Norm one tori and Hasse norm principle

Akinari Hoshi (joint work with Kazuki Kanai and Aiichi Yamasaki)

Niigata University, Japan

November 6, 2024

Table of contents

- 1 Introduction & Main theorems 1,2,3,4
- 2 Rationality problem for algebraic tori
- 3 Proof of Theorem 3
- 4 Applications: *R*-equivalence & Tamagawa number
- A. Hoshi, K. Kanai, A. Yamasaki,

[HKY22] Norm one tori and Hasse norm principle, Math. Comp. (2022). [HKY23] Norm one tori and Hasse norm principle, II: Degree 12 case, JNT (2023). [HKY1] Norm one tori and Hasse norm principle, III: Degree 16 case, arXiv:2404.01362.

[HKY2] Hasse norm principle for M_{11} and J_1 extensions, arXiv:2210.09119.

We use GAP. The related algorithms/functions are available from

https://doi.org/10.57723/289563 (KURENAI: repository of Kyoto University),

http://mathweb.sc.niigata-u.ac.jp/~hoshi/Algorithm/Norm1ToriHNP/

https://www.math.kyoto-u.ac.jp/~yamasaki/Algorithm/Norm1ToriHNP/

$\S1$ Introduction & Main theorems 1,2,3,4

▶ k: a global field, i.e. a number field or a finite extension of $\mathbb{F}_q(t)$.

Definition (Hasse norm principle)

Let k be a global field. K/k be a finite extension and \mathbb{A}_K^{\times} be the idele group of K. We say that the Hasse norm principle holds for K/k if

$$Obs(K/k) := (N_{K/k}(\mathbb{A}_K^{\times}) \cap k^{\times})/N_{K/k}(K^{\times}) = 1$$

where $N_{K/k}$ is the norm map.

Theorem (Hasse's norm theorem 1931)

If ${\cal K}/k$ is a cyclic extension of a number field, then

Obs(K/k) = 1.

Example (Hasse [Has31]): $Obs(\mathbb{Q}(\sqrt{-39}, \sqrt{-3})/\mathbb{Q}) \simeq \mathbb{Z}/2\mathbb{Z}.$ $Obs(\mathbb{Q}(\sqrt{2}, \sqrt{-1})/\mathbb{Q}) = 1.$

In both cases, Galois group $G \simeq V_4$ (Klein four-group).

Tate's theorem (1967)

For any Galois extension K/k, Tate gave:

Theorem (Tate 1967, in Alg. Num. Th. ed. by Cassels and Fröhlich)

Let K/k be a finite Galois extension with Galois group $Gal(K/k) \simeq G$. Let V_k be the set of all places of k and G_v be the decomposition group of G at $v \in V_k$. Then

$$Obs(K/k) \simeq Coker\{\bigoplus_{v \in V_k} \widehat{H}^{-3}(G_v, \mathbb{Z}) \xrightarrow{cores} \widehat{H}^{-3}(G, \mathbb{Z})\}$$

where \hat{H} is the Tate cohomology. In particular, In particular, the Hasse norm principle holds for K/k if and only if the restriction map $H^3(G,\mathbb{Z}) \xrightarrow{\text{res}} \bigoplus_{v \in V_k} H^3(G_v,\mathbb{Z})$ is injective.

- If G ≃ C_n is cyclic, then H³(C_n, Z) ≃ H¹(C_n, Z) = 0 and hence the Hasse's original theorem follows.
- ▶ If $G \simeq V_4$, then $Obs(K/k) = 0 \iff {}^{\exists} v \in V_k$ such that $G_v = V_4$ $(H^3(V_4, \mathbb{Z}) = \mathbb{Z}/2\mathbb{Z})$ (v: should be ramified).

Known results for HNP (1/2)

The HNP for Galois extensions K/k was investigated by Gerth [Ger77], [Ger78], Gurak [Gur78a], [Gur78b], [Gur80], Morishita [Mor90], Horie [Hor93], Takeuchi [Tak94], Kagawa [Kag95], etc.

(Gurak 1978; Endo-Miyata 1975 + Ono 1963)
 If all the Sylow subgroups of Gal(K/k) is cyclic, then Obs(K/k) = 0.

However, for non-Galois extensions K/k, very little is known whether the Hasse norm principle holds:

- (Bartels 1981) [K:k] = p; prime \Rightarrow HNP for K/k holds.
- (Bartels 1981) [K:k] = n and Galois closure $Gal(L/k) \simeq D_n$ \Rightarrow HNP for K/k holds.
- ▶ (Voskresenskii-Kunyavskii 1984) [K:k] = n and $Gal(L/k) \simeq S_n$ ⇒ HNP for K/k holds.
- (Macedo 2020) [K : k] = n and Gal(L/k) ≃ A_n
 ⇒ HNP for K/k holds if n ≥ 5; n = 6 using Hoshi-Yamasaki [HY17].

Ono's theorem (1963)

- ▶ T : algebraic k-torus, i.e. $T \times_k \overline{k} \simeq (\mathbb{G}_{m,\overline{k}})^n$.
- $\operatorname{III}(T) := \operatorname{Ker}\{H^1(k,T) \xrightarrow{\operatorname{res}} \bigoplus_{v \in V_k} H^1(k_v,T)\}$: Shafarevich-Tate gp.
- ▶ The norm one torus $R^{(1)}_{K/k}(\mathbb{G}_m)$ of K/k:

$$1 \longrightarrow R_{K/k}^{(1)}(\mathbb{G}_m) \longrightarrow R_{K/k}(\mathbb{G}_{m,K}) \xrightarrow{\mathcal{N}_{K/k}} \mathbb{G}_{m,k} \longrightarrow 1$$

where $R_{K/k}$ is the Weil restriction.

▶ $R_{K/k}^{(1)}(\mathbb{G}_m)$ is biregularly isomorphic to the norm hyper surface $f(x_1, \ldots, x_n) = 1$ where $f \in k[x_1, \ldots, x_n]$ is the norm form of K/k.

Theorem (Ono 1963, Ann. of Math.)

Let K/k be a finite extension and $T = R^{(1)}_{K/k}(\mathbb{G}_m)$. Then $\operatorname{III}(T) \simeq \operatorname{Obs}(K/k).$

Known results for HNP (2/2)

$$T = R_{K/k}^{(1)}(\mathbb{G}_m).$$

•
$$\operatorname{III}(T) \simeq \operatorname{Obs}(K/k).$$

Theorem (Kunyavskii 1984)

Let [K:k] = 4, $G = \operatorname{Gal}(L/k) \simeq 4Tm$ $(1 \le m \le 5)$. Then $\operatorname{III}(T) = 0$ except for 4T2 and 4T4. For $4T2 \simeq V_4$, $4T4 \simeq A_4$, (i) $\operatorname{III}(T) \le \mathbb{Z}/2\mathbb{Z}$; (ii) $\operatorname{III}(T) = 0 \Leftrightarrow \exists v \in V_k$ such that $V_4 \le G_v$.

Theorem (Drakokhrust-Platonov 1987)

Let [K:k] = 6, $G = \operatorname{Gal}(L/k) \simeq 6Tm$ $(1 \le m \le 16)$. Then $\operatorname{III}(T) = 0$ except for 6T4 and 6T12. For $6T4 \simeq A_4$, $6T12 \simeq A_5$, (i) $\operatorname{III}(T) \le \mathbb{Z}/2\mathbb{Z}$; (ii) $\operatorname{III}(T) = 0 \Leftrightarrow \exists v \in V_k$ such that $V_4 \le G_v$.

Main theorems 1,2,3,4 (1/3)

▶ ∃ 2, 13, 73, 710, 6079 cases of alg. k-tori T of dim(T) = 1, 2, 3, 4, 5.
 ▶ X: a smooth k-compactification of T, X = X ×_k k.

Theorem 1 ([HKY22, Theorem 1.5 and Theorem 1.6])
(i) dim(T) = 4. Among the 216 cases (of 710) of not retract rational T,

$$H^{1}(k, \operatorname{Pic} \overline{X}) \simeq \begin{cases} 0 & (194 \text{ of } 216), \\ \mathbb{Z}/2\mathbb{Z} & (20 \text{ of } 216), \\ (\mathbb{Z}/2\mathbb{Z})^{\oplus 2} & (2 \text{ of } 216). \end{cases}$$

(ii) dim(T) = 5. Among 3003 cases (of 6079) of not retract rational T,
 $H^{1}(k, \operatorname{Pic} \overline{X}) \simeq \begin{cases} 0 & (2729 \text{ of } 3003), \\ \mathbb{Z}/2\mathbb{Z} & (263 \text{ of } 3003), \\ (\mathbb{Z}/2\mathbb{Z})^{\oplus 2} & (11 \text{ of } 3003). \end{cases}$

▶ Kunyavskii (1984) showed that among the 15 cases (of 73) of not retract ratinal T of dim(T) = 3, $H^1(k, \operatorname{Pic} \overline{X}) = 0$ (13 of 15), $H^1(k, \operatorname{Pic} \overline{X}) \simeq \mathbb{Z}/2\mathbb{Z}$ (2 of 15).

Main theorems 1,2,3,4 (2/3)

▶ k : a field, K/k : a separable field extension of [K:k] = n.

•
$$T = R_{K/k}^{(1)}(\mathbb{G}_m)$$
 with $\dim(T) = n - 1$.

- ► X : a smooth k-compactification of T.
- ▶ L/k: Galois closure of K/k, $G := \operatorname{Gal}(L/k)$ and $H = \operatorname{Gal}(L/K)$ with $[G:H] = n \Longrightarrow G = nTm \leq S_n$: transitive.
- ► The number of transitive subgroups nTm of S_n (2 ≤ n ≤ 15) up to conjugacy is given as follows:

n	2	3	4	5	6	$\overline{7}$	8	9	10	11	12	13	14	15
# of nTm	1	2	5	5	16	7	50	34	45	8	301	9	63	104

Theorem 2 ([HKY22, Theorem 1.5], [HKY23, Theorem 1.1])

Let $2 \le n \le 15$ be an integer. Then $H^1(k, \operatorname{Pic} \overline{X}) \ne 0 \iff G = nTm$ is given as in [HKY22, Table 1] $(n \ne 12)$ or [HKY23, Table 1] (n = 12).

[HKY22, Table 1]: $H^1(k, \operatorname{Pi}$	$c \overline{X} \simeq H^1(G, [J_{G/H}]^{fl}) \neq 0$
where $G = nTm$ with 2	$2 \le n \le 15$ and $n \ne 12$
G	$H^1(k, \operatorname{Pic} \overline{X}) \simeq H^1(G, [J_{G/H}]^{fl})$
$4T2 \simeq V_4$	$\mathbb{Z}/2\mathbb{Z}$
$4T4 \simeq A_4$	$\mathbb{Z}/2\mathbb{Z}$
$6T4 \simeq A_4$	$\mathbb{Z}/2\mathbb{Z}$
$6T12 \simeq A_5$	$\mathbb{Z}/2\mathbb{Z}$
$8T2 \simeq C_4 \times C_2$	$\mathbb{Z}/2\mathbb{Z}$
$8T3 \simeq (C_2)^3$	$(\mathbb{Z}/2\mathbb{Z})^{\oplus 3}$
$8T4 \simeq D_4$	$\mathbb{Z}/2\mathbb{Z}$
$8T9 \simeq D_4 \times C_2$	$\mathbb{Z}/2\mathbb{Z}$
$8T11 \simeq (C_4 \times C_2) \rtimes C_2$	$\mathbb{Z}/2\mathbb{Z}$
$8T13 \simeq A_4 \times C_2$	$\mathbb{Z}/2\mathbb{Z}$
$8T14 \simeq S_4$	$\mathbb{Z}/2\mathbb{Z}$
$8T15 \simeq C_8 \rtimes V_4$	$\mathbb{Z}/2\mathbb{Z}$
$8T19 \simeq (C_2)^3 \rtimes C_4$	$\mathbb{Z}/2\mathbb{Z}$
$8T21 \simeq (C_2)^3 \rtimes C_4$	$\mathbb{Z}/2\mathbb{Z}$
$8T22 \simeq (C_2)^3 \rtimes V_4$	$\mathbb{Z}/2\mathbb{Z}$
$8T31 \simeq ((C_2)^4 \rtimes C_2) \rtimes C_2$	$\mathbb{Z}/2\mathbb{Z}$
$8T32 \simeq ((C_2)^3 \rtimes V_4) \rtimes C_3$	$\mathbb{Z}/2\mathbb{Z}$
$8T37 \simeq \mathrm{PSL}_3(\mathbb{F}_2) \simeq \mathrm{PSL}_2(\mathbb{F}_7)$	$\mathbb{Z}/2\mathbb{Z}$
$8T38 \simeq (((C_2)^4 \rtimes C_2) \rtimes C_2) \rtimes C_3$	$\mathbb{Z}/2\mathbb{Z}$

[HKY22, Table 1]: $H^1(k, \operatorname{Pic} \overline{X}) \simeq H^1(G, [J_{G/H}]^{fl}) \neq 0$				
where $G = nTm$ with	th $2 \le n \le 15$ and $n \ne 12$			
G	$H^1(k, \operatorname{Pic} \overline{X}) \simeq H^1(G, [J_{G/H}]^{fl})$			
$9T2 \simeq (C_3)^2$	$\mathbb{Z}/3\mathbb{Z}$			
$9T5 \simeq (C_3)^2 \rtimes C_2$	$\mathbb{Z}/3\mathbb{Z}$			
$9T7 \simeq (C_3)^2 \rtimes C_3$	$\mathbb{Z}/3\mathbb{Z}$			
$9T9 \simeq (C_3)^2 \rtimes C_4$	$\mathbb{Z}/3\mathbb{Z}$			
$9T11 \simeq (C_3)^2 \rtimes C_6$	$\mathbb{Z}/3\mathbb{Z}$			
$9T14 \simeq (C_3)^2 \rtimes Q_8$	$\mathbb{Z}/3\mathbb{Z}$			
$9T23 \simeq ((C_3)^2 \rtimes Q_8) \rtimes C_3$	$\mathbb{Z}/3\mathbb{Z}$			
$10T7 \simeq A_5$	$\mathbb{Z}/2\mathbb{Z}$			
$10T26 \simeq \mathrm{PSL}_2(\mathbb{F}_9) \simeq A_6$	$\mathbb{Z}/2\mathbb{Z}$			
$10T32 \simeq S_6$	$\mathbb{Z}/2\mathbb{Z}$			
$14T30 \simeq \mathrm{PSL}_2(\mathbb{F}_{13})$	$\mathbb{Z}/2\mathbb{Z}$			
$15T9 \simeq (C_5)^2 \rtimes C_3$	$\mathbb{Z}/5\mathbb{Z}$			
$15T14 \simeq (C_5)^2 \rtimes S_3$	$\mathbb{Z}/5\mathbb{Z}$			

Main theorems 1,2,3,4(3/3)

k : a number field, K/k : a separable field extension of [K : k] = n.
 T = R⁽¹⁾_{K/k}(𝔅_m), X : a smooth k-compactification of T.

Theorem 3 ([HKY22, Theorem 1.18], [HKY23, Theorem 1.3])

Let $2\leq n\leq 15$ be an integer. For the cases in [HKY22, Table 1] $(n\neq 12)$ or [HKY23,Table 1] (n=12),

 $\operatorname{III}(T) = 0 \iff G = nTm \text{ satisfies } \text{ some conditions } \text{ of } G_v$

where G_v is the decomposition group of G at v.

By Ono's theorem III(T) ≃ Obs(K/k), Theorem 3 gives a necessary and sufficient condition for HNP for K/k with [K : k] ≤ 15.

Theorem 4 ([HKY22, Theorem 1.17])

Assume that $G = M_n \leq S_n$ (n = 11, 12, 22, 23, 24) is the Mathieu group of degree n. Then $H^1(k, \operatorname{Pic} \overline{X}) = 0$. In particular, $\operatorname{III}(T) = 0$.

Examples of Theorem 3

Example ($G = 8T4 \simeq D_4$, $8T13 \simeq A_4 \times C_2$, $8T14 \simeq S_4$, $8T37 \simeq \text{PSL}_2(\mathbb{F}_7)$, $10T7 \simeq A_5$, $14T30 \simeq \text{PSL}_2(\mathbb{F}_{13})$)

 $\operatorname{III}(T) = 0 \iff \exists v \in V_k \text{ such that } V_4 \leq G_v.$

Example ($G = 10T26 \simeq \text{PSL}_2(\mathbb{F}_9)$)

 $\operatorname{III}(T) = 0 \iff \exists v \in V_k \text{ such that } D_4 \leq G_v.$

Example ($G = 10T32 \simeq S_6 \leq S_{10}$)

$$\begin{split} & \mathrm{III}(T) = 0 \iff {}^{\exists} v \in V_k \text{ such that} \\ & (\mathrm{i}) \ V_4 \leq G_v \text{ where } N_{\widetilde{G}}(V_4) \simeq C_8 \rtimes (C_2 \times C_2) \text{ for the normalizer } N_{\widetilde{G}}(V_4) \\ & \mathrm{of} \ V_4 \text{ in } \widetilde{G} \text{ with the normalizer } \widetilde{G} = N_{S_{10}}(G) \simeq \mathrm{Aut}(G) \text{ of } G \text{ in } S_{10} \text{ or} \\ & (\mathrm{ii}) \ D_4 \leq G_v \text{ where } D_4 \leq [G,G] \simeq A_6. \end{split}$$

- ▶ 45/165 subgroups $V_4 \leq G$ satisfy (i).
- ▶ 45/180 subgroups $D_4 \leq G$ satisfy (ii).

Definition of some rationalities

• L/k: f.g. field extension. L is k-rational $\stackrel{\text{def}}{\iff} L \simeq k(x_1, \dots, x_n)$.

Definition (stably rational)

L is called stably k-rational if $L(y_i, \ldots, y_m)$ is k-rational.

Definition (retract rational)

Let k be an infinite field. L is called retract k-rational if $\exists k$ -algebra $R \subset L$ such that (i) L is the quotient field of R; (ii) $\exists f \in k[x_1, \ldots, x_n]$, $\exists k$ -algebra hom. $\varphi : R \to k[x_1, \ldots, x_n][1/f]$ and $\psi : k[x_1, \ldots, x_n][1/f] \to R$ satisfying $\psi \circ \varphi = 1_R$.

Definition (unirational)

L is called k-unirational if $L \subset k(t_1, \ldots, t_n)$.

- "rational" ⇒ "stably rational" ⇒ "retract rational" ⇒ "unirational".
 algebraic k-torus T is k-unirational.
 - 14 / 39

$\S2$ Rationality problem for algebraic tori (1/3)

Problem (Rationality problem for algebraic tori)

Whether an algebraic torus T is k-rational?

- ▶ $\exists 2$ algebraic tori with dim(T) = 1; the trivial torus \mathbb{G}_m and $R_{K/k}^{(1)}(\mathbb{G}_m)$ with [K:k] = 2, which are *k*-rational.
- ▶ $\exists 13$ algebraic tori with dim(T) = 2;

Theorem (Voskresenskii 1967)

All the algebraic tori T with $\dim(T) = 2$ are k-rational.

▶ $\exists 73$ algebraic tori with dim(T) = 3;

Theorem (Kunyavskii 1990)

(i) $\exists 58$ algebraic tori T with $\dim(T) = 3$ which are k-rational;

(ii) $\exists 15$ algebraic tori T with $\dim(T) = 3$ which are not k-rational;

(iii) T is k-rational \Leftrightarrow T is stably k-rational \Leftrightarrow T is retract k-rational.

▶ $\exists 710 \text{ algebraic tori with } \dim(T) = 4;$

Theorem (Hoshi-Yamasaki 2017)

(i) ∃487 algebraic tori T with dim(T) = 4 which are stably k-rational;
(ii) ∃7 algebraic tori T with dim(T) = 4 which are not stably k-rational but retract k-rational;
(iii) ∃216 algebraic tori T with dim(T) = 4 which are not retract

k-rational.

▶ $\exists 6079 \text{ algebraic tori with } \dim(T) = 5;$

Theorem (Hoshi-Yamasaki 2017)

(i) ∃3051 algebraic tori T with dim(T) = 5 which are stably k-rational;
(ii) ∃25 algebraic tori T with dim(T) = 5 which are not stably k-rational but retract k-rational;
(iii) ∃2002 algebraic tori T with lin (T) = 5 which are not stably k-rational;

(iii) $\exists 3003$ algebraic tori T with $\dim(T) = 5$ which are not retract *k*-rational.

- ▶ We do not know "k-rationality".
- Voskresenskii's conjecture: any stably k-rational torus is k-rational (Zariski problem).

Rationality problem for algebraic tori T (2/3)

- ► T: algebraic k-torus
 - $\implies \exists$ finite Galois extension L/k such that $T \times_k L \simeq (\mathbb{G}_{m,L})^n$.
- $G = \operatorname{Gal}(L/k)$ where L is the minimal splitting field.

Category of algebraic k-tori which split/ $L \stackrel{\text{duality}}{\longleftrightarrow}$ Category of G-lattices (i.e. finitely generated \mathbb{Z} -free $\mathbb{Z}[G]$ -module)

- ▶ $T \mapsto$ the character group $X(T) = Hom(T, \mathbb{G}_m)$: G-lattice.
- ▶ $T = \operatorname{Spec}(L[M]^G)$ which splits/L with $X(T) \simeq M \leftrightarrow M$: G-lattice.
- ► Tori of dimension $n \stackrel{1:1}{\longleftrightarrow}$ elements of the set $H^1(\mathcal{G}, \operatorname{GL}(n, \mathbb{Z}))$ where $\mathcal{G} = \operatorname{Gal}(\overline{k}/k)$ since $\operatorname{Aut}(\mathbb{G}_m^n) = \operatorname{GL}(n, \mathbb{Z})$.
- ▶ k-torus T of dimension n is determined uniquely by the integral representation $h : \mathcal{G} \to \operatorname{GL}(n, \mathbb{Z})$ up to conjugacy, and the group $h(\mathcal{G})$ is a finite subgroup of $\operatorname{GL}(n, \mathbb{Z})$.
- The function field of $T \xrightarrow{\text{identified}} L(M)^G$: invariant field.

Rationality problem for algebraic tori T (3/3)

- L/k: Galois extension with G = Gal(L/k).
 M = ⊕_{1≤j≤n} ℤ · u_j: G-lattice with a ℤ-basis {u₁,..., u_n}.
- G acts on $L(x_1, \ldots, x_n)$ by

$$\sigma(x_i) = \prod_{j=1}^n x_j^{a_{i,j}}, \quad 1 \le i \le n$$

for any
$$\sigma \in G$$
, when $\sigma(u_i) = \sum_{j=1}^n a_{i,j}u_j$, $a_{i,j} \in \mathbb{Z}$.
 $L(M) := L(x_1, \ldots, x_n)$ with this action of G .

 $\blacktriangleright \quad \text{The function field of algebraic } k \text{-torus } T \quad \stackrel{\text{identified}}{\longleftrightarrow} L(M)^G$

Rationality problem for algebraic tori T (2nd form)

Whether $L(M)^G$ is k-rational?

(= purely transcendental over k?; $L(M)^G = k(\exists t_1, \ldots, \exists t_n)$?)

Flabby (Flasque) resolution (1/3)

• M: G-lattice, i.e. f.g. \mathbb{Z} -free $\mathbb{Z}[G]$ -module.

Definition

- (i) M is permutation $\stackrel{\text{def}}{\iff} M \simeq \bigoplus_{1 \leq i \leq m} \mathbb{Z}[G/H_i];$
- (ii) M is stably permutation $\stackrel{\text{def}}{\iff} M \oplus \exists P \simeq P'$, P, P': permutation;
- (iii) M is invertible $\stackrel{\text{def}}{\iff} M \oplus \exists M' \simeq P$: permutation;
- (iv) M is collably $\stackrel{\text{def}}{\iff} H^1(H, M) = 0 \; (\forall H \leq G);$
- (v) M is flabby $\stackrel{\text{def}}{\iff} \widehat{H}^{-1}(H,F) = 0 \; (\forall H \leq G).$

permutation" ⇒ "stably permutationl" ⇒ "invertible"
 ⇒ "flabby and coflabby".

Definition (Commutative monoid of G-lattices mod. permutation)

 $M_1 \sim M_2 \stackrel{\text{def}}{\iff} M_1 \oplus P_1 \simeq M_2 \oplus P_2 \ (\exists P_1, \exists P_2 : \text{permutation})$ $\implies \text{commutative monoid } \mathcal{L} : [M_1] + [M_2] := [M_1 \oplus M_2], 0 = [P].$

Theorem (Endo-Miyata 1975, Colliot-Thélène and Sansuc 1977)

For any G-lattice M, there exists a short exact sequence of G-lattices

$$0 \to M \to P \to F \to 0$$

where P is permutation and F is flabby.

- ► called a flabby resolution of the *G*-lattice *M*.
- $[M]^{fl} := [F]$: flabby class of M (well-defined).

Theorem (Endo-Miyata 1973, Voskresenskii 1974, Saltman 1984)

(EM73) $[M]^{fl} = 0 \iff L(M)^G$ is stably k-rational. (Vos74) $[M]^{fl} = [M']^{fl} \iff L(M)^G(x_1, \dots, x_m) \simeq L(M')^G(y_1, \dots, y_n).$ (Sal84) $[M]^{fl}$ is invertible $\iff L(M)^G$ is retract k-rational.

Theorem (Voskresenskii 1969)

Let k be a field and $\mathcal{G} = \operatorname{Gal}(\overline{k}/k)$. Let T be an algebraic k-torus, X be a smooth k-compactification of T and $\overline{X} = X \times_k \overline{k}$. Then

$$0 \to \widehat{T} \to \widehat{Q} \to \operatorname{Pic} \overline{X} \to 0$$

is an exact seq. of $\mathcal G$ -lattice where $\widehat Q$ is permutation and $\operatorname{Pic} \overline X$ is flabby.

•
$$[\widehat{T}]^{fl} = [\operatorname{Pic} \overline{X}];$$
 flabby class of \widehat{T} .

Theorem (Endo-Miyata 1973, Voskresenskii 1974, Saltman 1984)

(EM73) $[\operatorname{Pic} \overline{X}] = 0 \iff T$ is stably *k*-rational. (Vos74) $[\operatorname{Pic} \overline{X}] = [\operatorname{Pic} \overline{X'}] \iff T$ and T' are stably bir. *k*-equivalent. (Sal84) $[\operatorname{Pic} \overline{X}]$ is invertible $\iff T$ is retract *k*-rational.

Theorem (Voskresenskii 1969)

Let k be a global field, T be an algebraic k-torus and X be a smooth k-compactification of T. Then there exists an exact sequence

$$0 \to A(T) \to H^1(k, \operatorname{Pic} \overline{X})^{\vee} \to \operatorname{III}(T) \to 0$$

where $M^{\vee} = \operatorname{Hom}(M, \mathbb{Q}/\mathbb{Z})$ is the Pontryagin dual of M.

- ▶ The group $A(T) := \left(\prod_{v \in V_k} T(k_v)\right) / \overline{T(k)}$ is called the kernel of the weak approximation of T.
- ► T : retract rational $\iff [\widehat{T}]^{fl} = [\operatorname{Pic} \overline{X}]$ is invertible $\implies \operatorname{Pic} \overline{X}$ is flabby and coflabby $\implies H^1(k, \operatorname{Pic} \overline{X})^{\vee} = 0 \implies A(T) = \operatorname{III}(T) = 0.$

▶ when $T = R_{K/k}^{(1)}(\mathbb{G}_m)$, by Ono's theorem $\operatorname{III}(T) \simeq \operatorname{Obs}(K/k)$, T: retract k-rational $\Longrightarrow \operatorname{Obs}(K/k) = 0$ (HNP for K/k holds).

Voskresenskii's theorem (1969) (2/2)

▶ when $T = R_{K/k}^{(1)}(\mathbb{G}_m)$, by Ono's theorem $\operatorname{III}(T) \simeq \operatorname{Obs}(K/k)$, T: retract k-rational $\Longrightarrow \operatorname{Obs}(K/k) = 0$ (HNP for K/k holds).

▶ when
$$T = R_{K/k}^{(1)}(\mathbb{G}_m)$$
, $\widehat{T} = J_{G/H}$ where
 $J_{G/H} = (I_{G/H})^{\circ} = \operatorname{Hom}(I_{G/H}, \mathbb{Z})$ is the dual lattice of
 $I_{G/H} = \operatorname{Ker}(\varepsilon)$ and $\varepsilon : \mathbb{Z}[G/H] \to \mathbb{Z}$ is the augmentation map.

- (Hoshi-Yamasaki, 2018, Hasegawa-Hoshi-Yamasaki, 2020)
 For [K : k] = n ≤ 15 except 9T27 ≃ PSL₂(𝔽₈), the classification of stably/retract rational R⁽¹⁾_{K/k}(𝔅_m) was given.
- ▶ when $T = R_{K/k}^{(1)}(\mathbb{G}_m)$, T: retract k-rational $\implies H^1(k, \operatorname{Pic} \overline{X}) = 0$ (use this to get Theorem 2).
- ▶ H¹(k, Pic X) ≃ Br(X)/Br(k) ≃ Br_{nr}(k(X)/k)/Br(k) where Br(X) is the étale cohomological/Azumaya Brauer group of X by Colliot-Thélène-Sansuc 1987.

$\S3$ Proof of Theorem 3

We use Drakokhrust-Platonov's method :

Definition (first obstruction to the HNP)

Let $L \supset K \supset k$ be a tower of finite extensions where L is normal over k. We call the group

$$Obs_1(L/K/k) = \left(N_{K/k}(\mathbb{A}_K^{\times}) \cap k^{\times}\right) / \left(\left(N_{L/k}(\mathbb{A}_L^{\times}) \cap k^{\times}\right)N_{K/k}(K^{\times})\right)$$

the first obstruction to the HNP for K/k corresponding to the tower $L \supset K \supset k$.

- ► $Obs_1(L/K/k) = Obs(K/k) / (N_{L/k}(\mathbb{A}_L^{\times}) \cap k^{\times}).$
- $Obs_1(L/K/k)$ is easier than Obs(K/k).
- We use GAP. The related algorithms/functions we made are available from <u>https://doi.org/10.57723/289563</u>

(KURENAI: repository of Kyoto University).

Theorem (Drakokhrust-Platonov 1987)

Let $L \supset K \supset k$ be a tower of finite extensions where L is Galois over k. Let G = Gal(L/k) and H = Gal(L/K). Then

 $Obs_1(L/K/k) \simeq \operatorname{Ker} \psi_1 / \varphi_1(\operatorname{Ker} \psi_2)$

where

$$H/[H,H] \xrightarrow{\psi_1:H\hookrightarrow G} G/[G,G]$$

$$\uparrow^{\varphi_1:H_w\hookrightarrow H} \qquad \uparrow^{\varphi_2:G_v\hookrightarrow G}$$

$$\bigoplus_{v\in V_k} \left(\bigoplus_{w|v} H_w/[H_w,H_w]\right) \xrightarrow{\psi_2} \bigoplus_{v\in V_k} G_v/[G_v,G_v]$$

and ψ_2 is defined by

$$\psi_2(h[H_w, H_w]) = x^{-1}hx[G_v, G_v]$$

for $h \in H_w = H \cap x G_v x^{-1}$ $(x \in G)$.

Drakokhrust-Platonov's method (2/3)

- ψ_2^v : the restriction of the map ψ_2 to $\bigoplus_{w|v} H_w/[H_w, H_w]$.
- $\operatorname{Obs}_1(L/K/k) = \operatorname{Ker} \psi_1/\varphi_1(\operatorname{Ker} \psi_2^{\operatorname{nr}})\varphi_1(\operatorname{Ker} \psi_2^r).$

Proposition (Drakokhrust-Platonov 1987)

(i)
$$G_{v_1} \leq G_{v_2} \Longrightarrow \varphi_1(\operatorname{Ker} \psi_2^{v_1}) \subset \varphi_1(\operatorname{Ker} \psi_2^{v_2});$$

(ii) $\varphi_1(\operatorname{Ker} \psi_2^{\operatorname{nr}}) = \langle [h, x] \mid h \in H \cap xHx^{-1}, x \in G \rangle / [H, H];$
(iii) Let $H_i \leq G_i \leq G \ (1 \leq i \leq m), \ H_i \leq H \cap G_i, \ k_i = L^{G_i} \ \text{and} \ K_i = L^{H_i}.$ If $\operatorname{Obs}(K_i/k_i) = 1$ for any $1 \leq i \leq m$ and
 $\bigoplus_{i=1}^m \widehat{H}^{-3}(G_i, \mathbb{Z}) \xrightarrow{\operatorname{cores}} \widehat{H}^{-3}(G, \mathbb{Z})$
is surjective, then $\operatorname{Obs}(K/k) = \operatorname{Obs}_1(L/K/k).$ In particular,

[K:k] = n is square-free $\Longrightarrow \operatorname{Obs}(K/k) = \operatorname{Obs}_1(L/K/k).$

Theorem (Drakokhrust 1989; Opolka 1980)

Let $\widetilde{L} \supset L \supset k$ be a tower of Galois extensions with $\widetilde{G} = \operatorname{Gal}(\widetilde{L}/k)$ and $\widetilde{H} = \operatorname{Gal}(\widetilde{L}/K)$ which correspond to a central extension

$$1 \to A \to \widetilde{G} \to G \to 1 \text{ with } A \cap [\widetilde{G}, \widetilde{G}] \simeq M(G) = H^2(G, \mathbb{C}^{\times});$$

the Schur multiplier of G. Then

$$\operatorname{Obs}(K/k) = \operatorname{Obs}_1(\widetilde{L}/K/k).$$

In particular, if \widetilde{G} is a Schur cover of G, i.e. $A \simeq M(G)$, then $Obs(K/k) = Obs_1(\widetilde{L}/K/k)$.

- This theorem is useful, but G̃ may become large!
- We use GAP. The related algorithms/functions we made are available from <u>https://doi.org/10.57723/289563</u>

(KURENAI: repository of Kyoto University).

Example : $G = 12T261 \simeq (S_3)^4 \rtimes V_4 \simeq S_3 \wr V_4$ (1/2)

Example $(G = 12T261 \simeq (S_3)^4 \rtimes V_4 \simeq S_3 \wr V_4)$

$$\begin{split} & \amalg(T) = 0 \iff \text{there exists a place } v \text{ of } k \text{ such that} \\ & (i) \ V_4 \leq G_v \text{ where } V_4 \cap D(G) = 1 \text{ for the unique characteristic subgroup} \\ & D(G) \simeq (C_3)^4 \rtimes (C_2)^3 \lhd G \text{ ,} \\ & (ii) \ C_4 \times C_2 \leq G_v \text{ where } (C_4 \times C_2) \cap D(G1) \simeq C_2 \text{ with} \\ & D(G) \simeq (C_3)^4 \rtimes (C_2)^3 \lhd G \text{ ,} \\ & (iii) \ D_4 \leq G_v \text{ where } D_4 \cap (S_3)^4 \simeq C_2 \text{ with } (S_3)^4 \lhd G \text{ ,} \\ & (iv) \ Q_8 \leq G_v \text{, or} \\ & (v) \ (C_2)^3 \rtimes C_3 \leq G_v. \end{split}$$

►
$$H^1(k, \operatorname{Pic} \overline{X}) \simeq \mathbb{Z}/2\mathbb{Z}.$$

►
$$|G| = 6^4 \times 4 = 5184.$$

▶ $H^3(G, \mathbb{Z}) \simeq M(G) \simeq (\mathbb{Z}/2\mathbb{Z})^{\oplus 4}$: Schur multiplier of G. $\widetilde{G} \leftarrow \text{too large ! } |\widetilde{G}| = 6^4 \times 4 \times 2^4 = 82944.$

Example : $G = 12T261 \simeq (S_3)^4 \rtimes V_4 \simeq S_3 \wr V_4$ (2/2)

We can take a minimal stem ext. $\overline{G} = \widetilde{G}/A'$ (i.e. $\overline{A} \leq Z(\overline{G}) \cap [\overline{G}, \overline{G}]$) of G in the commutative diagram

with $\overline{A} \simeq \mathbb{Z}/2\mathbb{Z}$. There exists 15 minimal stem extensions. Then we can find exactly one (1/15) minimal stem extension which satisfies that

$$\oplus_{i=1}^{m'}\widehat{H}^{-3}(G_i,\mathbb{Z}) \xrightarrow{\text{cores}} \widehat{H}^{-3}(\overline{G},\mathbb{Z})$$

is surjective. By Drakorust-Platonov's Proposition (iii), we have

$$\operatorname{Obs}(K/k) = \operatorname{Obs}_1(\overline{L}_j/K/k).$$

Sketch of the proof of Theorem 3 (1/2)

Step 1

• For $G = \operatorname{Gal}(L/k) = nTm \leq S_n$ and $H = \operatorname{Gal}(L/K) \leq G$ with [G:H] = n, determine $T = R_{K/k}^{(1)}(\mathbb{G}_m)$ satisfying $H^1(k, \operatorname{Pic} \overline{X}) \neq 0$. (Make Table 1)

• We shoud treat n = (4, 6), 8, 9, 10, 12, 14, 15 because $H^1(k, \operatorname{Pic} \overline{X}) = 0$ when n = p: prime.

Step 2

• For the cases in Table1, determine $\operatorname{III}(T) \simeq \operatorname{Obs}(K/k)$. (2-1) (a) $n = pq \ (p \neq q : \operatorname{primes}) \longrightarrow \operatorname{Obs}(K/k) \simeq \operatorname{Obs}_1(L/K/k)$. (b) otherwise \longrightarrow Find a Schur cover \widetilde{G} . Then we get \widetilde{L}/k s.t. $\operatorname{Obs}(K/k) \simeq \operatorname{Obs}_1(\widetilde{L}/K/k)$. (2-2) Calculation $\operatorname{Obs}_1(\overline{L}/K/k)$ for suitable $\overline{L} \subset \widetilde{L}$.

Sketch of the proof of Theorem 3 (2/2)

 $\begin{array}{l} (2\text{-}2) \ \mathsf{Calculation} \ \mathrm{Obs}_1(\overline{L}/K/k).\\ \text{By Drakokhrust-Platonov's Thmeorem,}\\ & \mathrm{Obs}_1(\overline{L}/K/k) \simeq \mathrm{Ker} \, \psi_1/\varphi_1(\mathrm{Ker} \, \psi_2^{\mathrm{nr}})\varphi_1(\mathrm{Ker} \, \psi_2^{\mathrm{r}}),\\ & H/[H,H] & \xrightarrow{\psi_1} & G/[G,G] \\ & \uparrow^{\varphi_1} & \uparrow^{\varphi_2} \\ & \bigoplus_{v \in V_k} \left(\bigoplus_{w|v} H_w/[H_w,H_w]\right) \xrightarrow{\psi_2} & \bigoplus_{v \in V_k} G_v/[G_v,G_v]. \end{array}$

We compute the following:

(i) Ker ψ₁ = (H ∩ [G, G])/[H, H];
(ii) φ₁(Ker ψ₂^{nr}) = ⟨[h, x] | h ∈ H ∩ xHx⁻¹, x ∈ G⟩/[H, H];
(by Drakokhrust-Platonov's Proposition (ii))
(iii) φ₁(Ker ψ₂^r) (in terms of G_v).

$\S4$ Application 1: *R*-equivalence in algebraic *k*-tori (1/2)

Definition (*R*-equivalence, Manin 1974, in Cubic Forms)

- ▶ $f: Z \to X$: rational map of k-varieties covers a point $x \in X(k)$. $\stackrel{\text{def}}{\iff}$ there exists a point $z \in Z(k)$ such that f is defined at z and f(z) = x.
- ▶ $x, y \in X(k)$ are *R*-equivalent.

 $\stackrel{\text{def}}{\longleftrightarrow} \text{ there exist a fin. seq. of points } x = x_1, \dots, x_r = y \text{ and rational} \\ \text{maps } f_i : \mathbb{P}^1 \to X \ (1 \le i \le r-1) \text{ such that } f_i \text{ covers } x_i, x_{i+1}.$

Theorem (Colliot-Thélène and Sansuc 1977)

Let k be a field, T be an algebraic k-torus and $1 \to S \to Q \to T \to 1$ be a flabby resolution of T. Then $T(k) = H^0(k,T) \xrightarrow{\delta} H^1(k,S)$ induces

 $T(k)/R \simeq H^1(k,S).$

Application 1: R-equivalence in algebraic k-tori (2/2)

Let k be a local field. Using Tate-Nakayama duality, we have

$$T(k)/R \simeq H^1(k,S) \simeq H^1(k,\widehat{S}) \simeq H^1(k,\operatorname{Pic} \overline{X})$$

for norm one tori $T = R_{K/k}^{(1)}(\mathbb{G}_m)$ where $[K:k] = n \leq 15$.

Theorem ([HKY22], [HKY23])

Let $2 \le n \le 15$ be an integer. Let k be a local field, K/k be a separable field extension of degree n, and $T = R_{K/k}^{(1)}(\mathbb{G}_m)$ be the norm one torus of K/k. Then, $T(k)/R \simeq H^1(k, \operatorname{Pic} \overline{X}) \neq 0 \iff G$ is given as in [HKY22, Table 1] of [HKY23, Table 1].

Theorem (Ono 1963)

Let k be a global field, T be an algebraic k-torus and $\tau(T)$ be the Tamagawa number of T. Then

$$\tau(T) = \frac{|H^1(k,\widehat{T})|}{|\operatorname{III}(T)|}.$$

In particular, if T is retract k-rational, then $\tau(T) = |H^1(k, \hat{T})|$.

Let k be a number field, K/k be a field extension of degree n, $T = R_{K/k}^{(1)}(\mathbb{G}_m)$ be the norm one torus of K/k. By Ono's formula, we can calculate Tamagawa number of T explicitly.

• Example.
$$G = 15T9 \Rightarrow \tau(T) = \frac{3}{5}$$
 or 3 because $\operatorname{III}(T) \leq \mathbb{Z}/5\mathbb{Z}$.

Application 2: Tamagawa number of k-tori (2/2)

 $\blacktriangleright \ \tau(T) = |H^1(k,\widehat{T})|/|\mathrm{III}(T)|.$

Theorem ([HKY22, Theorem 8.2])

Let k be a global field and T be an algebraic k-torus of dimension 4 (resp. 5). Among 710 (reps. 6079) cases of algebraic k-tori T, if T is one of the 688 (resp. 5805) cases with $H^1(k, \operatorname{Pic} \overline{X}) = 0$, then $\tau(T) = |H^1(k, \widehat{T})|$.

Theorem ([HKY22, Theorem 8.3], [HKY23, Remark 1.4])

Let $2 \le n \le 15$ be an integer. Let k be a number field, K/k be a field extension of degree n, L/k be the Galois closure of K/k, and $T = R_{K/k}^{(1)}(\mathbb{G}_m)$ be the norm one torus of K/k. Then $\tau(T) = |H^1(k, \widehat{T})|$ except for the cases in [HKY22, Table 1] and [HKY23, Table 1]. For the exceptional cases, we have $\tau(T) = |H^1(G, J_{G/H})|/|\mathrm{III}(T)|$.

Sporadic simple group cases: M_{11} and J_1 (1/3)

- k : a numberl field.
- K/k: a separable field extension of [K:k] = n (not fixed).
- ▶ L/k: Galois closure of K/k with G = Gal(L/k) and $H = Gal(L/K) \leq G$ with [G:H] = n.

•
$$T = R_{K/k}^{(1)}(\mathbb{G}_m)$$
 with $\dim(T) = n - 1$.

► X : a smooth k-compactification of T.

•
$$G \simeq M_{11}$$
 with $|G| = 7920 = 2^4 \cdot 3^2 \cdot 5 \cdot 11$ or
 $G \simeq J_1$ with $|G| = 175560 = 2^3 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 19$
 $\Rightarrow M(G) \simeq H^3(G, \mathbb{Z}) = 0$: Schur multiplier of G .

Theorem ([HKY2, Theorem 1.6]) $G \simeq M_{11}$

Asume that $G \simeq M_{11}$ and $H = \operatorname{Gal}(L/K) \leq G$. $H^1(k, \operatorname{Pic} \overline{X}) = \begin{cases} 0 & \text{if } \operatorname{Syl}_2(H) \neq C_2, C_4, C_8, \\ \mathbb{Z}/2\mathbb{Z} & \text{if } \operatorname{Syl}_2(H) \simeq C_2, C_4, C_8. \end{cases}$

Theorem ([HKY2, Theorem 1.8]) $G \simeq M_{11}$

Asume that $G \simeq M_{11}$ and $H = \operatorname{Gal}(L/K) \leq G$. (1) If $\operatorname{Syl}_2(H) \not\simeq C_2, C_4, C_8$, then $A(T) \simeq \operatorname{III}(T) \simeq H^1(k, \operatorname{Pic} \overline{X}) = 0$. (2) If $Syl_2(H) \simeq C_2, C_4, C_8$, then either (a) A(T) = 0 and $\operatorname{III}(T) \simeq H^1(k, \operatorname{Pic} \overline{X}) \simeq \mathbb{Z}/2\mathbb{Z}$ or (b) $A(T) \simeq H^1(k, \operatorname{Pic} \overline{X}) \simeq \mathbb{Z}/2\mathbb{Z}$ and $\operatorname{III}(T) = 0$, and the condition (b) is equivalent to: (c) there exists a place v of k such that $\begin{cases} V_4 \leq G_v \text{ or } Q_8 \leq G_v & \text{if } \operatorname{Syl}_2(H) \simeq C_2, \\ D_4 \leq G_v \text{ or } Q_8 \leq G_v & \text{if } \operatorname{Syl}_2(H) \simeq C_4, \\ QD_8 \leq G_v & \text{if } \operatorname{Syl}_2(H) \simeq C_8 \end{cases}$

where G_v is the decomposition group of G at a place v of k.

▶ $0 \to A(T) \to H^1(k, \operatorname{Pic} \overline{X})^{\vee} \to \operatorname{III}(T) \to 0$ (Voskresenskii 1969).

Sporadic simple group cases: M_{11} and J_1 (3/3)

Theorem ([HKY2, Theorem 1.7]) $G \simeq J_1$

Asume that $G \simeq J_1$ and $H = \operatorname{Gal}(L/K) \lneq G$. $H^1(k, \operatorname{Pic} \overline{X}) = \begin{cases} 0 & \text{if } \operatorname{Syl}_2(H) \not\simeq C_2, \\ \mathbb{Z}/2\mathbb{Z} & \text{if } \operatorname{Syl}_2(H) \simeq C_2. \end{cases}$

Theorem ([HKY2, Theorem 1.9]) $G \simeq J_1$

Asume that $G \simeq J_1$ and $H = \operatorname{Gal}(L/K) \leq G$. (1) If $\operatorname{Syl}_2(H) \not\simeq C_2$, then $A(T) \simeq \operatorname{III}(T) \simeq H^1(k, \operatorname{Pic} \overline{X}) = 0$. (2) If $\operatorname{Syl}_2(H) \simeq C_2$, then either (a) A(T) = 0 and $\operatorname{III}(T) \simeq H^1(k, \operatorname{Pic} \overline{X}) \simeq \mathbb{Z}/2\mathbb{Z}$ or (b) $A(T) \simeq H^1(k, \operatorname{Pic} \overline{X}) \simeq \mathbb{Z}/2\mathbb{Z}$ and $\operatorname{III}(T) = 0$, and the condition (b) is equivalent to: (c) there exists a place v of k such that $V_4 \leq G_v$ where G_v is the decomposition group of G at a place v of k.

Proof: Macedo and Newton [MN22, Corollary 3.4]

- L/K/k: a tower of finite extensions with L/k Galois.
- $G = \operatorname{Gal}(L/k)$ and $H = \operatorname{Gal}(L/K) \leq G$.
- $H_p = \operatorname{Syl}_p(H)$ and $K_p = L^{H_p}$.
- ▶ X and X_p : smooth compactifications of $T = R_{K/k}^{(1)}(\mathbb{G}_m)$ and $T_p = R_{K_p/k}^{(1)}(\mathbb{G}_m)$ respectively.

Theorem (Macedo and Newton [MN22, Corollary 3.4])

We obtain a commutative diagram with exact rows as follows:

where (p) stands for the *p*-primary part and the vertical isomorphisms are induced by the natural inclusion $T \hookrightarrow T_p$.