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[HY] A. Hoshi, A. Yamasaki, Rationality problem for algebraic tori,
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§1. Rationality problem for algebraic tori (1/3)

▶ k: a base field which is NOT algebraically closed! (TODAY)

▶ T : algebraic torus, i.e. k-form of a split torus;
T is an algebraic group over k with T ×k k ≃ (Gm,k)

n.

.
Rationality problem for algebraic tori
..
......Whether T is rational over k?

Let R
(1)
K/k(Gm) be the norm one torus of K/k, i.e. the kernel of the norm

map NK/k : RK/k(Gm)→ Gm where RK/k is the Weil restriction:

1 −→ R
(1)
K/k(Gm) −→ RK/k(Gm)

NK/k−→ Gm −→ 1.

▶ ∃2 algebraic tori with dim(T ) = 1;

the trivial torus Gm and R
(1)
K/k(Gm) with [K : k] = 2,

which are rational over k.
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Rationality problem for algebraic tori (2/3)

▶ ∃13 algebraic tori with dim(T ) = 2.

.
Theorem (Voskresenskii, 1967) 2-dim. algebraic tori T
..
......T is rational over k.

▶ ∃73 algebraic tori with dim(T ) = 3.

.
Theorem (Kunyavskii, 1990) 3-dim. algebraic tori T
..

......

(i) ∃58 algebraic tori T which are rational over k;
(ii) ∃15 algebraic tori T which are not rational over k.

▶ What happens in higher dimensions?
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k-tori and G-lattices

▶ T : k-torus (= algebraic torus over k)
=⇒ ∃ finite Galois extension L/k such that T ×k L ≃ (Gm,L)

n.

▶ G = Gal(L/k) where L is the minimal splitting field.

Category of algebraic k-tori which split/L
duality←→ Category of G-lattices

(i.e. finitely generated Z-free Z[G]-module)

▶ T 7→ the character group X(T ) = Hom(T,Gm): G-lattice.

▶ ∃T which splits over L with X(T ) ≃M 7→M : G-lattice

▶ Tori of dimension n
1:1←→ elements of the set H1(G,GL(n,Z))

where G = Gal(ks/k) since Aut(Gn
m) = GL(n,Z).

▶ k-torus T of dimension n is determined uniquely by the integral
representation h : G → GL(n,Z) up to conjugacy, and the group
h(G) is a finite subgroup of GL(n,Z).

▶ The function field of T
identified←→ L(M)G: invariant field.
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Rationality problem for algebraic tori (3/3)

▶ L/k: Galois extension with G = Gal(L/k).

▶ M =
⊕

1≤j≤nZ · uj : G-lattice with a Z-basis {u1, . . . , un}.
▶ G acts on L(x1, . . . , xn) by

σ(xj) =
n∏

i=1

x
ai,j
i , 1 ≤ j ≤ n

for any σ ∈ G, when σ(uj) =
∑n

i=1 ai,jui, ai,j ∈ Z.
▶ L(M) := L(x1, . . . , xn) with this action of G.

▶ The function field of algebraic k-torus T
identified←→ L(M)G

.
Rationality problem for algebraic tori (2nd form)
..

......

Whether L(M)G is rational over k?
(= purely transcendental over k?; L(M)G = k(∃t1, . . . , ∃tn)?)

A. Hoshi, A. Yamasaki (Niigata, Kyoto) Rationality problem for algebraic tori August 19, 2014 (ICM 2014) 6 / 20



§2. Main theorems. Some definitions.

▶ L/k: a finite generated field extension.
.
Definition (stably rational)
..
......L is called stably rational over k if L(y1, . . . , ym) is rational over k.

.
Definition (retract rational)
..

......

L is retract rational over k if ∃k-algebra R ⊂ L such that
(i) L is the quotient field of R;
(ii) ∃f ∈ k[x1, . . . , xn] ∃k-algebra hom. φ : R→ k[x1, . . . , xn][1/f ] and
ψ : k[x1, . . . , xn][1/f ]→ R satisfying ψ ◦ φ = 1R.

.
Definition (unirational)
..
......L is unirational over k if L is a subfield of rational field extension of k.

▶ “rational”=⇒“stably rational” =⇒“retract rational“=⇒“unirational”.

▶ L(M)G (resp. T ) is always unirational over k.
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Rationality of algebraic tori (3-dim.)

▶ ∃73 Z-coujugacy subgroups G ≤ GL(3,Z)
(∃73 3-dim. algebraic tori T ).

.
Theorem (Kunyavskii, 1990) 3-dim. algebraic tori T (precise form)
..

......

(i) ∃58 algebraic tori T which are rational over k;
(ii) ∃15 algebraic tori T which are not rational over k;
(iii) T is rational over k
⇐⇒ T is stably rational over k
⇐⇒ T is retract rational over k.
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Main Theorem I. Rationality of algebraic tori (4-dim.)

▶ ∃710 Z-coujugacy subgroups G ≤ GL(4,Z)
(∃710 4-dim. algebraic tori T ).

.
Theorem ([HY]) 4-dim. algebraic tori T
..

......

(i) ∃487 algebraic tori T which are stably rational over k;
(ii) ∃ 7 algebraic tori T which are not stably but retract rational over k;
(iii) ∃216 algebraic tori T which are not retract rational over k.

▶ We do not know “rationality” over k.

▶ Voskresenskii’s conjecture:
any stably rational torus over k is rational over k (Zariski problem).

▶ what happens for dimension 5?
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Main Theorem II. Rationality of algebraic tori (5-dim.)

▶ ∃6079 Z-coujugacy subgroups G ≤ GL(5,Z)
(∃6079 5-dim. algebraic tori T ).

.
Theorem ([HY]) 5-dim. algebraic tori T
..

......

(i) ∃3051 algebraic tori T which are stably rational over k;
(ii) ∃ 25 algebraic tori T which are not stably but retract rational over k;
(iii) ∃3003 algebraic tori T which are not retract rational over k.

▶ what happens for dimension 6?

▶ BUT we do not know the answer for dimension 6.

▶ ∃85308 Z-coujugacy subgroups G ≤ GL(6,Z)
(∃85308 6-dim. algebraic tori T ).
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§3. Proof: Flabby (Flasque) resolution (1/2)

▶ The function field of n-dim. T
identified←→ L(M)G, G ≤ GL(n,Z)

▶ M : G-lattice, i.e. f.g. Z-free Z[G]-module.

.
Definition
..

......

(i) M is permutation
def⇐⇒ M ≃ ⊕1≤i≤mZ[G/Hi].

(ii) M is stably permutation
def⇐⇒ M ⊕ ∃P ≃ P ′, P, P ′: permutation.

(iii) M is invertible
def⇐⇒ M ⊕ ∃M ′ ≃ P : permutation.

(iv) M is coflabby
def⇐⇒ H1(H,M) = 0 (∀H ≤ G).

(v) M is flabby
def⇐⇒ Ĥ−1(H,M) = 0 (∀H ≤ G). (Ĥ: Tate cohomology)

▶ “permutation”
=⇒ “stably permutation”
=⇒ “invertible”
=⇒ “flabby and coflabby”.
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Proof: Flabby (Flasque) resolution (2/2)

.
Commutative monoidM
..

......

M1 ∼M2
def⇐⇒ M1 ⊕ P1 ≃M2 ⊕ P2 (∃P1, ∃P2: permutation).

=⇒ commutative monoidM: [M1] + [M2] := [M1 ⊕M2], 0 = [P ].

.
Theorem (Endo-Miyata, 1974, Colliot-Thélène-Sansuc, 1977)
..

......

∃P : permutation, ∃F : flabby such that

0→M → P → F → 0: flabby resolution of M .

[M ]fl := [F ], [M ]fl is invertible
def⇐⇒ [M ]fl = [E] (∃E: invertible).

.
Theorem (Endo-Miyata, 1973, Voskresenskii, 1974, Saltman, 1984)
..

......

(EM73) [M ]fl = 0 ⇐⇒ L(M)G is stably rational over k.
(Vos74) [M ]fl = [M ′]fl ⇐⇒ L(M)G(x1, . . . , xm) ≃ L(M ′)G(y1, . . . , yn).
(Sal84) [M ]fl is invertible ⇐⇒ L(M)G is retract rational over k.

A. Hoshi, A. Yamasaki (Niigata, Kyoto) Rationality problem for algebraic tori August 19, 2014 (ICM 2014) 12 / 20



Our contribution

▶ We give a procedure to compute a flabby resolution of M , in
particular [M ]fl = [F ], effectively (with smaller rank after base
change) by computer software GAP.

▶ The function IsFlabby (resp. IsCoflabby) may determine whether
M is flabby (resp. coflabby).

▶ The function IsInvertibleF may determine whether [M ]fl = [F ] is
invertible (↔ whether L(M)G (resp. T ) is retract rational).

▶ We provide some functions for checking a possibility of isomorphism(
r⊕

i=1

aiZ[G/Hi]

)
⊕ ar+1F ≃

r⊕
i=1

b′iZ[G/Hi] (*)

by computing some invariants (e.g. trace, Ẑ0, Ĥ0) of both sides.
▶ [HY, Example 10.7]. G ≃ S5 ≤ GL(5,Z) with number (5, 946, 4)

=⇒ rank(F ) = 17 and rank(*) = 88 holds
=⇒ [F ] = 0 =⇒ L(M)G (resp. T ) is stably rational over k.
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Application
.
Corollary ([F ] = [M ]fl: invertible case, G ≃ S5, F20)
..

......

∃T , T ′; 4-dim. not stably rational algebraic tori over k such that
T ̸∼ T ′ (birational) and T × T ′: 8-dim. stably rational over k.
∵ −[M ]fl = [M ′]fl ̸= 0.

.
Prop. ([HY], Krull-Schmidt fails for permutation D6-lattices)
..

......

{1}, C(1)
2 , C

(2)
2 , C

(3)
2 , C3, C

2
2 , C6, S

(1)
3 , S

(2)
3 , D6: conj. subgroups of D6．

Z[D6]⊕ Z[D6/C
2
2 ]

⊕2 ⊕ Z[D6/C6]⊕ Z[D6/S
(1)
3 ]⊕ Z[D6/S

(2)
3 ]

≃ Z[D6/C
(1)
2 ]⊕ Z[D6/C

(2)
2 ]⊕ Z[D6/C

(3)
2 ]⊕ Z[D6/C3]⊕ Z⊕2.

▶ D6 is the smallest example exhibiting the failure of K-S:
.
Theorem (Dress, 1973)
..

......

Krull-Schmidt holds for permutation G-lattices ⇐⇒ G/Op(G) is cyclic
where Op(G) is the maximal normal p-subgroup of G.
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Krull-Schmidt and Direct sum cancelation

.
Theorem (Hindman-Klingler-Odenthal, 1998) Assume G ̸= D8
..

......

Krull-Schmidt holds for G-lattices ⇐⇒ (i) G = Cp (p ≤ 19; prime),
(ii) G = Cn (n = 1, 4, 8, 9), (iii) G = V4 or (iv) G = D4.

.
Theorem (Endo-Hironaka, 1979)
..

......

Direct sum cancellation holds, i.e. M1 ⊕N ≃M2 ⊕N =⇒M1 ≃M2,
=⇒ G is abelian, dihedral, A4, S4 or A5 (*).

▶ via projective class group (see Swan (1988) Corollary 1.3, Section 7).

▶ Except for (*) =⇒ Direct sum cancelation fails =⇒ K-S fails
.
Theorem ([HY]) G ≤ GL(n,Z) (up to conjugacy)
..

......

(i) n ≤ 4 =⇒ K-S holds.
(ii) n = 5. K-S fails ⇐⇒ 11 groups (among 6079 groups).
(iii) n = 6. K-S fails ⇐⇒ 131 groups (among 85308 groups).
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Special case: T = R
(1)
K/k(Gm); norm one tori (1/5)

▶ Rationality problem for T = R
(1)
K/k(Gm) is investigated by S. Endo,

Colliot-Thélène and Sansuc, W. Hürlimann, L. Le Bruyn, A. Cortella
and B. Kunyavskii, N. Lemire and M. Lorenz, M. Florence, etc.

.
Theorem (Endo and Miyata, 1974), (Saltman, 1984)
..

......

Let K/k be a finite Galois field extension and G = Gal(K/k).
(i) T is retract k-rational ⇐⇒ all the Sylow subgroups of G are cyclic;
(ii) T is stably k-rational ⇐⇒ G is a cyclic group, or a direct product of

a cyclic group of order m and a group ⟨σ, τ |σn = τ2
d
= 1, τστ−1 = σ−1⟩,

where d,m ≥ 1, n ≥ 3,m, n: odd, and (m,n) = 1.

.
Theorem (Endo, 2011)
..

......

Let K/k be a finite non-Galois, separable field extension and L/k be the
Galois closure of K/k. Assume that the Galois group of L/k is nilpotent.

Then the norm one torus T = R
(1)
K/k(Gm) is not retract k-rational.
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Special case: T = R
(1)
K/k(Gm); norm one tori (2/5)

▶ Let K/k be a finite non-Galois, separable field extension

▶ Let L/k be the Galois closure of K/k.

▶ Let G = Gal(L/k) and H = Gal(L/K) ≤ G.

.
Theorem (Endo, 2011)
..

......

Assume that all the Sylow subgroups of G are cyclic.
Then T is retract k-rational.
T = R

(1)
K/k(Gm) is stably k-rational ⇐⇒ G is the dihedral group Dn of

order 2n with n odd (n ≥ 3) or the direct product of the cyclic group Cm

of order m and the dihedral group Dn of order 2n, where m,n are odd,
m,n ≥ 3, (m,n) = 1, and H ≤ Dn is of order 2.
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Special case: T = R
(1)
K/k(Gm); norm one tori (3/5)

.
Theorem (Endo, 2011)
..

......

Assume that Gal(L/k) = Sn, n ≥ 3, and Gal(L/K) = Sn−1 is the
stabilizer of one of the letters in Sn.
(i) R

(1)
K/k(Gm) is retract k-rational ⇐⇒ n is a prime;

(ii) R
(1)
K/k(Gm) is (stably) k-rational ⇐⇒ n = 3.

.
Theorem (Endo, 2011)
..

......

Assume that Gal(L/k) = An, n ≥ 4, and Gal(L/K) = An−1 is the
stabilizer of one of the letters in An.
(i) R

(1)
K/k(Gm) is retract k-rational ⇐⇒ n is a prime;

(ii) ∃t ∈ N s.t. [R
(1)
K/k(Gm)](t) is stably k-rational ⇐⇒ n = 5.

▶ [R
(1)
K/k(Gm)](t): the product of t copies of R

(1)
K/k(Gm).
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Special case: T = R
(1)
K/k(Gm); norm one tori (4/5)

.
Theorem ([HY], Rationality for R

(1)
K/k(Gm) (dim. 4, [K : k] = 5))

..

......

Let K/k be a separable field extension of degree 5 and L/k be the Galois
closure of K/k. Assume that G = Gal(L/k) is a transitive subgroup of S5
and H = Gal(L/K) is the stabilizer of one of the letters in G. Then the

rationality of R
(1)
K/k(Gm) is given by

G L(M) = L(x1, x2, x3, x4)
G

5T1 C5 stably k-rational
5T2 D5 stably k-rational
5T3 F20 not stably but retract k-rational
5T4 A5 stably k-rational
5T5 S5 not stably but retract k-rational

▶ This theorem is already known except for the case of A5 (Endo).

▶ Stably k-rationality for the case A5 is asked by S. Endo (2011).
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Special case: T = R
(1)
K/k(Gm); norm one tori (5/5)

By combining this theorem with Endo’s theorem, we obtain:
.
Corollary
..

......

Let K/k be a non-Galois separable field extension of degree n and L/k be
the Galois closure of K/k. Assume that Gal(L/k) = An, n ≥ 4, and
Gal(L/K) = An−1 is the stabilizer of one of the letters in An. Then

R
(1)
K/k(Gm) is stably k-rational ⇐⇒ n = 5.
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