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We consider Thomas' family of cubic Thue equations Niigata University

§1 Introduction:
known results of

[FS’) (X,Y) = X3 —mX%Y — (m+3)XY2-Y3 =) ] degree 3 case

formeZ and A € Z (A #0).
» For fixed m, A € Z, 3°%° (z,y) € Z? s.t. F,(,f’)(:c,y) =A
(Thue's theorem, 1909)

» The splitting fields ng) = SpIQF,g)(X, 1) are totally
real cyclic cubic fields called Shanks' simplest cubic.
» We may assume that —1 < m and 0 < A because
3
FO_(X,Y) = FP(-Y,~X),
—FP(X,Y) = F9(=X,-Y).
» LY =18 (mez).

-m—3



[ES?)(X, V)= X3 - mX2Y — (m+3)XY2 V3 =)\ ]

formeZand A € Z (A #0).
> X = a3 for some a € Z, FY (z,y) = a® has three trivial
solutions (a,0), (0, —a), (—a,a), i.e. zy(x +y) = 0.
» If (x,5) € Z? is solution, then (y, —z — y), (—z — y, )
are also solutions because F\> (x,y) is invariant under
the action £ — y — —x — y — x of order three.

> 3| #{(z,y) | B (z,y) = A}.
> discXFTS’)(X, 1) = (m? + 3m + 9)2.

» For A =1, Thomas and Mignotte solved completely a
family of the equations (Vm) as follows:
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§1 Introduction:
known results of
degree 3 case

[F,Sf’)(x, Y)=X3—mX% — (m+3)XY2-Y3=1 ]

By using Baker's theory, Thomas proved:

Theorem (Thomas 1990)

If —1 <m <103 or 1.365 x 107 < m, then all solutions of
F7(;?) (z,y) =1 are given by trivial solutions

(z,y) =(0,-1),(—1,1),(1,0) for Ym and additionally
(x,y) =(-1,-1),(-1,2),(2,-1)  for m=—1,
(z,y) = (5,4),(4,-9),(-9,5) for m=—1,
(z,y) = (2,1),(1,-3),(-3,2) for m =0,
(x,y) =(-7,-2),(-2,9),(9,—-7) for m=2.

Theorem (Mignotte 1993)

For the remaining case, 3 only trivial solutions.
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[FS)(X,Y) = X3 —mX?Y — (m+3)XY?-Y? =) ] i Ul

§1 Introduction:
known results of
By using Baker's theory, they proved: i e
Theorem Mignotte-Pethd-Lemmermeyer (1996)

Let m > 1649 and A > 1. If FY)(2,) = A, then
log |y| < c1log?(m + 3) + ¢z log(m + 1) log A

where
1432.1\ ¢ 1902
c1 =700+ 476.4 (1 — 1.501 — —— ) < 1956.4,
m+ 1 m+1
1432.1\ 1 1432
—2982+(1— < 30.71.
@ +< m+1> (m+1)log(m + 1)

Example (much smaller than previous bounds)

> If m = 1649 and A = 10, then |y| < 1048698,
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[FS) (X’ Y) — X3 _ mXQY _ (m + 3)XY2 — Y3 — )\ ] §1 Introduction:

known results of
degree 3 case

Theorem Mignotte-Petho-Lemmermeyer (1996)
For —1 <m and 1 < A < 2m + 3, all solutions to
FT(,‘?) (x,) = X are given by trivial solutions for A = a® and

(.T,y) € {(_17 2)7 (27 _1)7 (_17 _1)7

(_17m + 2)7 (m + 27 -m — 1)7 (_m - 17 _1)}

for A = 2m + 3,
except for m = 1 in which case Jextra solutions:

(:E, y) € {(17 _4)7 (_47 B)a (33 1)’ (3a _11)7 (_11’ 8)’ (87 3)}
for A=5 (=2m+3).



Lettl-Petho-Voutier (1999)

Let 65 be a root of fi(X) := F(X,1) with —% < 6, < 0.
By using hypergeometric method, they proved:

Theorem Lettl-Peths-Voutier (1999)

Let m > 1 and assume that (z,y) € Z? is a primitive
solution to |F7(r‘?)(a:,y)] < A(m) with =% <z <y and
8\m) < o) where A(m) : Z — N. Then

2m+3

(i) x/y is a convergent to 6y, and we have either y = 1 or
x A(m)
——0 —— and >m+ 2.
y T Pm ) =

(i) Define log(v/m? + 3m + 9) + 0.83
R = .
log(m + ) — 1.3
If m > 30, then 327" < 17.78 - 2.59%\(m).

Example (comparing with MPL (1996))
» For m = 1649, |y| < 635\(m)">* instead of |y| < 1046649 \(m)288.



§2 Main thms: Thm C and Thm S

[fér? (X) = F(X,1), L) = Splgfi (X)

Go back to
Theorem (Thomas 1990, Mignotte 1993)

All solutions of F\2 )(:U y) = 1 are given by trivial solutions
(x,y) = (0,-1),(—1,1),(1,0) for ¥m and additionally

(z,y) = (-1 —1) (—1,2), (2, -1) for m = —1,
(z,9) = (5,4), (4, -9), (=9,5) for m=—1,
(z,y) = ( ),(17—3),(—3,2) for m =0,
(z,y) = (=7,-2),(=2,9),(9,-7) for m=2.
Why 3 12 (non-trivial) solutions? meaning?

3 3 3 3 3 3 3
0= 1, 10 = 1, 1 = 16 10 = 1

Splitting fields LY know solutions!

)
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[SNX): FOX1), 1Y = SplgfO(X)

J

» LD =L form e z. discx £ = (m?+3m+9)2.

Gheorem C (Correspondence)

For a given m € Z,

I(z,y) € Z* with xy(x +y) # 0 s.t. F,(,?)(a:,y) =\

for some A € N with A\ |m? + 3m + 9

< dneZ\{m,—m —3} s.t. L =Y.

Moreover integers n,m and (z,y) € Z? satisfy

(m? +3m + 9zy(z +y)
Fy ()

Qhere N is either n or —n — 3.

N=m-+

~

/

» (=) Using Theorem (Morton 1994, Chapman 1996,
Hoshi-Miyake 2009) (<) Using resultant method.

Simplest number
fields and related
Thue equations

Akinari Hoshi
Niigata University

§2 Main thms:
Thm C and Thm S
(Correspondence
and Solutions)



Simplest number

Theorem C fields and related
Thue equations
Akinari Hoshi

Niigata University

For a fixed m € Z, we obtain the correspondence

§2 Main thms:
Thm C and Thm S
dn € Z \ {m, —m — 3} s.t. ng) = L7(13) (I) ggzrrseoslzv:?oiesr;ce

1:3 II Theorem C

I(z,y) € Z2% with zy(z +y) #0 (I
s.t. Fg’)(m,y) =A|m*+3m+9

> disc(FY(X,Y)) = (m? + 3m + 9)2.
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He use his result on gaps between sol's (2002) which is based
on Baker's theory: Laurent-Mignotte-Nesterenko (1995).
R. Okazaki, Geometry of a cubic Thue equation, §2 Main thms:
Publ. Math. Debrecen 61 (2002) 267-314. (Corespondence
and Solutions)
(" Theorem O, (Okazaki 2002+) h
( For —1<m<ne?if L& = LY then m < 35731.
(" Theorem O, (Okazaki unpublished) )
For -1<m<neZ,if L,(EL) = Lg’) then

\_ "€ {-1,0,1,2,3,5,12,54, 66, 1259, 2389}

In particular, we get

J
3 3 3 3
LT T L§2)5(9,) G 6 _ O
3 3 3 3 3 3
L(() ) = L:(s )= Lé4). Ly” = Lgg Ly” = Lysgg.




Thomas' 4 x 3 = 12 non-trivial solutions for A =1

(x,y) =(-1,-1),(-1,2),(2,-1) for m=—1,
( ) (5a4)?( ) ( 9, 5) for m= -1,
( ) (2a1)>(1 _3) ( 3 2) for 777,:07
(z,y) = (=7,-2),(-2,9),(9,-7) for m=2
correspond to
-

3 3 3 3 3 3 3 3
R e e
(6 3 3 3 3 3 3 3 )

e Y I T
L’ =Ly, Ly’ =Ljs,, Ly =1L
\_° 1 1259 12 1259 )

correspond to 7 x 3 = 321 (non-trivial) solutions for A > 1.

LT(EL) = L%B) (33 solutions), L7(13) = L,(;? (33 solutions)

Conclusion: in total 366 solutions.
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[FT(;?)(X’Y):X3—mX2Y—(m+3)XY2_Y3:>\ ] §2 Main thms:

Thm C and Thm S
(Correspondence
and Solutions)

By Theorem C and Theorem O, we get:

Theorem S (Solutions)

For m > —1,

all integer solutions (z,y) € Z? with zy(z +y) #0
to F(z,y) = A with A € N and | m2 + 3m + 9
are given in Table 1. (66 solutions)




Table 1

(3, —22), (—22, 19), (19, 3)

(=1,5), (5,—4), (=4,—1)

(—1,-2) (=2,3), 3, —1)

: (
54 0 —3 111 73 32 .73 (—1,-2), (=2, 3) (3,—1)
54 —6 3 111 3.7 32 .73 (—1,5), (5, —4), (—4, —1)
66 —4 1 135 33 .132 33137 (—2,7), (7, =5), (=5, —2)
1259 —1 —2 2521 61° 7-61° (—4, —5), (=5,9), (9, —4)
1259 —15 12 2521 61° 7-61° (—1,14), (14, —13), (=13, —1)
1259 5 —8 2521 7-61° 7-61° (=3, —19), (—19,22), (22, —3)
2389 —5 2 4781 675 19 - 675 (—2,9), (9, —7), (=7, —2)




§3 Theorem O;: Okazaki's Theorem

For m € Z, we take
FOX,Y) = (X - 0{"Y)(X - 0"Y) (X - 65"y,

and L,, = Q(@Y")). We see
—2<oi™ <1, —L<oi™ <o, 1<6™
Take the exterior product

(5 = t(51,52,53) =1x60 = t(92 — 93,93 — 91,91 — 02)

where 1 =(1,1,1), 8 =*(0y,6,03) € R>.

The norm N(8) = 610203 = —/D where
D = ((6; — 62)(01 — 03)(62 — 03))>.

Simplest number
fields and related
Thue equations

Akinari Hoshi
Niigata University

§3 Thm Oq, Os5:
Okazaki's Theorem



The canonical lattice
L% = 8(71 + 7.6)

of F'is orthogonal to 1, where the product of vectors is the
component-wise product. We consider the curve H

H:z14+ 290+ 23 =0, 2’12223:\/5.

on the plane IT = {¥(z1, 29,23) € R®| 21 + 29 + 23 = 0}.
For (x,y) with Fﬁ)(x,y) =1, we see z1 —yf € (Of )3
because N(z1 — y@) = 1. Then we get a bijection

(z,y) +— z=0(—ax1+yB) € L'NH
via N(2) = N(6)N(—21 + y0) = (—vD)(~1) = VD. Let
log : (R¥)? 2 ¥(21, 22, 23) — (log |z1|,log |z, log | 23|) € R3
be the logarithmic map. By Dirichlet’s unit theorem, the set
E(Lp) = {loge |e = (c,e7,e7 ),e € o7}

is a lattice of rank 2 on the plane
Ihog := {t(u17u27u3) € R3 | up + ug + ug = 0}.
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§3 Thm Oq, Os5:
Okazaki's Theorem



We use the modified logarithmic map
¢: (R*)® 3 2z u ="(u,ug,u3) = log(D~/%2) e R®.

For (z,y) with Fg’)(x,y) =1and

z=0(—21+y0) € LENH,

u = ¢(z) = ¢(6(—x1 4+ y0)) € ¢(6) + E(Lyn) C Ihog; the
displaced lattice, since —z1 + y0 € (O;m)?’. We can show

> 3¢(d) € E(Lim).

We now assume that L,, = L,, for —1 < m < n and take a
common trivial solution (z,y) = (1,0). Then

u™ u™ e M =7Z¢"™) + 7 (0™ + E(Ln) C g

where M is a lattice with discriminant

d(M) =d(E(Ly)), %d(E(Lm)) or %d(c‘f(Lm)). We may get:

> d(M) = d(g(Lm)) or %d(g(Lm))
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We adopt local coordinates for C := ¢(H) C Il by
V6u,

Then

s =s(u) ==

U2 — U3

7

t=1t(u):

2

s = /2 arcsinh (exp (—\/61&/2) /2) . 0<s< V3t

Example
m -1 0 1 2 3 4 5
s || 0.4163 | 0.3016 | 0.2263 | 0.1773 | 0.1444 | 0.1212 | 0.1042
t 0.4206 | 0.6893 | 0.9267 | 1.1269 | 1.2952 | 1.4385 | 1.5624




Li=Ls=Li2s9

m=-1

m=5

* m=1259
L e > . >
5 10 = 15 = t

.s=\/?ArcSi nh(Exp(—\/gt /2)/2 )



Using a result of Laurent-Mignotte-Nesterenko (1995) in
Baker's theory, Okazaki proved:

Theorem (Okazaki 2002)

Assume distinct points u = u(™ and u’' = u(™ of M on C.

Assume t = t(u) < t' =t(u’). Then

VEIM) (612,
1+ exp(—2(t' —t)/V6log?2) =

Theorem (Okazaki 2002)
For 2/ € L NH and t/ = t(2'), we have
t/

J@o(0) + £y = 04X 10%

Combining these two theorems, we have: (Theorem O)
LY =L (-1 <m<n) =t <856 and m < 35731.
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84 Theorem C+Theorem O; = Theorem S Fetdl and reted

Thue equations
It is enough to find all non-trivial solutions (,y) € Z? to Niainart Hoshi
F¥(z,y) = X | m?+3m+9 for —1 < m < 35731.

Indeed if there exists a non-trivial solution (z,y) € Z? to

JolSY (z,y) = A | n? +3n+9 for n > 35732 then there exists

—1 < m < 35731 such that L,, = L,, (by Thms C and Oy).

(i) —1 <m < 2407. For small m, we can use MAGMA

(Bilu-Hanrot).

(ii) 2408 < m < 35731 and 2(2m + 3 + 5205) < y. We

consider \F#?) (z,y)| <m?+3m +9. Applying
Lettel-Peth-Voutier Theorem A(m) = m? + 3m + 9,

2;\,5:132 =2 <2m +3+ 277%13), x/y is a convergent to 0s.
But we see that this case has no solution.

(iii) 2408 < m < 35731 and y < 2(2m + 3 + 520). The

bound is small enough to reach using a computer.

§4 Thm C+Thm
0; = Thm S

» This gives another proof of Thm O-
because Thm C+Thm S= Thm O,.
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JolS (z,y) = 25 — 2mady — (5m + 15)xty?
—2023y + 5may* + (2m + 6)zy® + 4% = A

» 19(x) = F9(x,1).
> £39(X) is irreducible/Q for m € 7 \ {—8,—3,0,5}.

> LW = Splg £ (X), then L) = L)

—-m—3
; the simplest sextic fields.
85 Degree 4 and

> LqufBL) C ng) fOI’ Vm S Z degree 6 cases
Theorem (Theorem C)
For a given m € Z, 3n € Z\{m,—m — 3} s.t. JACN 4O
< J(z,y) € Z* with
ry(a +y)(@ — y)(@ +20)(20 +y) # 0 st B (,y) = A
for some A € N with \ |27(m? + 3m + 9).



Moreover integers n,m and (z,y) € Z? satisfy

N = m 4 M4 3m A+ 9ey(e +y)(@ —y)(z +2y)(2x +y)

F (@,y)
where N is either n or —n — 3.

By Theorem Oy and the fact Lg) C Lfg), we get:

Theorem
For m,n € Z, LT(E) :L%G) <— m=norm=-—-n—3.

Theorem (Theorem S)

Form € Z, F\9(2,y) = X with A|27(m2 + 3m +9) has only
trivial solutions, i.e. zy(x + y)(x — y)(z + 2y)(2x + y) = 0.

» (Compare) JolS (x,y) = £1, +27 is solved by

Lettl-Pethé-Voutier (1998). |E\Y (z,y)| < 120m + 323

is solved by Lettl-Petho-Voutier (1999).
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Degree 4 case

[F,gf)(a:,y) =zt — mady — 62%y% + mayd +yt =\

> fr(,f)(X) = Fr(r?)(X, 1).

> £Y(X) is irreducible/@Q for m € Z \ {0, £3}.

> L4 := Splg fi) (X), then LG = L)

; the simplest quartic fields.

Theorem (Theorem C)
For a given m € Z, In € Z\{m, —m} s.t. LW=ry
< I(x,y) € Z* with zy(z +y)(z —y) #0 st
F,%)(x,y) = ) for some A € N with \ |4(m? + 16).
Moreover integers n,m and (z,y) € 7Z? satisfy

N (m? +16)zy(z + y)(z — y)

W (2,)

N =

where N is either n or —n.
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4 4 4
I N R R RO

» For 0 < m < n < 100000,
LYW =LY «— (m,n) € {(1,103),(2,22), (4,956)}.

By using PARI/GP or Magma, we may check:

Theorem
For 0 < m < 1000, all solutions with zy(z + y)(x —y) #0
and ged(z,y) =1 to Jols )(:U y) = X\ where \ | 4(m? + 16) §5 Degree 4 and

degree 6 cases

are given as in Table 2.
In particular, for 0 < m < 1000, m ¢ {1,2,4,22,103,956}

andneZ LWo1W o = 4n.

» (Compare) B (z,y) = £1, +4 is solved by Lettl-Petho

(1995) and Chen-Voutier (1997). |F\Y (z,y)| < 6m + 7
is solved by Lettl-Petho-Voutier (1999).



Table 2

m n 6m+7 F(4)(:): y)=X| m?>+16 | (z,y)

1 | 103 13 —1 17 (£1,£2), (£2,F1)
1 | 103 13 4 17 (F1,£3), (£3,£1)
2 | —22 19 5 20 (£1,£2), (£2,F1)
2 | —22 19 —20 20 (F1,£3), (£3,£1)
4 | —956 | 31 1 32 (£2,43), (£3,7F2)
4 | —956 | 31 —4 32 (F1,£5), (£5,£1)
22 [ -2 139 125 500 | (£1,+£2), (£2,F1)
22 [ -2 139 —500 500 | (1,+£3), (£3,+£1)
103 1 54 —54 517 | (F1,£2), (£2,41)
103 1 54 22 . 5% 5417 | (£1,4£3), (£3,F1)
956 | —4 5743 137 25.13% | (£2,4£3), (£3,F2)
956 | —4 5743 —22.131 25.13% | (¥1,£5), (£5,+1)
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