Birational classification for algebraic tori (joint work with Aiichi Yamasaki)

Akinari Hoshi

Niigata University

October 22, 2024

Table of contents

1. Rationality problem for algebraic k-tori T

```
[HY17] A. Hoshi, A. Yamasaki,
Rationality problem for algebraic tori,
Mem. Amer. Math. Soc. 248 (2017), no. 1176, v+215 pp.
```

- + Hasse norm principle (HNP) for K/k (via T. Ono's theorem) [HKY22], [HKY23] A. Hoshi, K. Kanai, A. Yamasaki.
- 2. Birational classification for algebraic k-tori T

```
[HY] A. Hoshi, A. Yamasaki,
Birational classification for algebraic tori, 175 pages,
arXiv:2112.02280.
```

§1. Rationality problem for algebraic tori T(1/3)

- ► k: a base field which is **NOT** algebraically closed! (**TODAY**)
- ▶ T: algebraic k-torus, i.e. k-form of a split torus; an algebraic group over k (group k-scheme) with $T \times_k \overline{k} \simeq (\mathbb{G}_{m,\overline{k}})^n$.

Rationality problem for algebraic tori

Whether T is k-rational?, i.e. $T \approx \mathbb{P}^n$? (birationally k-equivalent)

Let $R^{(1)}_{K/k}(\mathbb{G}_m)$ be the norm one torus of K/k, i.e. the kernel of the norm map $N_{K/k}:R_{K/k}(\mathbb{G}_m)\to \mathbb{G}_m$ where $R_{K/k}$ is the Weil restriction:

$$1 \longrightarrow R_{K/k}^{(1)}(\mathbb{G}_m) \longrightarrow R_{K/k}(\mathbb{G}_m) \xrightarrow{N_{K/k}} \mathbb{G}_m \longrightarrow 1.$$

$$n-1 \qquad n \qquad 1$$

▶ $\exists 2$ algebraic k-tori T with $\dim(T) = 1$; the trivial torus \mathbb{G}_m and $R_{K/k}^{(1)}(\mathbb{G}_m)$ with [K:k] = 2, are k-rational.

dim

Rationality problem for algebraic tori T(2/3)

▶ $\exists 13$ algebraic k-tori T with $\dim(T) = 2$.

Theorem (Voskresenskii 1967) 2-dim. algebraic tori T

T is k-rational.

▶ $\exists 73$ algebraic k-tori T with $\dim(T) = 3$.

Theorem (Kunyavskii 1990) 3-dim. algebraic tori T

- (i) $\exists 58$ algebraic k-tori T which are k-rational;
- (ii) $\exists 15$ algebraic k-tori T which are not k-rational.
 - What happens in higher dimensions?

Algebraic k-tori T and G-lattices

- ▶ T: algebraic k-torus $\Longrightarrow \exists$ finite Galois extension L/k such that $T \times_k L \simeq (\mathbb{G}_{m,L})^n$.
- ▶ $G = \operatorname{Gal}(L/k)$ where L is the minimal splitting field.

Category of algebraic k-tori which $\mathrm{split}/L \overset{\mathrm{duality}}{\longleftrightarrow}$ Category of G-lattices (i.e. finitely generated \mathbb{Z} -free $\mathbb{Z}[G]$ -module)

- ▶ $T \mapsto$ the character group $\widehat{T} = \text{Hom}(T, \mathbb{G}_m)$: G-lattice.
- ▶ $T = \operatorname{Spec}(L[M]^G)$ which splits/L with $\widehat{T} \simeq M \leftarrow M$: G-lattice
- ▶ Tori of dimension $n \overset{1:1}{\longleftrightarrow}$ elements of the set $H^1(\mathcal{G}, \operatorname{GL}(n, \mathbb{Z}))$ where $\mathcal{G} = \operatorname{Gal}(\overline{k}/k)$ since $\operatorname{Aut}(\mathbb{G}_m^n) = \operatorname{GL}(n, \mathbb{Z})$.
- ▶ k-torus T of dimension n is determined uniquely by the integral representation $h: \mathcal{G} \to \mathrm{GL}(n, \mathbb{Z})$ up to conjugacy, and the group $h(\mathcal{G})$ is a finite subgroup of $\mathrm{GL}(n, \mathbb{Z})$.
- ▶ The function field of $T \overset{\text{identified}}{\longleftrightarrow} L(M)^G$: invariant field.

Rationality problem for algebraic tori T (3/3)

- ▶ L/k: Galois extension with G = Gal(L/k).
- $ightharpoonup M = \bigoplus_{1 \le i \le n} \mathbb{Z} \cdot u_i$: G-lattice with a \mathbb{Z} -basis $\{u_1, \dots, u_n\}$.
- ightharpoonup G acts on $L(x_1,\ldots,x_n)$ by

$$\sigma(x_i) = \prod_{j=1}^n x_j^{a_{i,j}}, \quad 1 \le i \le n$$

for any $\sigma \in G$, when $\sigma(u_i) = \sum_{j=1}^n a_{i,j} u_j$, $a_{i,j} \in \mathbb{Z}$.

- $ightharpoonup L(M) := L(x_1, \ldots, x_n)$ with this action of G.
- ▶ The function field of algebraic k-torus $T \overset{\text{identified}}{\longleftrightarrow} L(M)^G$

Rationality problem for algebraic tori T (2nd form)

Whether $L(M)^G$ is k-rational?

(= purely transcendental over k?; $L(M)^G = k(\exists t_1, \dots, \exists t_n)$?)

Some definitions.

ightharpoonup K/k: a finite generated field extension.

Definition (stably rational)

K is called stably k-rational if $K(y_1, \ldots, y_m)$ is k-rational.

Definition (retract rational)

K is retract k-rational if $\exists k$ -algebra (domain) $R \subset K$ such that

- (i) K is the quotient field of R;
- (ii) $\exists f \in k[x_1,\ldots,x_n] \; \exists k$ -algebra hom. $\varphi: R \to k[x_1,\ldots,x_n][1/f]$ and $\psi: k[x_1,\ldots,x_n][1/f] \to R$ satisfying $\psi \circ \varphi = 1_R$.

Definition (unirational)

K is k-unirational if $K \subset k(x_1, \ldots, x_n)$.

- ▶ k-rational \Rightarrow stably k-rational \Rightarrow retract k-rational \Rightarrow k-unirational.
- ▶ $L(M)^G$ (resp. T) is always k-unitational.

Rationality problem for algebraic tori T (2-dim., 3-dim.)

- The function field of n-dim. $T \overset{\mathrm{identified}}{\longleftrightarrow} L(M)^G$, $G \leq \mathrm{GL}(n,\mathbb{Z})$
- ▶ $\exists 13 \ \mathbb{Z}$ -coujugacy subgroups $G \leq \operatorname{GL}(2,\mathbb{Z})$ ($\exists 13 \ 2$ -dim. algebraic k-tori T).

Theorem (Voskresenskii 1967) 2-dim. algebraic tori T (restated)

T is k-rational.

▶ $\exists 73 \ \mathbb{Z}$ -coujugacy subgroups $G \leq \operatorname{GL}(3, \mathbb{Z})$ ($\exists 73 \ 3$ -dim. algebraic k-tori T).

Theorem (Kunyavskii 1990) 3-dim. algebraic tori T (precise form)

- (i) T is k-rational $\iff T$ is stably k-rational
- $\iff T \text{ is retract } k\text{-rational} \iff \exists G : 58 \text{ groups};$
- (ii) T is not k-rational $\iff T$ is not stably k-rational
- $\iff T \text{ is not retract } k\text{-rational} \iff \exists G : 15 \text{ groups.}$

Rationality problem for algebraic tori T (4-dim.)

- The function field of n-dim. $T \overset{\text{identified}}{\longleftrightarrow} L(M)^G$, $G \leq \operatorname{GL}(n, \mathbb{Z})$
- ▶ $\exists 710 \ \mathbb{Z}$ -coujugacy subgroups $G \leq \operatorname{GL}(4,\mathbb{Z})$ ($\exists 710 \ 4$ -dim. algebraic k-tori T).

Theorem ([HY17]) 4-dim. algebraic tori T

- (i) T is stably k-rational $\iff \exists G$: 487 groups;
- (ii) T is not stably but retract k-rational $\iff \exists G: 7 \text{ groups};$
- (iii) T is not retract k-rational $\iff \exists G: 216$ groups.
 - ▶ We do not know "k-rationality".
 - Voskresenskii's conjecture: any stably k-rational torus is k-rational (Zariski problem).
 - what happens for dimension 5?

Rationality problem for algebraic tori T (5-dim.)

- ► The function field of n-dim. $T \overset{\text{identified}}{\longleftrightarrow} L(M)^G$, $G \leq \operatorname{GL}(n, \mathbb{Z})$
- ▶ $\exists 6079 \ \mathbb{Z}$ -coujugacy subgroups $G \leq \operatorname{GL}(5, \mathbb{Z})$ ($\exists 6079 \ 5$ -dim. algebraic k-tori T).

Theorem ([HY17]) 5-dim. algebraic tori T

- (i) T is stably k-rational $\iff \exists G: 3051 \text{ groups};$
- (ii) T is not stably but retract k-rational $\iff \exists G: 25 \text{ groups};$
- (iii) T is not retract k-rational $\iff \exists G: 3003 \text{ groups.}$
 - what happens for dimension 6?
 - ▶ BUT we do not know the answer for dimension 6.
 - ▶ $\exists 85308 \ \mathbb{Z}$ -coujugacy subgroups $G \leq \operatorname{GL}(6, \mathbb{Z})$ ($\exists 85308 \ 6$ -dim. algebraic k-tori T).

Flabby (Flasque) resolution

 $lackbox{$M$}$: G-lattice, i.e. f.g. \mathbb{Z} -free $\mathbb{Z}[G]$ -module.

Definition

- (i) M is permutation $\stackrel{\text{def}}{\Longleftrightarrow} M \simeq \bigoplus_{1 \leq i \leq m} \mathbb{Z}[G/H_i].$
- (ii) M is stably permutation $\stackrel{\mathrm{def}}{\Longleftrightarrow} M \oplus \exists P \simeq P', P, P'$: permutation.
- (iii) M is invertible $\stackrel{\mathrm{def}}{\Longleftrightarrow} M \oplus \exists M' \simeq P$: permutation.
- (iv) M is coflabby $\stackrel{\text{def}}{\Longleftrightarrow} H^1(H,M) = 0 \ (\forall H \leq G).$
- (v) M is flabby $\stackrel{\mathrm{def}}{\Longleftrightarrow} \widehat{H}^{-1}(H,M) = 0 \ (\forall H \leq G). \ (\widehat{H} \colon \mathsf{Tate} \ \mathsf{cohomology})$
 - "permutation"
 - ⇒ "stably permutation"
 - ⇒ "invertible"
 - \implies "flabby and coflabby".

Commutative monoid ${\mathcal M}$

 $M_1 \sim M_2 \stackrel{\text{def}}{\iff} M_1 \oplus P_1 \simeq M_2 \oplus P_2 \ (\exists P_1, \exists P_2: \text{ permutation}).$ $\implies \text{commutative monoid } \mathcal{M}: \ [M_1] + [M_2] := [M_1 \oplus M_2], \ 0 = [P].$

Theorem (Endo-Miyata 1974, Colliot-Thélène-Sansuc 1977)

 $\exists P$: permutation, $\exists F$: flabby such that

$$0 \to M \to P \to F \to 0$$
: flabby resolution of M .

 $ightharpoonup [M]^{fl} := [F];$ flabby class of M

Theorem (Endo-Miyata 1973, Voskresenskii 1974, Saltman 1984)

(EM73) $[M]^{fl} = 0 \iff L(M)^G$ is stably k-rational.

(Vos74)
$$[M]^{fl} = [M']^{fl} \iff L(M)^G(x_1, \dots, x_m) \simeq L(M')^G(y_1, \dots, y_n);$$

stably k -equivalent.

(Sal84) $[M]^{fl}$ is invertible $\iff L(M)^G$ is retract k-rational.

 $M = M_G \simeq \widehat{T} = \operatorname{Hom}(T, \mathbb{G}_m), k(T) \simeq L(M)^G, G = \operatorname{Gal}(L/k)$

Contributions of [HY17]

- ▶ We give a procedure to compute a flabby resolution of M, in particular $[M]^{fl} = [F]$, effectively (with smaller rank after base change) by computer software GAP.
- ► The function IsFlabby (resp. IsCoflabby) may determine whether M is flabby (resp. coflabby).
- ▶ The function IsInvertibleF may determine whether $[M]^{fl} = [F]$ is invertible $(\leftrightarrow$ whether $L(M)^G$ (resp. T) is retract rational).
- ▶ We provide some functions for checking a possibility of isomorphism

$$\left(\bigoplus_{i=1}^{r} a_i \, \mathbb{Z}[G/H_i]\right) \oplus a_{r+1} F \simeq \bigoplus_{i=1}^{r} b_i' \, \mathbb{Z}[G/H_i] \tag{*}$$

by computing some invariants (e.g. trace, \widehat{Z}^0 , \widehat{H}^0) of both sides.

▶ [HY17, Example 10.7]. $G \simeq S_5 \leq \operatorname{GL}(5, \mathbb{Z})$ with number (5, 946, 4) $\Longrightarrow \operatorname{rank}(F) = 17$ and $\operatorname{rank}(*) = 88$ holds $\Longrightarrow [F] = 0 \Longrightarrow L(M)^G$ (resp. T) is stably rational over k.

Application to Krull-Schmidt

Corollary ($[F] = [M]^{fl}$: invertible case, $G \simeq S_5, F_{20}$)

 $\exists T,\ T';\ 4\text{-dim.}$ not stably rational algebraic tori over k such that $T\not\sim T'$ (birational) and $T\times T'$: 8-dim. stably rational over k. $\because -[M]^{fl}=[M']^{fl}\neq 0.$

Prop. ([HY17], Krull-Schmidt fails for permutation D_6 -lattices)

$$\begin{split} \{1\},\, C_2^{(1)},\, C_2^{(2)},\, C_2^{(3)},\, C_3,\, V_4,\, C_6,\, S_3^{(1)},\, S_3^{(2)},\, D_6\colon \text{conj. subgroups of }D_6.\\ \mathbb{Z}[D_6] \oplus \mathbb{Z}[D_6/V_4]^{\oplus 2} \oplus \mathbb{Z}[D_6/C_6] \oplus \mathbb{Z}[D_6/S_3^{(1)}] \oplus \mathbb{Z}[D_6/S_3^{(2)}]\\ &\simeq \mathbb{Z}[D_6/C_2^{(1)}] \oplus \mathbb{Z}[D_6/C_2^{(2)}] \oplus \mathbb{Z}[D_6/C_2^{(3)}] \oplus \mathbb{Z}[D_6/C_3] \oplus \mathbb{Z}^{\oplus 2}. \end{split}$$

 $ightharpoonup D_6$ is the smallest example exhibiting the failure of K-S:

Theorem (Dress 1973)

Krull-Schmidt holds for permutation G-lattices $\iff G/O_p(G)$ is cyclic where $O_p(G)$ is the maximal normal p-subgroup of G.

Krull-Schmidt and Direct sum cancelation

Theorem (Hindman-Klingler-Odenthal 1998) Assume $G \neq D_8$

Krull-Schmidt holds for G-lattices \iff (i) $G=C_p$ $(p\leq 19; \text{ prime}),$ (ii) $G=C_n$ (n=1,4,8,9), (iii) $G=V_4$ or (iv) $G=D_4.$

Theorem (Endo-Hironaka 1979)

Direct sum cancellation holds, i.e. $M_1 \oplus N \simeq M_2 \oplus N \Longrightarrow M_1 \simeq M_2$, $\Longrightarrow G$ is abelian, dihedral, A_4 , S_4 or A_5 (*).

- via projective class group (see Swan 1988, Corollary 1.3, Section 7).
- ightharpoonup Except for $(*) \Longrightarrow$ Direct sum cancelation fails \Longrightarrow K-S fails

Theorem ([HY17]) $G \leq GL(n, \mathbb{Z})$ (up to conjugacy)

- (i) $n \le 4 \Longrightarrow \text{K-S holds}$.
- (ii) n = 5. K-S fails \iff 11 groups G (among 6079 groups).
- (iii) n = 6. K-S fails \iff 131 groups G (among 85308 groups).

Special case: $T = R_{K/k}^{(1)}(\mathbb{G}_m)$; norm one tori (1/5)

▶ Rationality problem for $T = R_{K/k}^{(1)}(\mathbb{G}_m)$ is investigated by S. Endo, Colliot-Thélène and Sansuc, W. Hürlimann, L. Le Bruyn, A. Cortella and B. Kunyavskii, N. Lemire and M. Lorenz, M. Florence, etc.

Theorem (Endo-Miyata 1974), (Saltman 1984)

Let K/k be a finite Galois field extension and G = Gal(K/k).

- (i) T is retract k-rational \iff all the Sylow subgroups of G are cyclic;
- (ii) T is stably k-rational \iff G is a cyclic group, or a direct product of a cyclic group of order m and a group $\langle \sigma, \tau \, | \, \sigma^n = \tau^{2^d} = 1, \tau \sigma \tau^{-1} = \sigma^{-1} \rangle$, where $d, m \geq 1, n \geq 3, m, n$: odd, and (m, n) = 1.

Theorem (Endo 2011)

Let K/k be a finite non-Galois, separable field extension and L/k be the Galois closure of K/k. Assume that the Galois group of L/k is nilpotent. Then the norm one torus $T=R_{K/k}^{(1)}(\mathbb{G}_m)$ is not retract k-rational.

Special case: $T = R_{K/k}^{(1)}(\mathbb{G}_m)$; norm one tori (2/5)

- Let K/k be a finite non-Galois, separable field extension
- ▶ Let L/k be the Galois closure of K/k.
- ▶ Let $G = \operatorname{Gal}(L/k)$ and $H = \operatorname{Gal}(L/K) \leq G$.

Theorem (Endo 2011)

Assume that all the Sylow subgroups of G are cyclic.

Then T is retract k-rational.

$$T = R_{K/k}^{(1)}(\mathbb{G}_m)$$
 is stably k -rational $\iff G = D_n$, n odd $(n \ge 3)$ or $C_m \times D_n$, m, n odd $(m, n \ge 3)$, $(m, n) = 1$, $H \le D_n$ with $|H| = 2$.

Special case: $T = R_{K/k}^{(1)}(\mathbb{G}_m)$; norm one tori (3/5)

Theorem (Endo 2011) dim T = n - 1

Assume that $\operatorname{Gal}(L/k) = S_n$, $n \geq 3$, and $\operatorname{Gal}(L/K) = S_{n-1}$ is the stabilizer of one of the letters in S_n .

- (i) $R_{K/k}^{(1)}(\mathbb{G}_m)$ is retract k-rational $\iff n$ is a prime;
- (ii) $R_{K/k}^{(1)}(\mathbb{G}_m)$ is (stably) k-rational $\iff n=3$.

Theorem (Endo 2011) dim T = n - 1

Assume that $\operatorname{Gal}(L/k) = A_n$, $n \geq 4$, and $\operatorname{Gal}(L/K) = A_{n-1}$ is the stabilizer of one of the letters in A_n .

- (i) $R_{K/k}^{(1)}(\mathbb{G}_m)$ is retract k-rational $\iff n$ is a prime;
- (ii) $\exists t \in \mathbb{N} \text{ s.t. } [R_{K/k}^{(1)}(\mathbb{G}_m)]^{(t)} \text{ is stably } k\text{-rational} \iff n=5.$
 - ▶ $[R_{K/k}^{(1)}(\mathbb{G}_m)]^{(t)}$: the product of t copies of $R_{K/k}^{(1)}(\mathbb{G}_m)$.

Special case: $T = R_{K/k}^{(1)}(\mathbb{G}_m)$; norm one tori (4/5)

Theorem ([HY17], Rationality for $R_{K/k}^{(1)}(\mathbb{G}_m)$ (dim. 4, [K:k]=5))

Let K/k be a separable field extension of degree 5 and L/k be the Galois closure of K/k. Assume that $G=\operatorname{Gal}(L/k)$ is a transitive subgroup of S_5 and $H=\operatorname{Gal}(L/K)$ is the stabilizer of one of the letters in G. Then the rationality of $R_{K/k}^{(1)}(\mathbb{G}_m)$ is given by

G		$L(M) = L(x_1, x_2, x_3, x_4)^G$
5T1	C_5	stably k -rational
5T2	D_5	stably k -rational
5T3	F_{20}	not stably but retract k -rational
5T4	A_5	stably k -rational
5T5	S_5	not stably but retract k -rational

- ▶ This theorem is already known except for the case of A_5 (Endo).
- ▶ Stably k-rationality for the case A_5 is asked by S. Endo (2011).

Special case: $T = R_{K/k}^{(1)}(\mathbb{G}_m)$; norm one tori (5/5)

Corollary of (Endo 2011) and [HY17]

Assume that $\operatorname{Gal}(L/k) = A_n$, $n \geq 4$, and $\operatorname{Gal}(L/K) = A_{n-1}$ is the stabilizer of one of the letters in A_n . Then $R_{K/k}^{(1)}(\mathbb{G}_m)$ is stably k-rational $\iff n = 5$.

More recent results on stably/retract k-rational classification for T

- ▶ $G \leq S_n \ (n \leq 10)$ and $G \neq 9T27 \simeq PSL_2(\mathbb{F}_8)$, $G \leq S_p$ and $G \neq PSL_2(\mathbb{F}_{2^e}) \ (p = 2^e + 1 \geq 17;$ Fermat prime) (Hoshi-Yamasaki [HY21] Israel J. Math.)
- ► $G \le S_n \ (n = 12, 14, 15) \ (n = 2^e)$ (Hasegawa-Hoshi-Yamasaki [HHY20] Math. Comp.)
- $\mathrm{III}(T)$ and Hasse norm principle over number fields k (see next slides)
- ► (Hoshi-Kanai-Yamasaki [HKY22] Math. Comp., [HKY23] JNT)

$\coprod(T)$ and HNP for K/k: Ono's theorem (1963)

- ▶ T : algebraic k-torus, i.e. $T \times_k \overline{k} \simeq (\mathbb{G}_{m,\overline{k}})^n$.
- $\blacksquare \hspace{1mm} \mathrm{III}(T) := \mathrm{Ker}\{H^1(k,T) \xrightarrow{\mathrm{res}} \bigoplus_{v \in V_k} H^1(k_v,T)\} \hspace{1mm} : \hspace{1mm} \mathsf{Shafarevich-Tate} \hspace{1mm} \mathsf{gp}.$
- ▶ $T = R_{K/k}^{(1)}(\mathbb{G}_m)$ is biregularly isomorphic to the norm hyper surface $f(x_1, \ldots, x_n) = 1$ where $f \in k[x_1, \ldots, x_n]$ is the norm form of K/k.

Theorem (Ono 1963, Ann. of Math.)

Let K/k be a finite extension of number fields and $T = R^{(1)}_{K/k}(\mathbb{G}_m)$. Then

$$\coprod(T) \simeq (N_{K/k}(\mathbb{A}_K^{\times}) \cap k^{\times})/N_{K/k}(K^{\times})$$

where \mathbb{A}_K^{\times} is the idele group of K. In particular,

 $\coprod(T) = 0 \iff$ Hasse norm principle holds for K/k.

Known results for HNP (2/2)

- $T = R_{K/k}^{(1)}(\mathbb{G}_m).$
- ▶ $III(T) = 0 \iff$ Hasse norm principle holds for K/k.

Theorem (Kunyavskii 1984)

Let [K:k] = 4, $G = Gal(L/k) \simeq 4Tm \ (1 \le m \le 5)$.

Then $\coprod(T) = 0$ except for 4T2 and 4T4. For $4T2 \simeq V_4$, $4T4 \simeq A_4$,

- (i) $\coprod (T) \leq \mathbb{Z}/2\mathbb{Z}$;
- (ii) $\coprod (T) = 0 \Leftrightarrow \exists v \in V_k \text{ such that } V_4 \leq G_v.$

Theorem (Drakokhrust-Platonov 1987)

Let [K:k] = 6, $G = Gal(L/k) \simeq 6Tm \ (1 \le m \le 16)$.

Then $\mathrm{III}(T)=0$ except for 6T4 and 6T12. For $6T4\simeq A_4$, $6T12\simeq A_5$,

- (i) $\coprod (T) \leq \mathbb{Z}/2\mathbb{Z}$;
- (ii) $\coprod (T) = 0 \Leftrightarrow \exists v \in V_k \text{ such that } V_4 \leq G_v.$

Voskresenskii's theorem (1969) (1/2)

Let X be a smooth k-compactification of an algebraic k-torus T

Theorem (Voskresenskii 1969)

Let k be a global field, T be an algebraic k-torus and X be a smooth k-compactification of T. Then there exists an exact sequence

$$0 \to \underline{A(T)} \to H^1(k, \operatorname{Pic} \overline{X})^{\vee} \to \underline{\mathrm{III}(T)} \to 0$$

where $M^{\vee} = \operatorname{Hom}(M, \mathbb{Q}/\mathbb{Z})$ is the Pontryagin dual of M.

- ▶ The group $A(T) := \left(\prod_{v \in V_k} T(k_v)\right) \Big/ \overline{T(k)}$ is called the kernel of the weak approximation of T.
- ► T: retract rational $\iff [\widehat{T}]^{fl} = [\operatorname{Pic} \overline{X}]$ is invertible $\implies \operatorname{Pic} \overline{X}$ is flabby and coflabby $\implies H^1(k,\operatorname{Pic} \overline{X})^\vee = 0 \implies A(T) = \operatorname{III}(T) = 0.$
- when $T = R_{K/k}^{(1)}(\mathbb{G}_m)$, by Ono's theorem, $T : \mathsf{retract}\ k\mathsf{-rational} \Longrightarrow \mathrm{III}(T) = 0 \ (\mathsf{HNP}\ \mathsf{holds}\ \mathsf{for}\ K/k).$

Voskresenskii's theorem (1969) (2/2)

- ▶ when $T = R^{(1)}_{K/k}(\mathbb{G}_m)$, $\widehat{T} = J_{G/H}$ where $J_{G/H} = (I_{G/H})^\circ = \operatorname{Hom}(I_{G/H}, \mathbb{Z})$ is the dual lattice of $I_{G/H} = \operatorname{Ker}(\varepsilon)$ and $\varepsilon : \mathbb{Z}[G/H] \to \mathbb{Z}$ is the augmentation map.
- ▶ (Hasegawa-Hoshi-Yamasaki [HHY20], Hoshi-Yamasaki [HY21]) For $[K:k]=n\leq 15$ except $9T27\simeq \mathrm{PSL}_2(\mathbb{F}_8)$, the classification of stably/retract rational $R_{K/k}^{(1)}(\mathbb{G}_m)$ was given.
- ▶ when $T = R_{K/k}^{(1)}(\mathbb{G}_m)$, T: retract k-rational $\Longrightarrow H^1(k, \operatorname{Pic} \overline{X}) = 0$
- ▶ $H^1(k,\operatorname{Pic}\overline{X})\simeq\operatorname{Br}(X)/\operatorname{Br}(k)\simeq\operatorname{Br}_{\operatorname{nr}}(k(X)/k)/\operatorname{Br}(k)$ by Colliot-Thélène-Sansuc 1987 where $\operatorname{Br}(X)$ is the étale cohomological/Azumaya Brauer group of X and $\operatorname{Br}_{\operatorname{nr}}(k(X)/k)$ is the unramified Brauer group of k(X) over k.

Theorems 1,2,3,4 in [HKY22], [HKY23] (1/3)

 $ightharpoonup \exists 2, 13, 73, 710, 6079 \text{ cases of alg. } k\text{-tori } T \text{ of } \dim(T) = 1, 2, 3, 4, 5.$

Theorem 1 ([HKY22, Theorem 1.5 and Theorem 1.6])

(i) $\dim(T)=4$. Among the 216 cases (of 710) of not retract rational T,

$$H^1(k, \operatorname{Pic} \overline{X}) \simeq egin{cases} 0 & (194 \text{ of } 216), \\ \mathbb{Z}/2\mathbb{Z} & (20 \text{ of } 216), \\ (\mathbb{Z}/2\mathbb{Z})^{\oplus 2} & (2 \text{ of } 216). \end{cases}$$

(ii) $\dim(T) = 5$. Among 3003 cases (of 6079) of not retract rational T,

$$H^1(k, \operatorname{Pic} \overline{X}) \simeq \begin{cases} 0 & (2729 \text{ of } 3003), \\ \mathbb{Z}/2\mathbb{Z} & (263 \text{ of } 3003), \\ (\mathbb{Z}/2\mathbb{Z})^{\oplus 2} & (11 \text{ of } 3003). \end{cases}$$

► Kunyavskii (1984) showed that among the 15 cases (of 73) of not retract rational T of $\dim(T) = 3$, $H^1(k, \operatorname{Pic} \overline{X}) = 0$ (13 of 15), $H^1(k, \operatorname{Pic} \overline{X}) \simeq \mathbb{Z}/2\mathbb{Z}$ (2 of 15).

Theorems 1,2,3,4 in [HKY22], [HKY23] (2/3)

- ightharpoonup k: a field, K/k: a separable field extension of [K:k]=n.
- ► $T = R_{K/k}^{(1)}(\mathbb{G}_m)$ with $\dim(T) = n 1$.
- ightharpoonup X: a smooth k-compactification of T.
- ▶ L/k: Galois closure of K/k, $G := \operatorname{Gal}(L/k)$ and $H = \operatorname{Gal}(L/K)$ with $[G:H] = n \Longrightarrow G = nTm \leq S_n$: transitive.
- ▶ The number of transitive subgroups nTm of S_n $(2 \le n \le 15)$ up to conjugacy is given as follows:

Theorem 2 ([HKY22, Theorem 1.5], [HKY23, Theorem 1.1])

Let $2 \le n \le 15$ be an integer. Then $H^1(k,\operatorname{Pic} \overline{X}) \ne 0 \iff G = nTm$ is given as in [HKY22, Table 1] $(n \ne 12)$ or [HKY23, Table 1] (n = 12).

[HKY22, Table 1]: $H^1(k,\operatorname{Pic}\overline{X})\simeq H^1(G,[J_{G/H}]^{fl})\neq 0$ where G=nTm with $2\leq n\leq 15$ and $n\neq 12$

G	$H^1(k, \operatorname{Pic} \overline{X}) \simeq H^1(G, [J_{G/H}]^{fl})$
$4T2 \simeq V_4$	$\mathbb{Z}/2\mathbb{Z}$
$4T4 \simeq A_4$	$\mathbb{Z}/2\mathbb{Z}$
$6T4 \simeq A_4$	$\mathbb{Z}/2\mathbb{Z}$
$6T12 \simeq A_5$	$\mathbb{Z}/2\mathbb{Z}$
$8T2 \simeq C_4 \times C_2$	$\mathbb{Z}/2\mathbb{Z}$
$8T3 \simeq (C_2)^3$	$(\mathbb{Z}/2\mathbb{Z})^{\oplus 3}$
$8T4 \simeq D_4$	$\mathbb{Z}/2\mathbb{Z}$
$8T9 \simeq D_4 \times C_2$	$\mathbb{Z}/2\mathbb{Z}$
$8T11 \simeq (C_4 \times C_2) \rtimes C_2$	$\mathbb{Z}/2\mathbb{Z}$
$8T13 \simeq A_4 \times C_2$	$\mathbb{Z}/2\mathbb{Z}$
$8T14 \simeq S_4$	$\mathbb{Z}/2\mathbb{Z}$
$8T15 \simeq C_8 \rtimes V_4$	$\mathbb{Z}/2\mathbb{Z}$
$8T19 \simeq (C_2)^3 \rtimes C_4$	$\mathbb{Z}/2\mathbb{Z}$
$8T21 \simeq (C_2)^3 \rtimes C_4$	$\mathbb{Z}/2\mathbb{Z}$
$8T22 \simeq (C_2)^3 \rtimes V_4$	$\mathbb{Z}/2\mathbb{Z}$
$8T31 \simeq ((C_2)^4 \rtimes C_2) \rtimes C_2$	$\mathbb{Z}/2\mathbb{Z}$
$8T32 \simeq ((C_2)^3 \rtimes V_4) \rtimes C_3$	$\mathbb{Z}/2\mathbb{Z}$
$8T37 \simeq \mathrm{PSL}_3(\mathbb{F}_2) \simeq \mathrm{PSL}_2(\mathbb{F}_7)$	$\mathbb{Z}/2\mathbb{Z}$
$8T38 \simeq (((C_2)^4 \rtimes C_2) \rtimes C_2) \rtimes C_3$	$\mathbb{Z}/2\mathbb{Z}$

[HKY22, Table 1]: $H^1(k,\operatorname{Pic} \overline{X}) \simeq H^1(G,[J_{G/H}]^{fl}) \neq 0$ where G=nTm with $2 \leq n \leq 15$ and $n \neq 12$

G	$H^1(k, \operatorname{Pic} \overline{X}) \simeq H^1(G, [J_{G/H}]^{fl})$
$9T2 \simeq (C_3)^2$	$\mathbb{Z}/3\mathbb{Z}$
$9T5 \simeq (C_3)^2 \rtimes C_2$	$\mathbb{Z}/3\mathbb{Z}$
$9T7 \simeq (C_3)^2 \rtimes C_3$	$\mathbb{Z}/3\mathbb{Z}$
$9T9 \simeq (C_3)^2 \rtimes C_4$	$\mathbb{Z}/3\mathbb{Z}$
$9T11 \simeq (C_3)^2 \rtimes C_6$	$\mathbb{Z}/3\mathbb{Z}$
$9T14 \simeq (C_3)^2 \rtimes Q_8$	$\mathbb{Z}/3\mathbb{Z}$
$9T23 \simeq ((C_3)^2 \rtimes Q_8) \rtimes C_3$	$\mathbb{Z}/3\mathbb{Z}$
$10T7 \simeq A_5$	$\mathbb{Z}/2\mathbb{Z}$
$10T26 \simeq \mathrm{PSL}_2(\mathbb{F}_9) \simeq A_6$	$\mathbb{Z}/2\mathbb{Z}$
$10T32 \simeq S_6$	$\mathbb{Z}/2\mathbb{Z}$
$14T30 \simeq \mathrm{PSL}_2(\mathbb{F}_{13})$	$\mathbb{Z}/2\mathbb{Z}$
$15T9 \simeq (C_5)^2 \rtimes C_3$	$\mathbb{Z}/5\mathbb{Z}$
$15T14 \simeq (C_5)^2 \rtimes S_3$	$\mathbb{Z}/5\mathbb{Z}$

Theorems 1,2,3,4 in [HKY22], [HKY23] (3/3)

- ightharpoonup k: a number field, K/k: a separable field extension of [K:k]=n.
- $ightharpoonup T = R_{K/k}^{(1)}(\mathbb{G}_m), X : \text{ a smooth } k\text{-compactification of } T.$

Theorem 3 ([HKY22, Theorem 1.18], [HKY23, Theorem 1.3])

Let $2 \le n \le 15$ be an integer. For the cases in [HKY22, Table 1] $(n \le 15, n \ne 12)$ or [HKY23, Table 1] (n = 12),

$$\coprod$$
 $(T) = 0 \iff G = nTm \text{ satisfies some conditions of } G_v$

where G_v is the decomposition group of G at v.

▶ By Ono's theorem, $\coprod(T) = 0 \iff \mathsf{HNP}$ holds for K/k, Theorem 3 gives a necessary and sufficient condition for HNP for K/k.

Theorem 4 ([HKY22, Theorem 1.17])

Assume that $G=M_n \leq S_n \ (n=11,12,22,23,24)$ is the Mathieu group of degree n. Then $H^1(k,\operatorname{Pic}\overline{X})=0$. In particular, $\operatorname{III}(T)=0$.

Examples of Theorem 3

Example (
$$G = 8T4 \simeq D_4$$
, $8T13 \simeq A_4 \times C_2$, $8T14 \simeq S_4$, $8T37 \simeq \mathrm{PSL}_2(\mathbb{F}_7)$, $10T7 \simeq A_5$, $14T30 \simeq \mathrm{PSL}_2(\mathbb{F}_{13})$)

$$\coprod (T) = 0 \iff \exists v \in V_k \text{ such that } V_4 \leq G_v.$$

Example (
$$G = 10T26 \simeq \mathrm{PSL}_2(\mathbb{F}_9)$$
)

$$\coprod (T) = 0 \iff \exists v \in V_k \text{ such that } D_4 \leq G_v.$$

Example $(G = 10T32 \simeq S_6 \leq S_{10})$

- $\coprod (T) = 0 \iff \exists v \in V_k \text{ such that }$
- (i) $V_4 \leq G_v$ where $N_{\widetilde{G}}(V_4) \simeq C_8 \rtimes (C_2 \times C_2)$ for the normalizer $N_{\widetilde{G}}(V_4)$ of V_4 in \widetilde{G} with the normalizer $\widetilde{G} = N_{S_{10}}(G) \simeq \operatorname{Aut}(G)$ of G in S_{10} or
- (ii) $D_4 \leq G_v$ where $D_4 \leq [G,G] \simeq A_6$.
 - ▶ 45/165 subgroups $V_4 \le G$ satisfy (i).
 - ▶ 45/180 subgroups $D_4 \le G$ satisfy (ii).

§2. Birational classification for algebraic tori

Problem 1: (Stably) birational classification for algebraic tori

For given two algebraic k-tori T and T', whether T and T' are stably birationally k-equivalent?, i.e. $T \stackrel{\mathrm{s.b.}}{\approx} T'$?

Theorem (Colliot-Thélène and Sansuc 1977) $\dim(T) = \dim(T') = 3$

Let L/k and L'/k be Galois extensions with $\operatorname{Gal}(L/k) \simeq \operatorname{Gal}(L'/k) \simeq V_4$. Let $T = R_{L/k}^{(1)}(\mathbb{G}_m)$ and $T' = R_{L'/k}^{(1)}(\mathbb{G}_m)$ be the corresponding norm one tori. Then $T \stackrel{\mathrm{s.b.}}{\approx} T'$ (stably birationally k-equivalent) if and only if L = L'.

▶ In particular, if k is a number field, then there exist infinitely many stably birationally k-equivalent classes of (non-rational: 1st/15) k-tori which correspond to U_1 (cf. Main theorem 1, later).

- $ightharpoonup \overline{k}$: a fixed separable closure of k and $\mathcal{G}=\operatorname{Gal}(\overline{k}/k)$
- lacksquare X: a smooth k-compactification of T, i.e. smooth projective k-variety X containing T as a dense open subvariety

Theorem (Voskresenskii 1969, 1970)

There exists an exact sequence of \mathcal{G} -lattices

$$0 \to \widehat{T} \to \widehat{Q} \to \operatorname{Pic} \overline{X} \to 0$$

where \widehat{Q} is permutation and $\operatorname{Pic} \overline{X}$ is flabby.

 $lackbox{M}_G\simeq\widehat{T}$, $[\widehat{T}]^{fl}=[\operatorname{Pic}\overline{X}]$ as \mathcal{G} -lattices

Theorem (Voskresenskii 1970, 1973)

- (i) T is stably k-rational if and only if $[\operatorname{Pic} \overline{X}] = 0$ as a \mathcal{G} -lattice.
- (ii) $T \stackrel{\text{s.b.}}{\approx} T'$ (stably birationally k-equivalent) if and only if $[\operatorname{Pic} \overline{X}] = [\operatorname{Pic} \overline{X'}]$ as \mathcal{G} -lattices.

From G-lattice to G-lattice

Let L be the minimal splitting field of T with $G = \operatorname{Gal}(L/k) \simeq \mathcal{G}/\mathcal{H}$. We obtain a flabby resolution of \widehat{T} :

$$0 \to \widehat{T} \to \widehat{Q} \to \operatorname{Pic} X_L \to 0$$

with $[\widehat{T}]^{fl} = [\operatorname{Pic} X_L]$ as G-lattices.

By the inflation-restriction exact sequence

 $0 \to H^1(G, \operatorname{Pic} X_L) \xrightarrow{\inf} H^1(k, \operatorname{Pic} \overline{X}) \xrightarrow{\operatorname{res}} H^1(L, \operatorname{Pic} \overline{X})$, we get $\inf: H^1(G, \operatorname{Pic} X_L) \xrightarrow{\sim} H^1(k, \operatorname{Pic} \overline{X})$ because $H^1(L, \operatorname{Pic} \overline{X}) = 0$. We get:

Theorem (Voskresenskii 1970, 1973)

(ii)' $T \overset{\text{s.b.}}{\approx} T'$ (stably birationally k-equivalent) if and only if $[\operatorname{Pic} X_{\widetilde{L}}] = [\operatorname{Pic} X_{\widetilde{L}}']$ as \widetilde{H} -lattices where $\widetilde{L} = LL'$ and $\widetilde{H} = \operatorname{Gal}(\widetilde{L}/k)$.

The group \widetilde{H} becomes a *subdirect product* of $G = \operatorname{Gal}(L/k)$ and $G' = \operatorname{Gal}(L'/k)$, i.e. a subgroup \widetilde{H} of $G \times G'$ with surjections $\varphi_1 : \widetilde{H} \twoheadrightarrow G$ and $\varphi_2 : \widetilde{H} \twoheadrightarrow G'$.

► This observation yields a concept of "weak stably k-equivalence".

Definition

- (i) $[M]^{fl}$ and $[M']^{fl}$ are weak stably k-equivalent, if there exists a subdirect product $\widetilde{H} \leq G \times G'$ of G and G' with surjections $\varphi_1: \widetilde{H} \twoheadrightarrow G$ and $\varphi_2: \widetilde{H} \twoheadrightarrow G'$ such that $[M]^{fl} = [M']^{fl}$ as \widetilde{H} -lattices where \widetilde{H} acts on M (resp. M') through the surjection φ_1 (resp. φ_2).
- (ii) Algebraic k-tori T and T' are weak stably birationally k-equivalent, denoted by $T \overset{\mathrm{s.b.}}{\sim} T'$, if $[\widehat{T}]^{fl}$ and $[\widehat{T}']^{fl}$ are weak stably k-equivalent.

Remark

- (1) $T \overset{\mathrm{s.b.}}{pprox} T'$ (birational k-equiv.) $\Rightarrow T \overset{\mathrm{s.b.}}{\sim} T'$ (weak birational k-equiv.).
- (2) $\stackrel{\text{s.b.}}{\sim}$ becomes an equivalence relation and we call this equivalent class the weak stably k-equivalent class of $[\widehat{T}]^{fl}$ (or T) denoted by WSEC_r $(r \geq 0)$ with the stably k-rational class WSEC_0 .

Rationality problem for 3-dimensional algebraic k-tori T was solved by Kunyavskii (1990). Stably/retract rationality for algebraic k-tori T of dimensions 4 and 5 are given in Hoshi and Yamasaki [HY17, Chapter 1].

Definition

- (1) The 15 groups $G = N_{3,i} \leq \operatorname{GL}(3,\mathbb{Z})$ $(1 \leq i \leq 15)$ for which $k(T) \simeq L(M)^G$ is not retract k-rational are as in [HY, Table 6].
- (2) The $^{\prime}$ 64 groups $G=N_{31,i}\leq \mathrm{GL}(4,\mathbb{Z})$ $(1\leq i\leq 64)$ for which
- $k(T) \simeq L(M)^G$ is not retract k-rational where $M \simeq M_1 \oplus M_2$ with rank
- M=3+1 are as in [HY, Table 7].
- (3) The 152 groups $G=N_{4,i}\leq \mathrm{GL}(4,\mathbb{Z})\ (1\leq i\leq 152)$ for which $k(T)\simeq L(M)^G$ is not retract k-rational with rank M=4 are as in [HY, Table 8].
- (4) The 7 groups $G = I_{4,i} \leq \operatorname{GL}(4,\mathbb{Z})$ $(1 \leq i \leq 7)$ for which $k(T) \simeq L(M)^G$ is not stably but retract k-rational with $\operatorname{rank} M = 4$ are as in [HY, Table 9].

Main Theorems 1, 2, 3, 4, 5, 6, 7

- ▶ Main theorem 1 $\dim(T) = 3$: up to $\stackrel{\text{s.b.}}{\sim}$
- ▶ Main theorem 2 $\dim(T) = 3$: up to $\stackrel{\text{s.b.}}{\approx}$
- ▶ Main theorem 3 $\dim(T) = 4$: up to $\stackrel{\text{s.b.}}{\sim}$
- ▶ Main theorem 4 $\dim(T) = 4 \ (N_{4,i})$: up to $\stackrel{\mathrm{s.b.}}{\approx}$
- ▶ Main theorem 5 $\dim(T) = 4$ $(I_{4,i})$: up to $\stackrel{\mathrm{s.b.}}{pprox}$
- ▶ Main theorem 6 $\dim(T) = 4$: seven $I_{4,i}$ cases
- ▶ Main theorem 7 higher dimensional cases: $dim(T) \ge 3$

Definition

The G-lattice M_G of rank n is defined to be the G-lattice with a \mathbb{Z} -basis $\{u_1,\ldots,u_n\}$ on which G acts by $\sigma(u_i)=\sum_{j=1}^n a_{i,j}u_j$ for any $\sigma=[a_{i,j}]\in G\leq \mathrm{GL}(n,\mathbb{Z}).$

Main theorem 1 ([HY, Theorem 1.22]) $\dim(T)=3$: up to $\stackrel{ ext{s.b.}}{\sim}$

There exist exactly 14 weak stably birationally k-equivalent classes of algebraic k-tori T of dimension 3 which consist of the stably rational class WSEC_0 and 13 classes WSEC_r $(1 \leq r \leq 13)$ for $[\widehat{T}]^{fl}$ with $\widehat{T} = M_G$ and $G = N_{3,i}$ $(1 \leq i \leq 15)$ as in the following: (red \leftrightarrow norm one tori)

r	$G = N_{3,i} : [\widehat{T}]^{fl} = [M_G]^{fl} \in \mathrm{WSEC}_r$	G
1	$N_{3,1} = U_1 \text{ ([CTS 1977])}$	V_4
2	$N_{3,2} = U_2$	C_2^3
3	$N_{3,3} = W_2$	C_2^3
4	$N_{3,4} = W_1$	$C_4 \times C_2$
5	$N_{3,5} = U_3$, $N_{3,6} = \frac{U_4}{U_4}$	D_4
6	$N_{3,7} = U_6$	$D_4 \times C_2$
7	$N_{3,8}=U_{5}$	A_4
8	$N_{3,9} = U_7$	$A_4 \times C_2$
9	$N_{3,10} = W_3$	$A_4 \times C_2$
10	$N_{3,11}=U_9$, $N_{3,13}=\frac{U_{10}}{U_{10}}$	S_4
11	$N_{3,12} = U_8$	S_4
12	$N_{3,14} = U_{12}$	$S_4 \times C_2$
13	$N_{3,15} = U_{11}$	$S_4 \times C_2$

Main theorem 2 ([HY, Theorem 1.23]) $\dim(T) = 3$: up to $\stackrel{\mathrm{s.b.}}{pprox}$

Let T_i and T'_j $(1 \leq i,j \leq 15)$ be algebraic k-tori of dimension 3 with the minimal splitting fields L_i and L'_j , and $\widehat{T}_i = M_G$ and $\widehat{T}'_j = M_{G'}$ which satisfy that G and G' are $\mathrm{GL}(3,\mathbb{Z})$ -conjugate to $N_{3,i}$ and $N_{3,j}$ respectively. For $1 \leq i,j \leq 15$, the following conditions are equivalent:

- (1) $T_i \stackrel{\text{s.b.}}{\approx} T'_j$ (stably birationally k-equivalent);
- (2) $L_i = L_j^r$, $T_i \times_k K$ and $T_j' \times_k K$ are weak stably birationally K-equivalent for any $k \subset K \subset L_i$;
- (3) $L_i = L'_j$, $T_i \times_k K$ and $T'_j \times_k K$ are weak stably birationally K-equivalent for any $k \subset K \subset L_i$ corresponding to $\operatorname{WSEC}_r(r \geq 1)$; (4) $L_i = L'_j$, $T_i \times_k K$ and $T'_j \times_k K$ are weak stably birationally K-equivalent for any $k \subset K \subset L_i$ corresponding to $\operatorname{WSEC}_r(r \geq 1)$
- with [K:k]=d where

$$d = \begin{cases} 1 & (i = 1, 3, 4, 8, 9, 10, 11, 12, 13, 14), \\ 1, 2 & (i = 2, 5, 6, 7, 15). \end{cases}$$

- ▶ $\exists G = N_{31,i} \leq \operatorname{GL}(4,\mathbb{Z}) \ (1 \leq i \leq 64)$ for which $k(T) \simeq L(M)^G$ is not retract k-rational where $M \simeq M_1 \oplus M_2$ with rank M = 3 + 1.
- ▶ $G = N_{4,i} \leq \operatorname{GL}(4,\mathbb{Z})$ $(1 \leq i \leq 152)$ for which $k(T) \simeq L(M)^G$ is not retract k-rational with rank M = 4.
- ▶ $\exists G = I_{4,i} \leq \operatorname{GL}(4,\mathbb{Z}) \ (1 \leq i \leq 7)$ for which $k(T) \simeq L(M)^G$ is not stably but retract k-rational with $\operatorname{rank} M = 4$.

Main theorem 3 ([HY, Theorem 1.24]) $\dim(T)=4$: up to $\stackrel{\mathrm{s.b.}}{\sim}$

There exist exactly 129 weak stably birationally k-equivalent classes of algebraic k-tori T of dimension 4 which consist of the stably rational class WSEC_0 , 121 classes WSEC_r $(1 \leq r \leq 121)$ for $[\widehat{T}]^{fl}$ with $\widehat{T} = M_G$ and $G = N_{31,i}$ $(1 \leq i \leq 64)$ as in [HY, Table 3] and for $[\widehat{T}]^{fl}$ with $\widehat{T} = M_G$ and $G = N_{4,i}$ $(1 \leq i \leq 152)$ as in [HY, Table 4], and T classes T classes

Main theorem 4 ([HY, Theorem 1.26]) $\dim(T) = 4$ $(N_{4,i})$: up to $\stackrel{\mathrm{s.b.}}{pprox}$

Let T_i and T_j' $(1 \leq i,j \leq 152)$ be algebraic k-tori of dimension 4 with the minimal splitting fields L_i and L_j' and the character modules $\widehat{T}_i = M_G$ and $\widehat{T}_j' = M_{G'}$ which satisfy that G and G' are $\mathrm{GL}(4,\mathbb{Z})$ -conjugate to $N_{4,i}$ and $N_{4,j}$ respectively. For $1 \leq i,j \leq 152$ except for the cases i=j=137,139,145,147, the following conditions are equivalent:

- (1) $T_i \stackrel{\text{s.b.}}{\approx} T_j'$ (stably birationally k-equivalent);
- (2) $L_i = L_j^r$, $T_i \times_k K$ and $T_j' \times_k K$ are weak stably birationally K-equivalent for any $k \subset K \subset L_i$;
- (3) $L_i = L'_j$, $T_i \times_k K$ and $T'_j \times_k K$ are weak stably birationally K-equivalent for any $k \subset K \subset L_i$ corresponding to $\overline{WSEC_r}$ $(r \ge 1)$;
- (4) $L_i = L'_j$, $T_i \times_k K$ and $T'_j \times_k K$ are weak stably birationally
- K-equivalent for any $k \subset K \subset L_i$ corresponding to $WSEC_r$ $(r \ge 1)$ with [K:k] = d where d is given as in [HY, Theorem 1.26].

For the exceptional cases i=j=137,139,145,147

$$(G \simeq Q_8 \times C_3, (Q_8 \times C_3) \rtimes C_2, \operatorname{SL}(2, \mathbb{F}_3) \rtimes C_4,$$

 $(\mathrm{GL}(2,\mathbb{F}_3) \rtimes C_2) \rtimes C_2 \simeq (\mathrm{SL}(2,\mathbb{F}_3) \rtimes C_4) \rtimes C_2)$, we have the

Main theorem 4 ([HY, Theorem 1.26]) $\dim(T)=4$ $(N_{4,i})$: up to $\stackrel{ ext{s.b.}}{pprox}$

For the exceptional cases i=j=137,139,145,147 $(G\simeq Q_8\times C_3,\ (Q_8\times C_3)\rtimes C_2,\ \mathrm{SL}(2,\mathbb{F}_3)\rtimes C_4,\ (\mathrm{GL}(2,\mathbb{F}_3)\rtimes C_2)\rtimes C_2\simeq (\mathrm{SL}(2,\mathbb{F}_3)\rtimes C_4)\rtimes C_2),$ we have the implications $(1)\Rightarrow (2)\Leftrightarrow (3)\Leftrightarrow (4),$ there exists $\tau\in\mathrm{Aut}(G)$ such that $G'=G^\tau$ and $X=Y\lhd Z$ with $Z/Y\simeq C_2,C_2^2,C_2,C_2$ respectively where

$$\operatorname{Inn}(G) \le X \le Y \le Z \le \operatorname{Aut}(G),$$

 $X = \operatorname{Aut}_{\operatorname{GL}(4,\mathbb{Z})}(G) = \{ \sigma \in \operatorname{Aut}(G) \mid G \text{ and } G^{\sigma} \text{ are conjugate in } \operatorname{GL}(4,\mathbb{Z}) \},$ $Y = \{ \sigma \in \operatorname{Aut}(G) \mid [M_G]^{fl} = [M_{G^{\sigma}}]^{fl} \text{ as } \widetilde{H}\text{-lattices where } \widetilde{H} = \{ (g, g^{\sigma}) \mid g \in G \} \simeq G \},$ $Z = \{ \sigma \in \operatorname{Aut}(G) \mid [M_H]^{fl} \sim [M_{H^{\sigma}}]^{fl} \text{ for any } H < G \}.$

Moreover, we have $(1)\Leftrightarrow M_G\simeq M_{G^{\tau}}$ as \widetilde{H} -lattices $\Leftrightarrow M_G\otimes_{\mathbb{Z}}\mathbb{F}_p\simeq M_{G^{\tau}}\otimes_{\mathbb{Z}}\mathbb{F}_p$ as $\mathbb{F}_p[\widetilde{H}]$ -lattices for p=2 (i=j=137), for p=2 and 3 (i=j=139), for p=3 (i=j=145,147).

Main theorem 5 ([HY, Theorem 1.29]) $\dim(T) = 4$ $(I_{4,i})$: up to $\stackrel{\mathrm{s.b.}}{pprox}$

Let T_i and T'_j $(1 \leq i,j \leq 7)$ be algebraic k-tori of dimension 4 with the minimal splitting fields L_i and L'_j and the character modules $\widehat{T}_i = M_G$ and $\widehat{T}'_j = M_{G'}$ which satisfy that G and G' are $\mathrm{GL}(4,\mathbb{Z})$ -conjugate to $I_{4,i}$ and $I_{4,j}$ respectively. For $1 \leq i,j \leq 7$ except for the case i=j=7, the following conditions are equivalent:

- (1) $T_i \stackrel{\text{s.b.}}{\approx} T_j'$ (stably birationally k-equivalent);
- (2) $L_i=L_j^r$, $T_i\times_k K$ and $T_j'\times_k K$ are weak stably birationally K-equivalent for any $k\subset K\subset L_i$;
- (3) $L_i = L'_j$, $T_i \times_k K$ and $T'_j \times_k K$ are weak stably birationally K-equivalent for any $k \subset K \subset L_i$ corresponding to WSEC_r $(r \geq 1)$;
- (4) $L_i = L'_j$, $T_i \times_k K$ and $T'_j \times_k K$ are weak stably birationally K-equivalent for any $k \subset K \subset L_i$ corresponding to $\overline{WSEC_r}$ $(r \ge 1)$ with
- [K:k] = d where d = 1 (i = 1, 2, 4, 5, 7), d = 1, 2 (i = 3, 6).

For the exceptional case i=j=7 $(G\simeq C_3\rtimes C_8)$, we have the implications $(1)\Rightarrow (2)\Leftrightarrow (3)\Leftrightarrow (4)$, there exists $\tau\in \operatorname{Aut}(G)$ such that $G'=G^\tau$ and $X=Y\lhd Z$ with $Z/Y\simeq C_2$ where

Main theorem 5 ([HY, Theorem 1.29]) $\dim(T) = 4 \ (I_{4,i})$: up to $\stackrel{ ext{s.b.}}{pprox}$

For the exceptional case i=j=7 $(G\simeq C_3\rtimes C_8)$, we have the implications $(1)\Rightarrow (2)\Leftrightarrow (3)\Leftrightarrow (4)$, there exists $\tau\in \operatorname{Aut}(G)$ such that $G'=G^\tau$ and $X=Y\lhd Z$ with $Z/Y\simeq C_2$ where

$$\operatorname{Inn}(G) \simeq S_3 \leq X \leq Y \leq Z \leq \operatorname{Aut}(G) \simeq S_3 \times C_2^2$$
,

$$\begin{split} X &= \operatorname{Aut}_{\operatorname{GL}(4,\mathbb{Z})}(G) = \{\sigma \in \operatorname{Aut}(G) \mid G \text{ and } G^{\sigma} \text{ are conjugate in } \operatorname{GL}(4,\mathbb{Z})\} \simeq D_6, \\ Y &= \{\sigma \in \operatorname{Aut}(G) \mid [M_G]^{fl} = [M_{G^{\sigma}}]^{fl} \text{ as } \widetilde{H}\text{-lattices where } \widetilde{H} = \{(g,g^{\sigma}) \mid g \in G\} \simeq G\}, \\ Z &= \{\sigma \in \operatorname{Aut}(G) \mid [M_H]^{fl} \sim [M_{H^{\sigma}}]^{fl} \text{ for any } H \leq G\} \simeq S_3 \times C_2^2. \end{split}$$

Moreover, we have $(1)\Leftrightarrow M_G\simeq M_{G^{\tau}}$ as \widetilde{H} -lattices $\Leftrightarrow M_G\otimes_{\mathbb{Z}}\mathbb{F}_3\simeq M_{G^{\tau}}\otimes_{\mathbb{Z}}\mathbb{F}_3$ as $\mathbb{F}_3[\widetilde{H}]$ -lattices.

Main theorem 6 ([HY, Theorem 1.31]) $\dim(T) = 4$: seven $I_{4,i}$ cases

Let T_i $(1 \leq i \leq 7)$ be an algebraic k-torus of dimension 4 with the character module $\widehat{T}_i = M_G$ which satisfies that G is $\mathrm{GL}(4,\mathbb{Z})$ -conjugate to $I_{4,i}$. Let T_i^{σ} be the algebraic k-torus with $\widehat{T}_i^{\sigma} = M_{G^{\sigma}}$ $(\sigma \in \mathrm{Aut}(G))$. Then T_i and T_i^{σ} are not stably k-rational but we have:

- (1) $T_1 \times_k T_2$ is stably k-rational;
- (2) $T_3 \times_k T_3^{\sigma}$ stably k-rational for $\sigma \in \operatorname{Aut}(G)$ with
- $1 \neq \overline{\sigma} \in \operatorname{Aut}(G)/\operatorname{Inn}(G) \simeq C_2;$
- (3) $T_4 \times_k T_5$ is stably k-rational;
- (4) $T_6 \times_k T_6^{\sigma}$ is stably k-rational for $\sigma \in \operatorname{Aut}(G)$ with
- $1 \neq \overline{\sigma} \in \operatorname{Aut}(G)/\operatorname{Inn}(G) \simeq C_2;$
- (5) $T_7 \times_k T_7^{\sigma}$ is stably k-rational for $\sigma \in \operatorname{Aut}(G)$ with
- $1 \neq \overline{\sigma} \in \operatorname{Aut}(G)/X \simeq C_2$ where
 - $X = \operatorname{Aut}_{\operatorname{GL}(4,\mathbb{Z})}(G) = \{ \sigma \in \operatorname{Aut}(G) \mid G \text{ and } G^{\sigma} \text{ are conjugate in } \operatorname{GL}(4,\mathbb{Z}) \} \simeq D_6.$

Higher dimensional cases: $\dim(T) \geq 3$

The following theorem can answer Problem 1 for algebraic k-tori T and T' of dimensions $m \geq 3$ and $n \geq 3$ respectively with $[\widehat{T}]^{fl}, [\widehat{T}']^{fl} \in \mathbf{WSEC}_r$ $(1 \leq r \leq 128)$ via Main theorem 2, Main theorem 4, and Main theorem 5.

Main theorem 7 ([HY, Theorem 1.32]) higher dimensional cases

Let T be an algebraic k-torus of dimension $m \geq 3$ with the minimal splitting field L, $\widehat{T} = M_G$, $G \leq \operatorname{GL}(m, \mathbb{Z})$ and $[\widehat{T}]^{fl} \in \operatorname{WSEC}_r$ $(1 \leq r \leq 128)$. Then there exists an algebraic k-torus T'' of dimension 3 or 4 with the minimal splitting field L'', $\widehat{T}'' = M_{G''}$, and $G'' = N_{3,i}$ $(1 \leq i \leq 15)$, $G'' = N_{4,i}$ $(1 \leq i \leq 152)$ or $G'' = I_{4,i}$ $(1 \leq i \leq 7)$ such that T'' and T are stably birationally k-equivalent and $L'' \subset L$, i.e. $[M_{G''}]^{fl} = [M_G]^{fl}$ as G-lattices and G acts on $[M_{G''}]^{fl}$ through $G'' \simeq G/N$ for the corresponding normal subgroup $N \lhd G$.