q}/\mathbb{Z})^G \xrightarrow{\operatorname{tr}} H^2(G/N, \mathbb{Q}/\mathbb{Z}) \xrightarrow{\psi} H^2(G, \mathbb{Q}/\mathbb{Z})$$

Proof (Φ_6) : $B_0(G) = 0$

$$G = \Phi_6(211)a = \langle f_1, f_2, f_0, h_1, f_2 \rangle, f_1^p = h_1, f_2^p = h_2,$$

$$Z(G) = \langle h_1, h_2 \rangle, f_0^p = h_1^p = h_2^p = 1$$

$$[f_1, f_2] = f_0, [f_0, f_1] = h_1, [f_0, f_2] = h_2$$

Hochschild-Serre 5-term exact sequence:

- Explicit formula for λ is given by Dekimpe-Hartl-Wauters (2012)
- $ightharpoonup N := \langle f_1, f_0, h_1, h_2 \rangle \Longrightarrow G/N \simeq C_p \Longrightarrow H^2(G/N, \mathbb{Q}/\mathbb{Z}) = 0$
- $\blacktriangleright B_0(G) \subset H^2(G, \mathbb{Q}/\mathbb{Z})_1$
- We should show $H^2(G, \mathbb{Q}/\mathbb{Z})_1 = 0 \ (\iff \lambda$: injective)

Noether's problem over \mathbb{C} (3/3)

Theorem (H-Kang-Kunyavskii, 2013, Asian J. Math.)

Assume $|G| = p^5$ where p is odd prime.

$$B_0(G) \neq 0 \iff G$$
 belongs to the isoclinism family Φ_{10} .

Theorem (Chu-H-Hu-Kang, 2015, J. Algebra) $|G|=3^5=243$

If $B_0(G) = 0$, then $\mathbb{C}(G)$ is rational over \mathbb{C} except for Φ_7 .

- ▶ Non-rationality of Φ_7 is detected by $H^3_{\mathrm{nr}}(\mathbb{C}(G), \mathbb{Q}/\mathbb{Z})$ (later).
- Φ_5 and Φ_7 are very similar: C=1 (Φ_5) , $C=\omega$ (Φ_7) .

 $\mathbb{C}(G)$ is stably isomorphic to $\mathbb{C}(z_1,z_2,z_3,z_4,z_5,z_6,z_7,z_8,z_9)^{\langle f_1,f_2 \rangle}$

$$\begin{split} f_1: z_1 &\mapsto z_2, z_2 \mapsto \frac{1}{z_1 z_2}, z_3 \mapsto z_4, z_4 \mapsto \frac{1}{z_3 z_4}, \\ z_5 &\mapsto \frac{z_5}{z_1^2 z_3}, z_6 \mapsto \frac{z_1 z_6}{z_3}, z_7 \mapsto z_8, z_8 \mapsto \frac{1}{z_7 z_8}, z_9 \mapsto \frac{z_4 z_9}{z_1}, \\ f_2: z_1 &\mapsto z_3, z_2 \mapsto z_4, z_3 \mapsto \frac{1}{z_1 z_3}, z_4 \mapsto \frac{1}{z_2 z_4}, \\ z_5 &\mapsto z_6, z_6 \mapsto \frac{1}{z_5 z_6}, z_7 \mapsto C\frac{z_4 z_7}{z_3}, z_8 \mapsto C\frac{z_8}{z_3 z_4^2}, z_9 \mapsto \frac{z_4 z_9}{z_1}. \end{split}$$

Rationality problem for fields of invariants

Unramified Brauer group: purely monomial case (1/2)

Theorem (H-Kang-Yamasaki, arXiv:1609.04142) purely monomial

Let G be a finite group and M be a faithful G-lattice.

- (1) If $\operatorname{rank}_{\mathbb{Z}} M \leq 3$, then $\operatorname{Br}_{\operatorname{nr}}(\mathbb{C}(M)^G) = 0$.
- (2) When $\mathrm{rank}_{\mathbb{Z}}M=4$, $\exists~5~M$'s with $\mathrm{Br}_{\mathrm{nr}}(\mathbb{C}(M)^G)\neq 0$.
- (3) When $\operatorname{rank}_{\mathbb{Z}} M = 5$, $\exists 46 M$'s with $\operatorname{Br}_{\operatorname{nr}}(\mathbb{C}(M)^G) \neq 0$.
- (4) When $\operatorname{rank}_{\mathbb{Z}} M = 6$, $\exists 1073 \ M$'s with $\operatorname{Br}_{\operatorname{nr}}(\mathbb{C}(M)^G) \neq 0$.

rank	# of G -lattices	$\#$ of unramified Brauer groups $\neq 0$
1	2	0
2	13	0
3	73	0
4	710	5
5	6079	46
6	85308	1073

▶ If M is of rank ≤ 6 and $\operatorname{Br}_{\operatorname{nr}}(\mathbb{C}(M^G)) \neq 0$, then G is solvable and non-abelian, and $\operatorname{Br}_{\operatorname{nr}}(\mathbb{C}(M)^G) \simeq \mathbb{Z}/2\mathbb{Z}, \, \mathbb{Z}/3\mathbb{Z}$ or $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$.

Unramified Brauer group: purely monomial case (2/2)

Theorem (H-Kang-Yamasaki, arXiv:1609.04142) $G = A_6$: simple

Embed $A_6 \simeq PSL_2(\mathbb{F}_9) \hookrightarrow S_{10}$. Let $N = \bigoplus_{1 \leq i \leq 10} \mathbb{Z} \cdot x_i$ be the S_{10} -lattice defined by $\sigma \cdot x_i = x_{\sigma(i)}$ for any $\sigma \in S_{10}$; it becomes an A_6 -lattice by restricting the action of S_{10} to A_6 . Define $M = N/(\mathbb{Z} \cdot \sum_{i=1}^{10} x_i)$ with $\mathrm{rank}_{\mathbb{Z}} M = 9$. $\exists A_6$ -lattices $M = M_1, M_2, \ldots, M_6$ which are \mathbb{Q} -conjugate but not \mathbb{Z} -conjugate to each other; in fact, all these M_i form a single \mathbb{Q} -class, but this \mathbb{Q} -class consists of six \mathbb{Z} -classes. Then we have

$$H_{\rm nr}^2(A_6, M_1) \simeq H_{\rm nr}^2(A_6, M_3) \simeq \mathbb{Z}/2\mathbb{Z}, \ H_{\rm nr}^2(A_6, M_i) = 0 \ \text{for} \ i = 2, 4, 5, 6.$$

In particular, $\mathbb{C}(M_1)^{A_6}$ and $\mathbb{C}(M_3)^{A_6}$ are not retract \mathbb{C} -rational. Furthermore, M_1 and M_3 may be distinguished by Tate cohomologies:

$$H^{1}(A_{6}, M_{1}) = 0,$$
 $\widehat{H}^{-1}(A_{6}, M_{1}) = \mathbb{Z}/10\mathbb{Z},$ $H^{1}(A_{6}, M_{3}) = \mathbb{Z}/5\mathbb{Z},$ $\widehat{H}^{-1}(A_{6}, M_{3}) = \mathbb{Z}/2\mathbb{Z}.$

Unramified cohomology (1/4)

Colliot-Thélène and Ojanguren (1989) generalized the notion of the unramified Brauer group $\mathrm{Br}_{\mathrm{nr}}(K/\mathbb{C})$ to the unramified cohomology $H^i_{\mathrm{nr}}(K/\mathbb{C},\mu_n^{\otimes j})$ of degree $i\geq 1$:

Definition (Colliot-Thélène and Ojanguren, 1989, Invent. Math.)

Let K/\mathbb{C} be a function field, that is finitely generated as a field over \mathbb{C} . The unramified cohomology group $H^i_{\mathrm{nr}}(K/\mathbb{C},\mu_n^{\otimes j})$ of K over \mathbb{C} of degree $i\geq 1$ is defined to be

$$H^i_{\mathrm{nr}}(K/\mathbb{C},\mu_n^{\otimes j}) = \bigcap_R \operatorname{Ker}\{r_R: H^i(K,\mu_n^{\otimes j}) \to H^{i-1}(\Bbbk_R,\mu_n^{\otimes (j-1)})\}$$

where R runs over all the DVR of rank one such that $\mathbb{C} \subset R \subset K$ and $K = \operatorname{Quot}(R)$ and r_R is the residue map.

Note that ${}_{n}\mathrm{Br}_{\mathrm{nr}}(K/\mathbb{C}) \simeq H^{2}_{\mathrm{nr}}(K/\mathbb{C},\mu_{n}).$

Proposition (Colliot-Thélène and Ojanguren, 1989)

If K and L are stably $\mathbb C$ -isomorphic, then $H^i_{\mathrm{nr}}(K/\mathbb C,\mu_n^{\otimes j})\stackrel{\sim}{\to} H^i_{\mathrm{nr}}(L/\mathbb C,\mu_n^{\otimes j}).$ In particular, K is stably $\mathbb C$ -rational, then $H^i_{\mathrm{nr}}(K/\mathbb C,\mu_n^{\otimes j})=0.$

- ▶ Moreover, if K is retract \mathbb{C} -rational, then $H_{\mathrm{nr}}^i(K/\mathbb{C}, \mu_n^{\otimes j}) = 0$.
- ► CTO (1989) \exists \mathbb{C} -unirational field K with $\operatorname{trdeg}_{\mathbb{C}}K = 6$ s.t. $H^3_{\rm nr}(K/\mathbb{C}, \mu_2^{\otimes 3}) \neq 0$ and $\operatorname{Br}_{\rm nr}(K/\mathbb{C}) = 0$.
- ▶ Peyre (1993) gave a sufficient condition for $H^i_{\mathrm{nr}}(K/\mathbb{C},\mu_p^{\otimes i}) \neq 0$:
- ▶ $\exists K$ s.t. $H^3_{\mathrm{nr}}(K/\mathbb{C},\mu_p^{\otimes 3}) \neq 0$ and $\mathrm{Br}_{\mathrm{nr}}(K/\mathbb{C})=0$;
- ▶ $\exists K$ s.t. $H^4_{\mathrm{nr}}(K/\mathbb{C},\mu_2^{\otimes 4}) \neq 0$ and $\mathrm{Br}_{\mathrm{nr}}(K/\mathbb{C}) = 0$.

Unramified cohomology (2/4)

Take the direct limit with respect to n:

$$H^i(K/\mathbb{C},\mathbb{Q}/\mathbb{Z}(j)) = \lim_{\stackrel{\longrightarrow}{n}} H^i(K/\mathbb{C},\mu_n^{\otimes j})$$

and we also define the unramified cohomology group

$$H^{i}_{\mathrm{nr}}(K/\mathbb{C}, \mathbb{Q}/\mathbb{Z}(j))$$

$$= \bigcap_{R} \mathrm{Ker}\{r_{R}: H^{i}(K/\mathbb{C}, \mathbb{Q}/\mathbb{Z}(j)) \to H^{i-1}(\mathbb{k}_{R}, \mathbb{Q}/\mathbb{Z}(j-1))\}.$$

Then we have $\mathrm{Br}_{\mathrm{nr}}(K/\mathbb{C}) \simeq H^2_{\mathrm{nr}}(K/\mathbb{C},\mathbb{Q}/\mathbb{Z}(1)).$

▶ The case $K = \mathbb{C}(G)$:

Theorem (Peyre, 2008, Invent. Math.) p: odd prime

 $\exists p$ -group G of order p^{12} such that $B_0(G) = 0$ and $H^3_{\mathrm{nr}}(\mathbb{C}(G), \mathbb{Q}/\mathbb{Z}) \neq 0$. In particular, $\mathbb{C}(G)$ is not (retract, stably) \mathbb{C} -rational.

Asok (2013) generalized Peyre's argument (1993):

Theorem (Asok, 2013, Compos. Math.)

- (1) For any n > 0, \exists a smooth projective complex variety X that is \mathbb{C} -unirational, for which $H_{nr}^i(\mathbb{C}(X), \mu_2^{\otimes i}) = 0$ for each i < n, yet $H^n_{\mathrm{nr}}(\mathbb{C}(X),\mu_2^{\otimes n})\neq 0$, and so X is not \mathbb{A}^1 -connected, nor (retract, stably) \mathbb{C} -rational;
- (2) For any prime l and any $n \geq 2$, \exists a smooth projective rationally
- connected complex variety Y such that $H_{nr}^n(\mathbb{C}(Y), \mu_I^{\otimes n}) \neq 0$.
- In particular, Y is not \mathbb{A}^1 -connected, nor (retract, stably) \mathbb{C} -rational.
 - Namely, the triviality of the unramified Brauer group or the unramified cohomology of higher degree is just a necessary condition of \mathbb{C} -rationality of fields.
 - It is interesting to consider an analog of above Theorem for quotient varieties V/G, e.g. $\mathbb{C}(V_{reg}/G) = \mathbb{C}(G)$.

Unramified cohomology (3/4)

Theorem (Peyre, 2008, Invent. Math.) p: odd prime

 \exists p-group G of order p^{12} such that $B_0(G)=0$ and $H^3_{\mathrm{nr}}(\mathbb{C}(G),\mathbb{Q}/\mathbb{Z})\neq 0$. In particular, $\mathbb{C}(G)$ is not (retract, stably) \mathbb{C} -rational.

Using Peyre's method, we improve this result:

Theorem (H-Kang-Yamasaki, 2016, J. Algebra) p: odd prime

 \exists p-group G of order p^9 such that $B_0(G)=0$ and $H^3_{\mathrm{nr}}(\mathbb{C}(G),\mathbb{Q}/\mathbb{Z})\neq 0$. In particular, $\mathbb{C}(G)$ is not (retract, stably) \mathbb{C} -rational.

On the other hand, CT and Voisin proved: $(\leftrightarrow integral Hodge conjecture)$

Theorem (Colliot-Thélène and Voisin, 2012, Duke Math. J.)

Let X be a smooth projective rationally connected complex variety. Then $H^3_{\mathrm{nr}}(X,\mathbb{Q}/\mathbb{Z}) \simeq \mathrm{Hdg}^4(X,\mathbb{Z})/\mathrm{Hdg}^4(X,\mathbb{Z})_{\mathrm{alg}}$.

Unramified cohomology (4/4)

▶ Using Peyre's formula [Peyre, 2008, Invent. Math.], we get:

Theorem (H-Kang-Yamasaki, 2020, J. Algebra) $|G|=3^5$

 $H^3_{\mathrm{nr}}(\mathbb{C}(G),\mathbb{Q}/\mathbb{Z}) \neq 0 \iff G$ belongs to the isoclinism family Φ_7 . In particular, $\mathbb{C}(G)$ is not rational over $\mathbb{C} \iff G$ belongs to Φ_7,Φ_{10} .

							Φ_7			
$H^2_{\mathrm{nr}}(\mathbb{C}(G),\mathbb{Q}/\mathbb{Z})$										
$H^3_{\mathrm{nr}}(\mathbb{C}(G),\mathbb{Q}/\mathbb{Z})$	0	0	0	0	0	0	$\mathbb{Z}/3\mathbb{Z}$	0	0	0

Theorem (H-Kang-Yamasaki, 2020, J. Algebra) $|G|=5^5$ or 7^5

 $H^3_{\mathrm{nr}}(\mathbb{C}(G),\mathbb{Q}/\mathbb{Z}) \neq 0 \iff G \text{ belongs to } \Phi_6, \Phi_7 \text{ or } \Phi_{10}.$

$ G = p^5 \ (p = 5, 7)$										
$H^2_{\mathrm{nr}}(\mathbb{C}(G),\mathbb{Q}/\mathbb{Z})$	0	0	0	0	0	0	0	0	0	$\mathbb{Z}/p\mathbb{Z}$
$H^3_{\mathrm{nr}}(\mathbb{C}(G),\mathbb{Q}/\mathbb{Z})$	0	0	0	0	0	$\mathbb{Z}/p\mathbb{Z}$	$\mathbb{Z}/p\mathbb{Z}$	0	0	$\mathbb{Z}/p\mathbb{Z}$

Noether's problem over $\mathbb C$ for 2-groups

- ▶ (Chu-Kang, 2001) G is p-group ($|G| \le p^4$) $\Longrightarrow \mathbb{C}(G)$ is rational.
- ► (Chu-Hu-Kang-Prokhorov, 2008) $|G| = 32 = 2^5 \Longrightarrow \mathbb{C}(G) \text{ is rational}.$
- ▶ $\exists 267$ groups G of order $64 = 2^6$ which are classified into 27 isoclinism families $\Phi_1, \ldots, \Phi_{27}$.

Theorem (Chu-Hu-Kang-Kunyavskii, 2010) $|G| = 64 = 2^6$

- (1) $B_0(G) \neq 0 \iff G$ belongs to Φ_{16} . ($\exists 9$ such G's)
- Moreover, if $B_0(G) \neq 0$, then $B_0(G) \simeq C_2$.
- (2) If $B_0(G)=0$, then $\mathbb{C}(G)$ is rational except for Φ_{13} . $(\exists 5 \text{ such } G'\text{s})$
 - ▶ ([CHKK10], [HY14]) $(B_0(G) = 0$, but rationality unknown) If G belongs to Φ_{13} , then $\mathbb{C}(G)$ is stably \mathbb{C} -isomorphic to $L^{(0)}_{\mathbb{C}}$.
 - ▶ ([CHKK10], [HKK14]) $(B_0(G) \simeq C_2$, not retract rational) If G belongs to Φ_{16} , then $\mathbb{C}(G)$ is stably \mathbb{C} -isomorphic to $L^{(1)}_{\mathbb{C}}$.

- ▶ ([CHKK10], [HY14]) $(B_0(G) = 0$, but rationality unknown) If G belongs to Φ_{13} , then $\mathbb{C}(G)$ is stably \mathbb{C} -isomorphic to $L_{\mathbb{C}}^{(0)}$.
- ([CHKK10], [HKK14]) $(B_0(G) \simeq C_2$, not retract rational) If G belongs to Φ_{16} , then $\mathbb{C}(G)$ is stably \mathbb{C} -isomorphic to $L^{(1)}_{\mathbb{C}}$.

Definition (The fields $L_{\mathbb{C}}^{(0)}$ and $L_{\mathbb{C}}^{(1)}$)

(i) The field $L^{(0)}_{\mathbb{C}}$ is defined to be $\mathbb{C}(X_1,X_2,X_3,X_4,X_5,X_6)^H$ where $H=\langle \sigma_1,\sigma_2\rangle\simeq C_2\times C_2$ act on $\mathbb{C}(X_1,X_2,X_3,X_4,X_5,X_6)$ by

$$\sigma_1: X_1 \mapsto X_3, \ X_2 \mapsto \frac{1}{X_1 X_2 X_3}, \ X_3 \mapsto X_1, \ X_4 \mapsto X_6, \ X_5 \mapsto \frac{1}{X_4 X_5 X_6}, \ X_6 \mapsto X_4,$$

$$\sigma_2: X_1 \mapsto X_2, \ X_2 \mapsto X_1, \ X_3 \mapsto \frac{1}{X_1 X_2 X_3}, \ X_4 \mapsto X_5, \ X_5 \mapsto X_4, \ X_6 \mapsto \frac{1}{X_4 X_5 X_6}.$$

(ii) The field $L^{(1)}_{\mathbb C}$ is defined to be $\mathbb C(X_1,X_2,X_3,X_4)^{\langle au \rangle}$ where $\langle au \rangle \simeq C_2$ acts on $\mathbb C(X_1,X_2,X_3,X_4)$ by

$$\tau: X_1 \mapsto -X_1, \ X_2 \mapsto \frac{X_4}{X_2}, \ X_3 \mapsto \frac{(X_4 - 1)(X_4 - X_1^2)}{X_2}, \ X_4 \mapsto X_4.$$

- ▶ ([CHKK10], [HY14]) $(B_0(G) = 0$, but rationality unknown) If G belongs to Φ_{13} , then $\mathbb{C}(G)$ is stably \mathbb{C} -isomorphic to $L^{(0)}_{\mathbb{C}}$.
- ([CHKK10], [HKK14]) $(B_0(G) \simeq C_2$, not retract rational) If G belongs to Φ_{16} , then $\mathbb{C}(G)$ is stably \mathbb{C} -isomorphic to $L^{(1)}_{\mathbb{C}}$.
- ▶ $L_{\mathbb{C}}^{(0)} = \mathbb{C}(z_1, z_2, z_3, z_4, u_4, u_5, u_6)$ where $(z_1^2 a)(z_4^2 d) = (z_2^2 b)(z_3^2 c),$ $a = u_4(u_4 1), b = u_4 1, c = u_4(u_4 u_6^2), d = u_5^2(u_4 u_6^2).$
- ▶ $L_{\mathbb{C}}^{(0)} = \mathbb{C}(u, v, t, w_3, w_4, w_5, w_6)$ where $u^2 tv^2 = -\left(w_4^2(w_5^2 1)t^2 + (w_3^2 w_3^2w_5^2 + 1)t w_5^2\right)$ $\cdot \left(w_4^2w_6^2t^2 (w_4^2 + w_3^2w_6^2)t + w_3^2 w_6^2 + 1\right).$
- ▶ $L_{\mathbb{C}}^{(0)} = \mathbb{C}(m_0, \dots, m_6)$ where $m_0^2 = (4m_3 + m_3m_4^2 + m_4^2)(m_3 m_5^2 + 1)$ $\cdot (m_1^2 m_3 + m_6^2 1)(4m_3 + m_1^2 m_2^2 m_3 + m_2^2 m_6^2).$
- L_C⁽¹⁾ = C(u, v, t, w₃, w₄) where $u^2 tv^2 = (tw_4^2 w_3^2 + 1)(t + tw_4^2 w_3^2).$

▶ $\exists 2328$ groups G of order $128 = 2^7$ which are classified into 115 isoclinism families $\Phi_1, \ldots, \Phi_{115}$.

Theorem (Moravec, 2012, Amer. J. Math.) $|G| = 128 = 2^7$

 $B_0(G) \neq 0$ if and only if G belongs to the isoclinism family Φ_{16} , Φ_{30} , Φ_{31} , Φ_{37} , Φ_{39} , Φ_{43} , Φ_{58} , Φ_{60} , Φ_{80} , Φ_{106} or Φ_{114} . If $B_0(G) \neq 0$, then

$$B_0(G) \simeq \begin{cases} C_2 & (\Phi_{16}, \Phi_{31}, \Phi_{37}, \Phi_{39}, \Phi_{43}, \Phi_{58}, \Phi_{60}, \Phi_{80}, \Phi_{106}, \Phi_{114}) \\ C_2 \times C_2 & (\Phi_{30}). \end{cases}$$

In particular, $\mathbb{C}(G)$ is not (retract, stably) \mathbb{C} -rational.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	Total
Family	Φ_{16}	Φ_{31}	Φ_{37}	Φ_{39}	Φ_{43}	Φ_{58}	Φ_{60}	Φ_{80}	Φ_{106}	Φ_{114}	Φ_{30}	
$B_0(G)$					C_2						$C_2 \times C_2$	
# G's	48	55	18	6	26	20	10	9	2	2	34	220

▶ Q. Birational classification of $\mathbb{C}(G)$? In particular, what happens when $B_0(G) \neq 0$? How many $\mathbb{C}(G)$'s exist up to stably \mathbb{C} -isomorphism?

Theorem (H, 2016, J. Algebra) $|G| = 128 = 2^7$

Assume that $B_0(G) \neq 0$.

Then $\mathbb{C}(G)$ and $L^{(m)}_{\mathbb{C}}$ are stably \mathbb{C} -isomorphic where

$$m = \begin{cases} 1 & \text{if } G \text{ belongs to } \Phi_{16}, \Phi_{31}, \Phi_{37}, \Phi_{39}, \Phi_{43}, \Phi_{58}, \Phi_{60} \text{ or } \Phi_{80}, \\ 2 & \text{if } G \text{ belongs to } \Phi_{106} \text{ or } \Phi_{114}, \\ 3 & \text{if } G \text{ belongs to } \Phi_{30}. \end{cases}$$

In particular, $\mathrm{Br}_{\mathrm{nr}}(L_{\mathbb{C}}^{(1)})\simeq\mathrm{Br}_{\mathrm{nr}}(L_{\mathbb{C}}^{(2)})\simeq C_2$ and $\mathrm{Br}_{\mathrm{nr}}(L_{\mathbb{C}}^{(3)})\simeq C_2\times C_2$ and hence the fields $L_{\mathbb{C}}^{(1)}$, $L_{\mathbb{C}}^{(2)}$ and $L_{\mathbb{C}}^{(3)}$ are not (retract, stably) \mathbb{C} -rational.

- ▶ $L_{\mathbb{C}}^{(1)} \nsim L_{\mathbb{C}}^{(3)}$, $L_{\mathbb{C}}^{(2)} \nsim L_{\mathbb{C}}^{(3)}$ (not stably \mathbb{C} -isomorphic) because their unramified Brauer groups are not isomorphic.
- ▶ However, we do not know whether $L_{\mathbb{C}}^{(1)} \sim L_{\mathbb{C}}^{(2)}$.
- ▶ If not, evaluate the higher unramified cohomologies $H^i_{nr}(i \ge 3)$? (Peyre's formula can not work for $|G| = 2^m$)

Definition (The fields $L_{\mathbb{C}}^{(2)}$ and $L_{\mathbb{C}}^{(3)}$)

(i) The field $L^{(2)}_{\mathbb{C}}$ is defined to be $\mathbb{C}(X_1,X_2,X_3,X_4,X_5,X_6)^{\langle \rho \rangle}$ where $\langle \rho \rangle \simeq C_4$ acts on $\mathbb{C}(X_1,X_2,X_3,X_4,X_5,X_6)$ by

$$\begin{split} \rho: X_1 \mapsto X_2, X_2 \mapsto -X_1, X_3 \mapsto X_4, X_4 \mapsto X_3, \\ X_5 \mapsto X_6, X_6 \mapsto \frac{(X_1^2 X_2^2 - 1)(X_1^2 X_3^2 + X_2^2 - X_3^2 - 1)}{X_5}. \end{split}$$

(ii) The field $L^{(3)}_{\mathbb C}$ is defined to be $\mathbb C(X_1,X_2,X_3,X_4,X_5,X_6,X_7)^{\langle\lambda_1,\lambda_2\rangle}$ where $\langle\lambda_1,\lambda_2\rangle\simeq C_2\times C_2$ acts on $\mathbb C(X_1,X_2,X_3,X_4,X_5,X_6,X_7)$ by

$$\lambda_{1}: X_{1} \mapsto X_{1}, X_{2} \mapsto \frac{X_{1}}{X_{2}}, X_{3} \mapsto \frac{1}{X_{1}X_{3}}, X_{4} \mapsto \frac{X_{2}X_{4}}{X_{1}X_{3}},$$

$$X_{5} \mapsto -\frac{X_{1}X_{6}^{2} - 1}{X_{5}}, X_{6} \mapsto -X_{6}, X_{7} \mapsto X_{7},$$

$$\lambda_{2}: X_{1} \mapsto \frac{1}{X_{1}}, X_{2} \mapsto X_{3}, X_{3} \mapsto X_{2}, X_{4} \mapsto \frac{(X_{1}X_{6}^{2} - 1)(X_{1}X_{7}^{2} - 1)}{X_{4}},$$

$$X_{5} \mapsto -X_{5}, X_{6} \mapsto -X_{1}X_{6}, X_{7} \mapsto -X_{1}X_{7}.$$

§3. (general) quasi-monomial actions

Notion of "quasi-monomial" actions is defined in H-Kang-Kitayama [HKK14], J. Algebra (2014).

Theorem ([HKK14]) 1-dim. quasi-monomial actions

- (1) purely quasi-monomial $\Longrightarrow K(x)^G$ is rational over k.
- (2) $K(x)^G$ is rational over k except for the case: $\exists N \leq G$ such that
- (i) $G/N = \langle \sigma \rangle \simeq C_2$;
- $\text{(ii) } K(x)^N = k(\alpha)(y), \ \alpha^2 = a \in K^\times, \ \sigma(\alpha) = -\alpha \ \text{(if char k} \neq 2),$
- $\alpha^2 + \alpha = a \in K$, $\sigma(\alpha) = \alpha + 1$ (if char k = 2);
- (iii) $\sigma \cdot y = b/y$ for some $b \in k^{\times}$.

For the exceptional case, $K(x)^G = k(\alpha)(y)^{G/N}$ is rational over $k \iff 0$

Hilbert symbol $(a,b)_k=0$ (if char $k\neq 2$), $[a,b)_k=0$ (if char k=2).

Moreover, $K(x)^G$ is not rational over $k \Longrightarrow \text{not unirational}$ over k.

Theorem ([HKK14]) 2-dim. purely quasi-monomial actions

$$N = \{ \sigma \in G \mid \sigma(x) = x, \ \sigma(y) = y \}, \ H = \{ \sigma \in G \mid \sigma(\alpha) = \alpha (\forall \alpha \in K) \}.$$

 $K(x,y)^G$ is rational over k except for:

(1) char $k \neq 2$ and (2) (i) $(G/N, HN/N) \simeq (C_4, C_2)$ or (ii) (D_4, C_2) .

For the exceptional case, we have k(x,y) = k(u,v):

(i)
$$(G/N, HN/N) \simeq (C_4, C_2)$$
,

$$K^N = k(\sqrt{a}), \ G/N = \langle \sigma \rangle \simeq C_4, \ \sigma : \sqrt{a} \mapsto -\sqrt{a}, \ u \mapsto \frac{1}{u}, \ v \mapsto -\frac{1}{v};$$

(ii)
$$(G/N, HN/N) \simeq (D_4, C_2);$$

$$K^N = k(\sqrt{a}, \sqrt{b}), G/N = \langle \sigma, \tau \rangle \simeq D_4, \ \sigma : \sqrt{a} \mapsto -\sqrt{a}, \sqrt{b} \mapsto \sqrt{b}, u \mapsto \frac{1}{a}, v \mapsto -\frac{1}{a}, \tau : \sqrt{a} \mapsto \sqrt{a}, \sqrt{b} \mapsto -\sqrt{b}, u \mapsto u, v \mapsto -v.$$

Case (i),
$$K(x,y)^G$$
 is rational over $k \iff \text{Hilbert symbol } (a,-1)_k=0.$

Case (ii), $K(x,y)^G$ is rational over $k \iff \text{Hilbert symbol } (a,-b)_k = 0.$

Moreover, $K(x,y)^G$ is not rational over $k \Longrightarrow$

 $Br(k) \neq 0$ and $K(x,y)^G$ is not unirational over k.

Galois-theoretic interpretation:

- (i) rational over $k \iff k(\sqrt{a})$ may be embedded into C_4 -ext. of k. (ii) rational over $k \iff k(\sqrt{a}, \sqrt{b})$ may be embedded into D_4 -ext. of k.
 - Akinari Hoshi (Niigata University)

Application to purely monomial actions (1/2)

Theorem ([HKK14]), 4-dim. purely monomial

Let M be a G-lattice with $\mathrm{rank}_{\mathbb{Z}}M=4$ and G act on k(M) by purely monomial k-automorphisms. If M is decomposable, i.e. $M=M_1\oplus M_2$ as $\mathbb{Z}[G]$ -modules where $1\leq \mathrm{rank}_{\mathbb{Z}}M_1\leq 3$, then $k(M)^G$ is rational over k.

- ▶ When $\operatorname{rank}_{\mathbb{Z}} M_1 = 1, \operatorname{rank}_{\mathbb{Z}} M_2 = 3$, it is easy to see $k(M)^G$ is rational.
- ▶ When $\operatorname{rank}_{\mathbb{Z}} M_1 = \operatorname{rank}_{\mathbb{Z}} M_2 = 2$, we may apply Theorem of 2-dim. to $k(M) = k(x_1, x_2, y_1, y_2) = k(x_1, x_2)(y_1, y_2) = K(y_1, y_2)$.

Theorem ([HKK14]) char $k \neq 2$

Let $C_2=\langle \tau \rangle$ act on the rational function field $k(x_1,x_2,x_3,x_4)$ by k-automorphisms defined as

$$\tau: x_1 \mapsto -x_1, \ x_2 \mapsto \frac{x_4}{x_2}, \ x_3 \mapsto \frac{(x_4-1)(x_4-x_1^2)}{x_2}, \ x_4 \mapsto x_4.$$

Then $k(x_1, x_2, x_3, x_4)^{C_2}$ is not retract rational over k. In particular, it is not rational over k.

Theorem A ([HKK14]) char $k \neq 2$, 5-dim. purely monomial

Let $D_4 = \langle \rho, \tau \rangle$ act on the rational function field $k(x_1, x_2, x_3, x_4, x_5)$ by k-automorphisms defined as

$$\rho: x_1 \mapsto x_2, \ x_2 \mapsto x_1, \ x_3 \mapsto \frac{1}{x_1 x_2 x_3}, \ x_4 \mapsto x_5, \ x_5 \mapsto \frac{1}{x_4},$$
$$\tau: x_1 \mapsto x_3, \ x_2 \mapsto \frac{1}{x_1 x_2 x_3}, \ x_3 \mapsto x_1, \ x_4 \mapsto x_5, \ x_5 \mapsto x_4.$$

Then $k(x_1, x_2, x_3, x_4, x_5)^{D_4}$ is not retract rational over k. In particular, it is not rational over k.

Application to purely monomial actions (2/2)

Theorem ([HKK14]), 5-dim. purely monomial

Let M be a G-lattice and G act on k(M) by purely monomial k-automorphisms. Assume that

- (i) $M=M_1\oplus M_2$ as $\mathbb{Z}[G]$ -modules where $\mathrm{rank}_\mathbb{Z} M_1=3$ and $\mathrm{rank}_\mathbb{Z} M_2=2$,
- (ii) either M_1 or M_2 is a faithful G-lattice.

Then $k(M)^G$ is rational over k except for the case as in Theorem A.

• we may apply Theorem of 2-dim. to $k(M) = k(x_1, x_2, x_3, y_1, y_2) = k(x_1, x_2, x_3)(y_1, y_2) = K(y_1, y_2).$

More recent results

▶ 3-dim. purely quasi-monomial actions (H-Kitayama, 2020, Kyoto J. Math.)

$\S 4$. Rationality problem for algebraic tori (2-dim., 3-dim.)

 $G \simeq \operatorname{Gal}(K/k) \curvearrowright K(x_1,\ldots,x_n)$: purely quasi-monomial, $K(x_1,\ldots,x_n)^G$ may be regarded as the function field of algebraic torus T over k which splits over K $(T \otimes_k K \simeq \mathbb{G}_m^n)$.

- ▶ T is unirational over k, i.e. $K(x_1, ..., x_n)^G \subset k(t_1, ..., t_n)$.
- ▶ $\exists 13 \ \mathbb{Z}$ -coujugacy subgroups $G \leq \operatorname{GL}_2(\mathbb{Z})$.

Theorem (Voskresenskii, 1967) 2-dim. algebraic tori T

T is rational over k.

▶ $\exists 73 \ \mathbb{Z}$ -coujugacy subgroups $G \leq \mathrm{GL}_3(\mathbb{Z})$.

Theorem (Kunyavskii, 1990) 3-dim. algebraic tori T

- (i) T is rational over $k \iff T$ is stably rational over k
- \iff T is retract rational over $k \iff \exists G$: 58 groups;
- (ii) T is not rational over $k \iff T$ is not stably rational over k
- $\iff T \text{ is not retract rational over } k \iff \exists G : 15 \text{ groups.}$

Rationality of algebraic tori (4-dim., 5-dim.)

▶ $\exists 710 \ \mathbb{Z}$ -coujugacy subgroups $G \leq \mathrm{GL}_4(\mathbb{Z})$.

Theorem (H-Yamasaki, 2017, Mem. AMS) 4-dim. alg. tori T

- (i) T is stably rational over $k \iff \exists G$: 487 groups;
- (ii) T is not stably but retract rational over $k \iff \exists G$: 7 groups;
- (iii) T is not retract rational over $k \iff \exists G$: 216 groups.
 - ▶ $\exists 6079 \ \mathbb{Z}$ -coujugacy subgroups $G \leq \mathrm{GL}_5(\mathbb{Z})$.

Theorem (H-Yamasaki, 2017, Mem. AMS) 5-dim. alg. tori T

- (i) T is stably rational over $k \iff \exists G: 3051 \text{ groups};$
- (ii) T is not stably but retract rational over $k \iff \exists G$: 25 groups;
- (iii) T is not retract rational over $k \iff \exists G$: 3003 groups.
 - ▶ (Voskresenskii's conjecture) any stably rational torus is rational.
 - ▶ $\exists 85308 \ \mathbb{Z}$ -coujugacy subgroups $G \leq \operatorname{GL}_6(\mathbb{Z})!$

Proof: Flabby (Flasque) resolution (1/2)

- ▶ The function field of n-dim. $T \stackrel{\text{identified}}{\longleftrightarrow} L(M)^G$, $G \leq \operatorname{GL}(n, \mathbb{Z})$
- lacktriangledown M: G-lattice, i.e. f.g. \mathbb{Z} -free $\mathbb{Z}[G]$ -module.

Definition

- (i) M is permutation $\stackrel{\text{def}}{\Longleftrightarrow} M \simeq \bigoplus_{1 \leq i \leq m} \mathbb{Z}[G/H_i].$
- (ii) M is stably permutation $\stackrel{\text{def}}{\Longleftrightarrow} M \oplus \exists P \simeq P'$, P,P': permutation.
- (iii) M is invertible $\stackrel{\text{def}}{\Longleftrightarrow} M \oplus \exists M' \simeq P$: permutation.
- (iv) M is coflabby $\stackrel{\text{def}}{\Longleftrightarrow} H^1(H,M) = 0 \ (\forall H \leq G).$
- (v) M is flabby $\stackrel{\mathrm{def}}{\Longleftrightarrow}$ $\widehat{H}^{-1}(H,M)=0$ $(\forall H\leq G).$ $(\widehat{H}\colon$ Tate cohomology)
 - "permutation"
 - ⇒ "stably permutation"
 - ⇒ "invertible"
 - ⇒ "flabby and coflabby".

Proof: Flabby (Flasque) resolution (2/2)

Commutative monoid ${\cal M}$

 $M_1 \sim M_2 \stackrel{\text{def}}{\iff} M_1 \oplus P_1 \simeq M_2 \oplus P_2 \ (\exists P_1, \exists P_2: \text{ permutation}).$ \implies commutative monoid $\mathcal{M}: [M_1] + [M_2] := [M_1 \oplus M_2], \ 0 = [P].$

Theorem (Endo-Miyata, 1974, Colliot-Thélène-Sansuc, 1977)

 $\exists P$: permutation, $\exists F$: flabby such that

$$0 \to M \to P \to F \to 0$$
: flabby resolution of M .

 $[M]^{fl}:=[F]$, $[M]^{fl}$ is invertible $\stackrel{\mathrm{def}}{\Longleftrightarrow}$ $[M]^{fl}=[E]$ ($\exists E$: invertible).

Theorem (Endo-Miyata, 1973, Voskresenskii, 1974, Saltman, 1984)

(EM73) $[M]^{fl} = 0 \iff L(M)^G$ is stably rational over k. (Vos74) $[M]^{fl} = [M']^{fl} \iff L(M)^G(x_1, \dots, x_m) \simeq L(M')^G(y_1, \dots, y_n)$. (Sal84) $[M]^{fl}$ is invertible $\iff L(M)^G$ is retract rational over k.

Our contribution

- ▶ We give a procedure to compute a flabby resolution of M, in particular $[M]^{fl} = [F]$, effectively (with smaller rank after base change) by computer software GAP.
- ► The function IsFlabby (resp. IsCoflabby) may determine whether *M* is flabby (resp. coflabby).
- ▶ The function IsInvertibleF may determine whether $[M]^{fl} = [F]$ is invertible $(\leftrightarrow \text{ whether } L(M)^G \text{ (resp. } T) \text{ is retract rational)}.$
- ► We provide some functions for checking a possibility of isomorphism

$$\left(\bigoplus_{i=1}^{r} a_i \, \mathbb{Z}[G/H_i]\right) \oplus a_{r+1} F \simeq \bigoplus_{i=1}^{r} b_i' \, \mathbb{Z}[G/H_i] \tag{*}$$

by computing some invariants (e.g. trace, \widehat{Z}^0 , \widehat{H}^0) of both sides.

▶ [HY17, Example 10.7]. $G \simeq S_5 \leq \operatorname{GL}(5, \mathbb{Z})$ with number (5, 946, 4) $\Longrightarrow \operatorname{rank}(F) = 17$ and $\operatorname{rank}(^*) = 88$ holds $\Longrightarrow [F] = 0 \Longrightarrow L(M)^G$ (resp. T) is stably rational over k.

Application

Corollary ($[F] = [M]^{fl}$: invertible case, $G \simeq S_5, F_{20}$)

 $\exists T,\ T';\ 4\text{-dim.}$ not stably rational algebraic tori over k such that $T\not\sim T'$ (birational) and $T\times T'$: 8-dim. stably rational over k. $\because -[M]^{fl}=[M']^{fl}\neq 0.$

Prop. ([HY17], Krull-Schmidt fails for permutation D_6 -lattices)

$$\begin{split} \{1\},\, C_2^{(1)},\, C_2^{(2)},\, C_2^{(3)},\, C_3,\, C_2^2,\, C_6,\, S_3^{(1)},\, S_3^{(2)},\, D_6\colon \text{conj. subgroups of }D_6.\\ \mathbb{Z}[D_6] \oplus \mathbb{Z}[D_6/C_2^2]^{\oplus 2} \oplus \mathbb{Z}[D_6/C_6] \oplus \mathbb{Z}[D_6/S_3^{(1)}] \oplus \mathbb{Z}[D_6/S_3^{(2)}]\\ &\simeq \mathbb{Z}[D_6/C_2^{(1)}] \oplus \mathbb{Z}[D_6/C_2^{(2)}] \oplus \mathbb{Z}[D_6/C_2^{(3)}] \oplus \mathbb{Z}[D_6/C_3] \oplus \mathbb{Z}^{\oplus 2}. \end{split}$$

 $ightharpoonup D_6$ is the smallest example exhibiting the failure of K-S:

Theorem (Dress, 1973)

Krull-Schmidt holds for permutation G-lattices $\iff G/O_p(G)$ is cyclic where $O_p(G)$ is the maximal normal p-subgroup of G.

Krull-Schmidt and Direct sum cancelation

Theorem (Hindman-Klingler-Odenthal, 1998) Assume $G \neq D_8$

Krull-Schmidt holds for G-lattices \iff (i) $G = C_p$ ($p \le 19$; prime), (ii) $G = C_n$ (n = 1, 4, 8, 9), (iii) $G = V_4$ or (iv) $G = D_4$.

Theorem (Endo-Hironaka, 1979)

Direct sum cancellation holds, i.e. $M_1 \oplus N \simeq M_2 \oplus N \Longrightarrow M_1 \simeq M_2$, $\Longrightarrow G$ is abelian, dihedral, A_4 , S_4 or A_5 (*).

- ▶ via projective class group (see Swan (1988) Corollary 1.3, Section 7).
- ightharpoonup Except for (*) \Longrightarrow Direct sum cancelation fails \Longrightarrow K-S fails

Theorem ([HY17]) $G \leq GL(n, \mathbb{Z})$ (up to conjugacy)

- (i) $n \le 4 \Longrightarrow \text{K-S holds}$.
- (ii) n=5. K-S fails \iff 11 groups G (among 6079 groups).
- (iii) n=6. K-S fails \iff 131 groups G (among 85308 groups).

Special case: $T = R_{K/k}^{(1)}(\mathbb{G}_m)$; norm one tori (1/5)

▶ Rationality problem for $T = R_{K/k}^{(1)}(\mathbb{G}_m)$ is investigated by S. Endo, Colliot-Thélène and Sansuc, W. Hürlimann, L. Le Bruyn, A. Cortella and B. Kunyavskii, N. Lemire and M. Lorenz, M. Florence, etc.

Theorem (Endo-Miyata, 1974), (Saltman, 1984)

Let K/k be a finite Galois field extension and G = Gal(K/k).

- (i) T is retact k-rational \iff all the Sylow subgroups of G are cyclic;
- (ii) T is stably k-rational $\iff G$ is a cyclic group, or a direct product of a cyclic group of order m and a group $\langle \sigma, \tau \, | \, \sigma^n = \tau^{2^d} = 1, \tau \sigma \tau^{-1} = \sigma^{-1} \rangle$, where $d, m \geq 1, n \geq 3, m, n$: odd, and (m, n) = 1.

Theorem (Endo, 2011)

Let K/k be a finite non-Galois, separable field extension and L/k be the Galois closure of K/k. Assume that the Galois group of L/k is nilpotent. Then the norm one torus $T=R_{K/k}^{(1)}(\mathbb{G}_m)$ is not retract k-rational.

Special case:
$$T = R_{K/k}^{(1)}(\mathbb{G}_m)$$
; norm one tori (2/5)

- Let K/k be a finite non-Galois, separable field extension
- ▶ Let L/k be the Galois closure of K/k.
- ▶ Let $G = \operatorname{Gal}(L/k)$ and $H = \operatorname{Gal}(L/K) \leq G$.

Theorem (Endo, 2011)

Assume that all the Sylow subgroups of G are cyclic.

Then T is retract k-rational.

$$T = R_{K/k}^{(1)}(\mathbb{G}_m)$$
 is stably k -rational $\iff G = D_n$, n odd $(n \ge 3)$ or $C_m \times D_n$, m, n odd $(m, n \ge 3)$, $(m, n) = 1$, $H \le D_n$ with $|H| = 2$.

Special case: $T = R_{K/k}^{(1)}(\mathbb{G}_m)$; norm one tori (3/5)

Theorem (Endo, 2011) dim T = n - 1

Assume that $\operatorname{Gal}(L/k) = S_n$, $n \geq 3$, and $\operatorname{Gal}(L/K) = S_{n-1}$ is the stabilizer of one of the letters in S_n .

- (i) $R_{K/k}^{(1)}(\mathbb{G}_m)$ is retract k-rational $\iff n$ is a prime;
- (ii) $R^{(1)}_{K/k}(\mathbb{G}_m)$ is (stably) k-rational $\iff n=3$.

Theorem (Endo, 2011) dim T = n - 1

Assume that $\operatorname{Gal}(L/k) = A_n$, $n \geq 4$, and $\operatorname{Gal}(L/K) = A_{n-1}$ is the stabilizer of one of the letters in A_n .

- (i) $R_{K/k}^{(1)}(\mathbb{G}_m)$ is retract k-rational $\iff n$ is a prime;
- (ii) $\exists t \in \mathbb{N} \text{ s.t. } [R_{K/k}^{(1)}(\mathbb{G}_m)]^{(t)} \text{ is stably } k\text{-rational} \iff n=5.$
 - ▶ $[R_{K/k}^{(1)}(\mathbb{G}_m)]^{(t)}$: the product of t copies of $R_{K/k}^{(1)}(\mathbb{G}_m)$.

Special case: $T = R_{K/k}^{(1)}(\mathbb{G}_m)$; norm one tori (4/5)

Theorem ([HY17], Rationality for $R_{K/k}^{(1)}(\mathbb{G}_m)$ (dim. 4, [K:k]=5))

Let K/k be a separable field extension of degree 5 and L/k be the Galois closure of K/k. Assume that $G=\operatorname{Gal}(L/k)$ is a transitive subgroup of S_5 and $H=\operatorname{Gal}(L/K)$ is the stabilizer of one of the letters in G. Then the rationality of $R_{K/k}^{(1)}(\mathbb{G}_m)$ is given by

G		$L(M) = L(x_1, x_2, x_3, x_4)^G$
5T1	C_5	stably k -rational
5T2	D_5	stably k -rational
5T3	F_{20}	not stably but retract k -rational
5T4	A_5	stably k -rational
5T5	S_5	not stably but retract k -rational

- ▶ This theorem is already known except for the case of A_5 (Endo).
- ▶ Stably k-rationality for the case A_5 is asked by S. Endo (2011).

Special case: $T = R_{K/k}^{(1)}(\mathbb{G}_m)$; norm one tori (5/5)

Corollary of (Endo, 2011) and [HY17]

Assume that $\operatorname{Gal}(L/k) = A_n$, $n \geq 4$, and $\operatorname{Gal}(L/K) = A_{n-1}$ is the stabilizer of one of the letters in A_n . Then $R_{K/k}^{(1)}(\mathbb{G}_m)$ is stably k-rational $\iff n=5$.

More recent results on stably/retract k-rational classification for T

- $ightharpoonup G < S_n \ (n < 10) \ \text{and} \ G \neq 9T27 \simeq PSL_2(\mathbb{F}_8),$ $G \leq S_n$ and $G \neq PSL_2(\mathbb{F}_{2^e})$ $(p=2^e+1 \geq 17;$ Fermat prime) (H-Yamasaki, arXiv:1811.01676, to appear in Israel J. Math.)
- $G < S_n \ (n = 12, 14, 15) \ (n = 2^e)$ (H-Hasegawa-Yamasaki, 2020, Math. Comp.)

$\coprod(T)$ and Hasse norm principle over number fields k

► (H-Kanai-Yamasaki, arXiv:1910.01469, arXiv:2003.08253)

66 / 66