Rationality problem for algebraic tori

Akinari Hoshi¹ Aiichi Yamasaki²

 $^1 {\sf N}{\sf iigata}$ University

 $^2 {\rm Kyoto}$ University

August 19, 2014

Table of contents

- 1. Rationality problem & algebraic tori
- 2. Main Theorems (I and II)
 - Some definitions (stably rational, retract rational, unirational)
 - Theorem I, Theorem II
- 3. Proof
 - Flabby (Flasque) resolution
- 4. Application
 - Krull-Schmidt fails
 - Norm one tori

The aim of this talk is to introduce some results in

[HY] A. Hoshi, A. Yamasaki, Rationality problem for algebraic tori, arXiv:1210.4525, 125 pages.

2 / 20

$\S1$. Rationality problem for algebraic tori (1/3)

- ▶ k: a base field which is **NOT** algebraically closed! (TODAY)
- T: algebraic torus, i.e. k-form of a split torus;
 T is an algebraic group over k with T ×_k k̄ ≃ (𝔅_{m k̄})ⁿ.

Rationality problem for algebraic tori

Whether T is rational over k?

Let $R_{K/k}^{(1)}(\mathbb{G}_m)$ be the norm one torus of K/k, i.e. the kernel of the norm map $N_{K/k}: R_{K/k}(\mathbb{G}_m) \to \mathbb{G}_m$ where $R_{K/k}$ is the Weil restriction:

$$1 \longrightarrow R_{K/k}^{(1)}(\mathbb{G}_m) \longrightarrow R_{K/k}(\mathbb{G}_m) \xrightarrow{N_{K/k}} \mathbb{G}_m \longrightarrow 1.$$

▶ $\exists 2$ algebraic tori with $\dim(T) = 1$; the trivial torus \mathbb{G}_m and $R^{(1)}_{K/k}(\mathbb{G}_m)$ with [K:k] = 2, which are rational over k.

Rationality problem for algebraic tori (2/3)

▶ $\exists 13$ algebraic tori with dim(T) = 2.

Theorem (Voskresenskii, 1967) 2-dim. algebraic tori T

T is rational over k.

▶ $\exists 73 \text{ algebraic tori with } \dim(T) = 3.$

Theorem (Kunyavskii, 1990) 3-dim. algebraic tori T

(i) ∃58 algebraic tori T which are rational over k;
(ii) ∃15 algebraic tori T which are not rational over k.

What happens in higher dimensions?

k-tori and G-lattices

- T: k-torus (= algebraic torus over k)
 - $\implies \exists$ finite Galois extension L/k such that $T \times_k L \simeq (\mathbb{G}_{m,L})^n$.
- $G = \operatorname{Gal}(L/k)$ where L is the minimal splitting field.

Category of algebraic k-tori which split/ $L \stackrel{\text{duality}}{\longleftrightarrow}$ Category of G-lattices (i.e. finitely generated \mathbb{Z} -free $\mathbb{Z}[G]$ -module)

- ▶ $T \mapsto$ the character group $X(T) = Hom(T, \mathbb{G}_m)$: G-lattice.
- ▶ $\exists T$ which splits over L with $X(T) \simeq M \leftrightarrow M$: G-lattice
- ► Tori of dimension $n \xleftarrow{1:1}$ elements of the set $H^1(\mathcal{G}, \operatorname{GL}(n, \mathbb{Z}))$ where $\mathcal{G} = \operatorname{Gal}(k_s/k)$ since $\operatorname{Aut}(\mathbb{G}_m^n) = \operatorname{GL}(n, \mathbb{Z})$.
- ▶ *k*-torus *T* of dimension *n* is determined uniquely by the integral representation $h : \mathcal{G} \to \operatorname{GL}(n, \mathbb{Z})$ up to conjugacy, and the group $h(\mathcal{G})$ is a finite subgroup of $\operatorname{GL}(n, \mathbb{Z})$.
- The function field of $T \xrightarrow{\text{identified}} L(M)^G$: invariant field.

Rationality problem for algebraic tori (3/3)

- L/k: Galois extension with $G = \operatorname{Gal}(L/k)$.
- $M = \bigoplus_{1 \le j \le n} \mathbb{Z} \cdot u_j$: G-lattice with a \mathbb{Z} -basis $\{u_1, \ldots, u_n\}$.
- G acts on $L(x_1, \ldots, x_n)$ by

$$\sigma(x_j) = \prod_{i=1}^n x_i^{a_{i,j}}, \quad 1 \le j \le n$$

for any
$$\sigma \in G$$
, when $\sigma(u_j) = \sum_{i=1}^n a_{i,j}u_i$, $a_{i,j} \in \mathbb{Z}$.

• $L(M) := L(x_1, \ldots, x_n)$ with this action of G.

▶ The function field of algebraic k-torus $T \xrightarrow{\text{identified}} L(M)^G$

Rationality problem for algebraic tori (2nd form)

Whether $L(M)^G$ is rational over k? (= purely transcendental over k?; $L(M)^G = k(\exists t_1, \ldots, \exists t_n)$?)

6 / 20

$\S2.$ Main theorems. Some definitions.

• L/k: a finite generated field extension.

Definition (stably rational)

L is called stably rational over k if $L(y_1, \ldots, y_m)$ is rational over k.

Definition (retract rational)

L is retract rational over k if $\exists k$ -algebra $R \subset L$ such that

(i) *L* is the quotient field of *R*; (ii) $\exists f \in k[x_1, \ldots, x_n] \exists k$ -algebra hom. $\varphi : R \to k[x_1, \ldots, x_n][1/f]$ and $\psi : k[x_1, \ldots, x_n][1/f] \to R$ satisfying $\psi \circ \varphi = 1_R$.

Definition (unirational)

L is unirational over k if L is a subfield of rational field extension of k.

- "rational" \implies "stably rational" \implies "retract rational" \implies "unirational".
- $L(M)^G$ (resp. T) is always unirational over k.

Rationality of algebraic tori (3-dim.)

 ∃73 Z-coujugacy subgroups G ≤ GL(3, Z) (∃73 3-dim. algebraic tori T).

Theorem (Kunyavskii, 1990) 3-dim. algebraic tori T (precise form)

- (i) $\exists 58$ algebraic tori T which are rational over k;
- (ii) $\exists 15$ algebraic tori T which are not rational over k;
- (iii) T is rational over k
- $\iff T$ is stably rational over k
- $\iff T \text{ is retract rational over } k.$

Main Theorem I. Rationality of algebraic tori (4-dim.)

 ▶ ∃710 Z-coujugacy subgroups G ≤ GL(4, Z) (∃710 4-dim. algebraic tori T).

Theorem ([HY]) 4-dim. algebraic tori T

(i) ∃487 algebraic tori T which are stably rational over k;
(ii) ∃ 7 algebraic tori T which are not stably but retract rational over k;
(iii) ∃216 algebraic tori T which are not retract rational over k.

- We do **not** know "rationality" over k.
- Voskresenskii's conjecture:

any stably rational torus over k is rational over k (Zariski problem).

what happens for dimension 5?

Main Theorem II. Rationality of algebraic tori (5-dim.)

 ▶ ∃6079 Z-coujugacy subgroups G ≤ GL(5, Z) (∃6079 5-dim. algebraic tori T).

Theorem ([HY]) 5-dim. algebraic tori T

(i) ∃3051 algebraic tori T which are stably rational over k;
(ii) ∃ 25 algebraic tori T which are not stably but retract rational over k;
(iii) ∃3003 algebraic tori T which are not retract rational over k.

- what happens for dimension 6?
- **BUT** we do not know the answer for dimension 6.
- ► ∃85308 Z-coujugacy subgroups G ≤ GL(6, Z) (∃85308 6-dim. algebraic tori T).

$\S3$. Proof: Flabby (Flasque) resolution (1/2)

- ► The function field of *n*-dim. $T \xrightarrow{\text{identified}} L(M)^G$, $G \leq \text{GL}(n, \mathbb{Z})$
- M: G-lattice, i.e. f.g. \mathbb{Z} -free $\mathbb{Z}[G]$ -module.

Definition

(i) M is permutation $\stackrel{\text{def}}{\iff} M \simeq \bigoplus_{1 \le i \le m} \mathbb{Z}[G/H_i].$ (ii) M is stably permutation $\stackrel{\text{def}}{\iff} M \oplus \exists P \simeq P', P, P'$: permutation. (iii) M is invertible $\stackrel{\text{def}}{\iff} M \oplus \exists M' \simeq P$: permutation. (iv) M is coflabby $\stackrel{\text{def}}{\iff} H^1(H, M) = 0 \ (\forall H \le G).$ (v) M is flabby $\stackrel{\text{def}}{\iff} \widehat{H}^{-1}(H, M) = 0 \ (\forall H \le G).$ (\widehat{H} : Tate cohomology)

- "permutation"
 - \implies "stably permutation"
 - \implies "invertible"
 - \implies "flabby and coflabby".

Proof: Flabby (Flasque) resolution (2/2)

Commutative monoid \mathcal{M}

 $M_1 \sim M_2 \iff M_1 \oplus P_1 \simeq M_2 \oplus P_2 (\exists P_1, \exists P_2: \text{ permutation}).$ $\implies \text{ commutative monoid } \mathcal{M}: [M_1] + [M_2] := [M_1 \oplus M_2], 0 = [P].$

Theorem (Endo-Miyata, 1974, Colliot-Thélène-Sansuc, 1977)

 $\exists P$: permutation, $\exists F$: flabby such that

 $0 \to M \to P \to F \to 0$: flabby resolution of M.

 $[M]^{fl} := [F], \quad [M]^{fl} \text{ is invertible } \stackrel{\text{def}}{\Longleftrightarrow} \ [M]^{fl} = [E] \ (\exists E: \text{ invertible}).$

Theorem (Endo-Miyata, 1973, Voskresenskii, 1974, Saltman, 1984) (EM73) $[M]^{fl} = 0 \iff L(M)^G$ is stably rational over k. (Vos74) $[M]^{fl} = [M']^{fl} \iff L(M)^G(x_1, \dots, x_m) \simeq L(M')^G(y_1, \dots, y_n)$. (Sal84) $[M]^{fl}$ is invertible $\iff L(M)^G$ is retract rational over k.

A. Hoshi, A. Yamasaki (Niigata, Kyoto)

Rationality problem for algebraic tori

Our contribution

- ▶ We give a procedure to compute a flabby resolution of M, in particular [M]^{fl} = [F], effectively (with smaller rank after base change) by computer software GAP.
- The function IsFlabby (resp. IsCoflabby) may determine whether M is flabby (resp. coflabby).
- ▶ The function IsInvertibleF may determine whether $[M]^{fl} = [F]$ is invertible (\leftrightarrow whether $L(M)^G$ (resp. T) is retract rational).
- ► We provide some functions for checking a possibility of isomorphism

$$\left(\bigoplus_{i=1}^{r} a_i \mathbb{Z}[G/H_i]\right) \oplus a_{r+1}F \simeq \bigoplus_{i=1}^{r} b'_i \mathbb{Z}[G/H_i]$$
(*)

by computing some invariants (e.g. trace, \widehat{Z}^0 , \widehat{H}^0) of both sides. • [HY, Example 10.7]. $G \simeq S_5 \leq \operatorname{GL}(5, \mathbb{Z})$ with number (5, 946, 4) $\Longrightarrow \operatorname{rank}(F) = 17$ and $\operatorname{rank}(*) = 88$ holds $\Longrightarrow [F] = 0 \Longrightarrow L(M)^G$ (resp. T) is stably rational over k.

Application

Corollary ($[F] = [M]^{fl}$: invertible case, $G \simeq S_5, F_{20}$)

 $\exists T, T'$; 4-dim. not stably rational algebraic tori over k such that $T \not\sim T'$ (birational) and $T \times T'$: 8-dim. stably rational over k. $\because -[M]^{fl} = [M']^{fl} \neq 0.$

Prop. ([HY], Krull-Schmidt fails for permutation D_6 -lattices) {1}, $C_2^{(1)}$, $C_2^{(2)}$, $C_2^{(3)}$, C_3 , C_2^2 , C_6 , $S_3^{(1)}$, $S_3^{(2)}$, D_6 : conj. subgroups of D_6 . $\mathbb{Z}[D_6] \oplus \mathbb{Z}[D_6/C_2^2]^{\oplus 2} \oplus \mathbb{Z}[D_6/C_6] \oplus \mathbb{Z}[D_6/S_3^{(1)}] \oplus \mathbb{Z}[D_6/S_3^{(2)}]$ $\simeq \mathbb{Z}[D_6/C_2^{(1)}] \oplus \mathbb{Z}[D_6/C_2^{(2)}] \oplus \mathbb{Z}[D_6/C_2^{(3)}] \oplus \mathbb{Z}[D_6/C_3] \oplus \mathbb{Z}^{\oplus 2}.$

• D_6 is the smallest example exhibiting the failure of K-S:

Theorem (Dress, 1973)

Krull-Schmidt holds for permutation G-lattices $\iff G/O_p(G)$ is cyclic where $O_p(G)$ is the maximal normal p-subgroup of G.

Krull-Schmidt and Direct sum cancelation

Theorem (Hindman-Klingler-Odenthal, 1998) Assume $G \neq D_8$

Krull-Schmidt holds for G-lattices \iff (i) $G = C_p$ ($p \le 19$; prime), (ii) $G = C_n$ (n = 1, 4, 8, 9), (iii) $G = V_4$ or (iv) $G = D_4$.

Theorem (Endo-Hironaka, 1979)

Direct sum cancellation holds, i.e. $M_1 \oplus N \simeq M_2 \oplus N \Longrightarrow M_1 \simeq M_2$, $\Longrightarrow G$ is abelian, dihedral, A_4 , S_4 or A_5 (*).

- ▶ via projective class group (see Swan (1988) Corollary 1.3, Section 7).
- Except for (*) \implies Direct sum cancelation fails \implies K-S fails

Theorem ([HY]) $G \leq GL(n, \mathbb{Z})$ (up to conjugacy)

(i) $n \leq 4 \Longrightarrow \text{K-S holds}$.

- (ii) n = 5. K-S fails $\iff 11$ groups (among 6079 groups).
- (iii) n = 6. K-S fails $\iff 131$ groups (among 85308 groups).

Special case: $T = R_{K/k}^{(1)}(\mathbb{G}_m)$; norm one tori (1/5)

Rationality problem for T = R⁽¹⁾_{K/k}(G_m) is investigated by S. Endo, Colliot-Thélène and Sansuc, W. Hürlimann, L. Le Bruyn, A. Cortella and B. Kunyavskii, N. Lemire and M. Lorenz, M. Florence, etc.

Theorem (Endo and Miyata, 1974), (Saltman, 1984)

Let K/k be a finite Galois field extension and $G = \operatorname{Gal}(K/k)$. (i) T is retract k-rational \iff all the Sylow subgroups of G are cyclic; (ii) T is stably k-rational \iff G is a cyclic group, or a direct product of a cyclic group of order m and a group $\langle \sigma, \tau | \sigma^n = \tau^{2^d} = 1, \tau \sigma \tau^{-1} = \sigma^{-1} \rangle$, where $d, m \ge 1, n \ge 3, m, n$: odd, and (m, n) = 1.

Theorem (Endo, 2011)

Let K/k be a finite non-Galois, separable field extension and L/k be the Galois closure of K/k. Assume that the Galois group of L/k is nilpotent. Then the norm one torus $T = R_{K/k}^{(1)}(\mathbb{G}_m)$ is not retract k-rational. Special case: $T = R_{K/k}^{(1)}(\mathbb{G}_m)$; norm one tori (2/5)

- Let K/k be a finite non-Galois, separable field extension
- Let L/k be the Galois closure of K/k.
- Let $G = \operatorname{Gal}(L/k)$ and $H = \operatorname{Gal}(L/K) \leq G$.

Theorem (Endo, 2011)

Assume that all the Sylow subgroups of G are cyclic. Then T is retract k-rational. $T = R_{K/k}^{(1)}(\mathbb{G}_m)$ is stably k-rational $\iff G$ is the dihedral group D_n of order 2n with n odd $(n \ge 3)$ or the direct product of the cyclic group C_m of order m and the dihedral group D_n of order 2n, where m, n are odd, $m, n \ge 3$, (m, n) = 1, and $H \le D_n$ is of order 2.

Special case:
$$T = R^{(1)}_{K/k}(\mathbb{G}_m)$$
; norm one tori (3/5)

Theorem (Endo, 2011)

Assume that $\operatorname{Gal}(L/k) = S_n$, $n \ge 3$, and $\operatorname{Gal}(L/K) = S_{n-1}$ is the stabilizer of one of the letters in S_n . (i) $R_{K/k}^{(1)}(\mathbb{G}_m)$ is retract k-rational $\iff n$ is a prime; (ii) $R_{K/k}^{(1)}(\mathbb{G}_m)$ is (stably) k-rational $\iff n = 3$.

Theorem (Endo, 2011)

Assume that $\operatorname{Gal}(L/k) = A_n$, $n \ge 4$, and $\operatorname{Gal}(L/K) = A_{n-1}$ is the stabilizer of one of the letters in A_n . (i) $R_{K/k}^{(1)}(\mathbb{G}_m)$ is retract k-rational $\iff n$ is a prime; (ii) $\exists t \in \mathbb{N}$ s.t. $[R_{K/k}^{(1)}(\mathbb{G}_m)]^{(t)}$ is stably k-rational $\iff n = 5$.

• $[R_{K/k}^{(1)}(\mathbb{G}_m)]^{(t)}$: the product of t copies of $R_{K/k}^{(1)}(\mathbb{G}_m)$.

Special case: $T = R_{K/k}^{(1)}(\mathbb{G}_m)$; norm one tori (4/5)

Theorem ([HY], Rationality for $R_{K/k}^{(1)}(\mathbb{G}_m)$ (dim. 4, [K:k] = 5))

Let K/k be a separable field extension of degree 5 and L/k be the Galois closure of K/k. Assume that $G = \operatorname{Gal}(L/k)$ is a transitive subgroup of S_5 and $H = \operatorname{Gal}(L/K)$ is the stabilizer of one of the letters in G. Then the rationality of $R_{K/k}^{(1)}(\mathbb{G}_m)$ is given by

G		$L(M) = L(x_1, x_2, x_3, x_4)^G$
5T1	C_5	stably k-rational
5T2	D_5	stably k-rational
5T3	F_{20}	not stably but retract k -rational
5T4	A_5	stably k-rational
5T5	S_5	not stably but retract k -rational

- ▶ This theorem is already known except for the case of A₅ (Endo).
- Stably k-rationality for the case A_5 is asked by S. Endo (2011).

Special case: $T = R_{K/k}^{(1)}(\mathbb{G}_m)$; norm one tori (5/5)

By combining this theorem with Endo's theorem, we obtain:

Corollary

Let K/k be a non-Galois separable field extension of degree n and L/k be the Galois closure of K/k. Assume that $\operatorname{Gal}(L/k) = A_n$, $n \ge 4$, and $\operatorname{Gal}(L/K) = A_{n-1}$ is the stabilizer of one of the letters in A_n . Then $R_{K/k}^{(1)}(\mathbb{G}_m)$ is stably k-rational $\iff n = 5$.