Rationality problem for fields of invariants

Akinari Hoshi

Niigata University

December 16, 2024

Table of contents

- 0 Introduction: rationality problem for quasi-monomial actions
- 1 Monomial action & Noether's problem
- 2 Noether's problem over $\mathbb C$
	- **Unramified Brauer/cohomology groups**
- 3 Quasi-monomial action
- 4 Rationality problem for algebraic tori
	- **Flabby resolution**
	- Krull-Schmidt Theorem

 $\operatorname{Br}_{\rm nr}(X/{\mathbb C}) \simeq H^3(X,{\mathbb Z})_{\rm tors}$; Artin-Mumford invariant $(X:RC)$ $H^3_{\rm nr}(X, {\mathbb Q}/{\mathbb Z})\simeq {\rm Hdg}^4(X, {\mathbb Z})/{\rm Hdg}^4(X, {\mathbb Z})_{\rm alg} \leftrightarrow$ integral Hodge conjecture

cf. Colliot-Thélène and Voisin, Duke Math. J. 161 (2012) 735-801.

§0. Introduction

Inverse Galois problem (IGP)

Does every finite group occur as a quotient group of the absolute Galois group $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$?

▶ Related to rationality problem (Emmy Noether's strategy: 1913)

A finite group $G \curvearrowright k(x_g \mid g \in G)$: rational function field over k by permutation $h(x_g) = x_{hg}$ (for any $g, h \in G$)

 $k(x_g\mid g\in G)^G$ is rational over k , i.e. $k(x_g\mid g\in G)^G \simeq k(t_1,\ldots,t_n)$ (Noether's problem has an affirmative answer)

 \implies $k(x_g \mid g \in G)^G$ is retract rational over k (weaker concept)

⇐⇒ ∃ generic extension (polynomial) for (*G, k*) (Saltman's sense)

 $\xrightarrow{k:\text{Hilbertian}}$ IGP for (k,G) has an affirmative answer

Rationality problem for quasi-monomial actions

Definition (quasi-monomial action)

Let K/k be a finite field extension and $G \leq \text{Aut}_k(K(x_1, \ldots, x_n))$; finite where $K(x_1, \ldots, x_n)$ is the rational function field of *n* variables over *K*. The action of *G* on $K(x_1, \ldots, x_n)$ is called quasi-monomial if (i) $\sigma(K) \subset K$ for any $\sigma \in G$; (ii) $K^G = k$; (ii) $K^G = k$;
(iii) for any $\sigma \in G$, $\sigma(x_j) = c_j(\sigma) \prod^n$ *i*=1 $x_i^{a_{ij}}$ *i* where $c_j(\sigma) \in K^\times$, $1 \leq j \leq n$, $[a_{i,j}]_{1 \leq i,j \leq n} \in GL_n(\mathbb{Z})$.

Rationality problem

Under what situation the fixed field $K(x_1,\ldots,x_n)^G$ is rational over $k,$ i.e. $K(x_1,\ldots,x_n)^G \simeq k(t_1,\ldots,t_n)$ (=purely transcendental over k), if *G* acts on $K(x_1, \ldots, x_n)$ by quasi-monomial *k*-automorphisms.

Rationality problem for quasi-monomial actions

Definition (quasi-monomial action)

Let K/k be a finite field extension and $G \leq \text{Aut}_k(K(x_1, \ldots, x_n))$; finite where $K(x_1, \ldots, x_n)$ is the rational function field of n variables over K . The action of *G* on $K(x_1, \ldots, x_n)$ is called quasi-monomial if (i) $\sigma(K) \subset K$ for any $\sigma \in G$; (ii) $K^G = k$; (ii) $K^G = k$;
(iii) for any $\sigma \in G$, $\sigma(x_j) = c_j(\sigma) \prod^n$ *i*=1 $x_i^{a_{ij}}$ *i* where $c_j(\sigma) \in K^\times$, $1 \leq j \leq n$, $[a_{i,j}]_{1 \leq i,j \leq n} \in GL_n(\mathbb{Z})$. ▶ When $G \curvearrowright K$; trivial (i.e. $K = k$), called (just) monomial action. ▶ When $G \curvearrowright K$; trivial and permutation \leftrightarrow Noether's problem $▶$ When $c_j(σ) = 1$ ($∀σ ∈ G, ∀j)$, called purely (quasi-)monomial. ▶ *G* = Gal(*K/k*) and purely \leftrightarrow Rationality problem for algebraic tori

Exercises (1/2): Noether's problem

- \blacktriangleright $S_n \curvearrowright \mathbb{Q}(x_1, \ldots, x_n);$ permutation Q. $|$ Is $\mathbb{Q}(x_1,\ldots,x_n)^{S_n}$ rational over $\mathbb{Q}?\;$ Ans. Yes! $\mathbb{Q}(x_1,\ldots,x_n)^{S_n} = \mathbb{Q}(s_1,\ldots,s_n);~s_i,~i$ th elementary symmetric =*⇒* IGP for (Q*, Sn*) has affirmative solution.
- \blacktriangleright $\underline{A}_n \curvearrowright \mathbb{Q}(x_1,\ldots,x_n);$ permutation Q. $|\ln \mathbb{Q}(x_1,\dots,x_n)^{A_n}|$ rational over Q? $|\textsf{Ans.}|$ Yes? ?? ?? $\mathbb{Q}(x_1,\ldots,x_n)^{A_n} = \mathbb{Q}(s_1,\ldots,s_n,\Delta)$; but ...

Open problem is $\mathbb{Q}(x_1,\ldots,x_n)^{A_n}$ rational over $\mathbb{Q}?\,\,(n\ge 6)$

 $\blacktriangleright \mathbb{Q}(x_1,\ldots,x_5)^{A_5}$ is rational over $\mathbb Q$ (Maeda, 1989).

Exercises (2/2): Noether's problem

►
$$
\mathbb{Q}(x_1, x_2, x_3)^{A_3} = \mathbb{Q}(x_1, x_2, x_3)^{C_3} = \mathbb{Q}(t_1, t_2, t_3), \boxed{\mathbb{Q}}.
$$
 | t_1, t_2, t_3 ?
($C_3 : x_1 \mapsto x_2 \mapsto x_3 \mapsto x_1$)

 \blacktriangleright $\big\vert$ Ans. $\big\vert$ $\mathbb{Q}(x_1, x_2, x_3)^{C_3} = \mathbb{Q}(t_1, t_2, t_3)$ where $t_1 = x_1 + x_2 + x_3,$

$$
t_2 = \frac{x_1x_2^2 + x_2x_3^2 + x_3x_1^2 - 3x_1x_2x_3}{x_1^2 + x_2^2 + x_3^2 - x_1x_2 - x_2x_3 - x_3x_1},
$$

\n
$$
t_3 = \frac{x_1^2x_2 + x_2^2x_3 + x_3^2x_1 - 3x_1x_2x_3}{x_1^2 + x_2^2 + x_3^2 - x_1x_2 - x_2x_3 - x_3x_1}.
$$

- $\blacktriangleright \mathbb{Q}(x_1, x_2, \ldots, x_8)^{C_8} = \mathbb{Q}(t_1, t_2, \ldots, t_8), |\mathsf{Q}| \, t_1, t_2, \ldots, t_8$? $(C_8: x_1 \mapsto x_2 \mapsto x_3 \mapsto \cdots \mapsto x_8 \mapsto x_1)$
- \blacktriangleright Ans. None: $\mathbb{Q}(x_1, x_2, \ldots, x_8)^{C_8}$ is not rational over $\mathbb{Q}!$

.

Today's talk $(1/2)$

Definition (quasi-monomial action)

Let K/k be a finite field extension and $G \leq \text{Aut}_k(K(x_1, \ldots, x_n))$; finite where $K(x_1, \ldots, x_n)$ is the rational function field of *n* variables over *K*. The action of *G* on $K(x_1, \ldots, x_n)$ is called quasi-monomial if (i) $\sigma(K) \subset K$ for any $\sigma \in G$; (ii) $K^G = k$; (iii) for any $\sigma \in G$, \prod^n *i*=1 $x_i^{a_{ij}}$ *i* where $c_j(\sigma) \in K^\times$, $1 \leq j \leq n$, $[a_{i,j}]_{1 \leq i,j \leq n} \in GL_n(\mathbb{Z})$.

- §1. $G \curvearrowright K$; trivial: monomial action & Noether's problem
- §2. $G \curvearrowright K$; trivial and permutation: Noether's problem over $\mathbb C$
- $§3.$ (general) quasi-monomial actions (1-dim. and 2-dim. cases)
- §4. $G = \text{Gal}(K/k)$ and purely: rationality problem for algebraic tori

Today's talk (2/2)

Ŧ

Various rationalities: definitions

 $k \subset L$; f.g. field extension, L is rational over $k \stackrel{{\rm def.}}{\iff} L \simeq k(x_1,\ldots,x_n).$

Definition (stably rational)

 L is called stably rational over $k \stackrel{{\mathrm {def}}}{\iff} L(y_1,\ldots,y_m)$ is rational over $k.$

Definition (retract rational)

 L is retract rational over $k \stackrel{{\rm def.}}{\iff} \exists k$ -algebra $R \subset L$ such that (i) *L* is the quotient field of *R*; (i) $∃f ∈ k[x_1, ..., x_n]$ $∃k$ -algebra hom. $\varphi : R → k[x_1, ..., x_n][1/f]$ and ψ : $k[x_1, \ldots, x_n][1/f] \rightarrow R$ satisfying $\psi \circ \varphi = 1_R$.

Definition (unirational)

 L is unirational over $k \stackrel{{\mathrm {def}}}{\iff} L \subset k(t_1,\ldots,t_n)$.

- ▶ Assume $L_1(x_1, \ldots, x_n) \simeq L_2(y_1, \ldots, y_m)$; stably isomorphic. If L_1 is retract rational over k , then so is L_2 over k .
- ▶ "rational"=*⇒*"stably rational" =*⇒*"retract rational"=*⇒*"unirational"

"rational"=*⇒*"stably rational" =*⇒*"retract rational"=*⇒*"unirational"

- ▶ The direction of the implication cannot be reversed.
- ▶ (Lüroth's problem) "unirational" \Rightarrow "rational" ? YES if trdeg= 1
- ▶ (Castelnuovo, 1894) *L* is unirational over $\mathbb C$ and trdeg_{$\mathbb C$} $L = 2 \Longrightarrow L$ is rational over $\mathbb C$.
- ▶ (Zariski, 1958) Let *k* be an alg. closed field and *k ⊂ L ⊂ k*(*x, y*). If $k(x, y)$ is separable algebraic over L , then L is rational over k .
- ▶ (Zariski cancellation problem) $V_1 \times \mathbb{P}^n \approx V_2 \times \mathbb{P}^n \Longrightarrow V_1 \approx V_2$? In particular, "stably rational"=*⇒*"rational"?
- ▶ (Beauville, Colliot-Thélène, Sansuc, Swinnerton-Dyer, 1985, Ann. Math.) $L = \mathbb{Q}(x, y, t)$ with $x^2 + 3y^2 = t^3 - 2$ (Châtelet surface) \implies *L* is not rational but stably rational over \mathbb{Q} . Indeed, $L(y_1, y_2, y_3)$ is rational over $\mathbb Q$.
- \blacktriangleright $L(y_1, y_2)$ is rational over $\mathbb Q$ (Shepherd-Barron, 2002, Fano Conf.).
- $\blacktriangleright \ \mathbb{Q}(x_1,\ldots,x_{47})^{C_{47}}$ is not stably but retract rational over $\mathbb{Q}.$
- $\blacktriangleright \ \mathbb{Q}(x_1,\ldots,x_8)^{C_8}$ is not retract but unirational over $\mathbb{Q}.$

Châtelet surface as an invariant field

- ▶ (Beauville, Colliot-Thélène, Sansuc, Swinnerton-Dyer, 1985, Ann. Math.) $L = \mathbb{Q}(x,y,t)$ with $x^2 + 3y^2 = t^3 - 2$ (Châtelet surface) \Rightarrow *L* is not rational but stably rational over \mathbb{Q} .
- \blacktriangleright $L = \mathbb{Q}(x, y, t) = \mathbb{Q}(x, y, t)$ *√ −*3)(*X, Y*) *⟨σ⟩* where

$$
\sigma: \sqrt{-3} \mapsto -\sqrt{-3}, X \mapsto X, Y \mapsto \frac{X^3 - 2}{Y}.
$$

Indeed, we have

$$
x = \frac{1}{2}\left(Y + \frac{X^3 - 2}{Y}\right),
$$

$$
y = \frac{1}{2\sqrt{-3}}\left(Y - \frac{X^3 - 2}{Y}\right),
$$

$$
t = X.
$$

Retract rationality and generic extension

Theorem (Saltman, 1982, DeMeyer)

Let *k* be an infinite field and *G* be a finite group. The following are equivalent:

(i) $k(x_g \mid g \in G)^G$ is retract rational over k .

(ii) There is a generic *G*-Galois extension over *k*;

(iii) There exists a generic *G*-polynomial over *k*.

▶ related to Inverse Galois Problem (IGP). (i) =*⇒* IGP(*G/k*): true

Definition (generic polynomial)

A polynomial $f(t_1, \ldots, t_n; X) \in k(t_1, \ldots, t_n)[X]$ is generic for *G* over *k* if (1) Gal($f/k(t_1, ..., t_n)$) $\simeq G;$ (2) $\forall L/M \supset k$ with Gal(L/M) $\simeq G$, $∃a_1, ..., a_n ∈ M$ such that $L = \text{Spl}(f(a_1, ..., a_n; X)/M)$.

▶ By Hilbert's irreducibility theorem, *∃L/*Q such that Gal(*L/*Q) *' G*.

Akinari Hoshi (Niigata University) Rationality problem for fields of invariants December 16, 2024 13/67

§1. Monomial action & Noether's problem

Definition (monomial action) $G \curvearrowright K$; trivial, $k = K^G = K$ An action of G on $k(x_1, \ldots, x_n)$ is monomial $\stackrel{\text{def}}{\iff}$ $\sigma(x_j) = c_j(\sigma) \prod^n$ *i*=1 $x_i^{a_{i,j}}$ $i^{a_{i,j}}$, 1 ≤ *j* ≤ *n*, $\forall \sigma \in G$ \forall where $[a_{i,j}]_{1\leq i,j\leq n} \in \mathrm{GL}_n(\mathbb{Z})$, $c_j(\sigma) \in k^\times := k \setminus \{0\}.$ If $c_j(\sigma) = 1$ for any $1 \leq j \leq n$ then σ is called purely monomial.

▶ Application to Noether's problem (permutation action)

Noether's problem $(1/3)$ $[G = A;$ abelian case]

- \blacktriangleright *k*; field, *G*; finite group
- ▶ *G* \cap *k*; trivial, *G* \cap *k*(x_g | *g* \in *G*); permutation.
- ▶ $k(G) := k(x_g \mid g \in G)^G$; invariant field

Noether's problem (Emmy Noether, 1913)

Is $k(G)$ rational over k ?, i.e. $k(G) \simeq k(t_1, \ldots, t_n)$?

- \blacktriangleright Is the quotient variety \mathbb{P}^n/G rational over k ?
- \blacktriangleright Assume $G = A$; abelian group.
- \blacktriangleright (Fisher, 1915) $\mathbb{C}(A)$ is rational over \mathbb{C} .
- ▶ (Masuda, 1955, 1968) $\mathbb{Q}(C_p)$ is rational over \mathbb{Q} for $p \le 11$.
- ▶ (Swan, 1969, Invent. Math.) $\mathbb{Q}(C_{47}), \mathbb{Q}(C_{113}), \mathbb{Q}(C_{233})$ are not rational over \mathbb{Q} .
- ▶ S. Endo and T. Miyata (1973), V.E. Voskresenskii (1973), ... e.g. $\mathbb{Q}(C_8)$ is not rational over \mathbb{Q} .
- ▶ (Lenstra, 1974, Invent. Math.)
- $k(A)$ is rational over $k \iff |$ some condition $|$;

Akinari Hoshi (Niigata University) Rationality problem for fields of invariants December 16, 2024 15/67

Noether's problem $(2/3)$ $[G = A;$ abelian case]

- \blacktriangleright (Endo-Miyata, 1973) $\mathbb{Q}(C_{p^r})$ is rational over \mathbb{Q} $\iff \exists \alpha \in \mathbb{Z}[\zeta_{\varphi(p^r)}]$ such that $N_{\mathbb{Q}(\zeta_{\varphi(p^r)})/\mathbb{Q}}(\alpha) = \pm p$
- ▶ $h(\mathbb{Q}(\zeta_m)) = 1$ if $m < 23$ \Rightarrow Q(C_p) is rational over Q for $p \leq 43$ and $p = 61, 67, 71$.
- ▶ (Endo-Miyata, 1973) For *p* = 47*,* 79*,* 113*,* 137*,* 167*, . . . ,* $\mathbb{Q}(C_p)$ is not rational over \mathbb{Q} .
- ▶ However, for $p = 59, 83, 89, 97, 107, 163, ...,$ unknown. Under the GRH, $\mathbb{Q}(C_p)$ is not rational for the above primes. But it was unknown for $p = 251, 347, 587, 2459, \ldots$
- ▶ For *p ≤* 20000, see speaker's paper (using PARI/GP): Proc. Japan Acad. Ser. A 91 (2015) 39-44.

Theorem (Plans, 2017, Proc. AMS)

 $\mathbb{Q}(C_p)$ is rational over $\mathbb{Q} \iff p \leq 43$ or $p = 61, 67, 71$ *.*

▶ Using lower bound of height, $\mathbb{Q}(C_p)$ is rational $\Rightarrow p < 173$.

Noether's problem (3/3) [*G*; non-abelian case]

Noether's problem (Emmy Noether, 1913)

Is $k(G)$ rational over k ?, i.e. $k(G) \simeq k(t_1, \ldots, t_n)$?

- \blacktriangleright Assume *G*; non-abelian group.
- \blacktriangleright (Maeda, 1989) $k(A_5)$ is rational over k ;
- ▶ (Rikuna, 2003; Plans, 2007) $k(GL_2(\mathbb{F}_3))$ and $k(SL_2(\mathbb{F}_3))$ is rational over *k*;
- ▶ (Serre, 2003)

if 2-Sylow subgroup of $G \simeq C_{8m}$, then $\mathbb{Q}(G)$ is not rational over \mathbb{Q} ; if 2-Sylow subgroup of $G \simeq Q_{16}$, then $\mathbb{Q}(G)$ is not rational over \mathbb{Q} ; e.g. $G = Q_{16}, SL_2(\mathbb{F}_7), SL_2(\mathbb{F}_9)$, $SL_2(\mathbb{F}_q)$ with $q \equiv 7$ or 9 (mod 16).

From Noether's problem to monomial actions (1/2)

▶ $k(G) := k(x_g \mid g \in G)^G$; invariant field

Noether's problem (Emmy Noether, 1913)

Is $k(G)$ rational over k ?, i.e. $k(G) \simeq k(t_1, \ldots, t_n)$?

By Hilbert 90, we have:

No-name lemma (e.g. Miyata, 1971, Remark 3)

Let *G* act faithfully on *k*-vector space *V*, $W \subset V$ faithful *k*[*G*]-submodule. $\text{Then } K(V)^G = K(W)^G(t_1, \ldots, t_m).$

Rationality problem: linear action

Let *G* act on finite-dimensional *k*-vector space *V* and ρ : $G \rightarrow GL(V)$ be a representation. Whether $k(V)^G$ is rational over $k?$

From Noether's problem to monomial actions (2/2)

► For $ρ: G \to GL(V)$; monomial representation, i.e. matrix rep. has exactly one non-zero entry in each row and each column, *G* acts on $k(\mathbb{P}(V)) = k(\frac{w_1}{w_1})$ $\frac{w_1}{w_n}, \ldots, \frac{w_{n-1}}{w_n})$ by monomial action

By Hilbert 90, we have:

Lemma (e.g. Miyata, 1971, Lemma)

 $k(V)^{G} = k(\mathbb{P}(V))^{G}(t).$

- ▶ $V/G \approx \mathbb{P}(V)/G \times \mathbb{P}^1$ (birational)
- \blacktriangleright $k(\mathbb{P}(V))^G$ (monomial action) is rational over k \Longrightarrow $k(V)^G$ (linear action) is rational over k $\implies k(G)$ (permutation action) is rational over *k* (Noether's problem has an affirmative answer)

▶ $G = GL_2(\mathbb{F}_3) = \langle A, B, C, D \rangle \subset GL_4(\mathbb{Q}), |G| = 48,$ ▶ $H = SL_2(\mathbb{F}_3) = \langle A, B, C \rangle \subset GL_4(\mathbb{Q}), |H| = 24$, where *A* = Г $\overline{}$ 0 1 0 0 *−*1 0 0 0 0 0 0 1 0 0 *−*1 0 ٦ $\Bigg\vert$, $B=$ Г $\overline{}$ 0 0 1 0 0 0 0 *−*1 *−*1 0 0 0 0 1 0 0 ٦ $\Big\vert$, $C=$ Г $\overline{}$ 0 0 1 0 *−*1 0 0 0 0 *−*1 0 0 0 0 0 1 ٦ $\Big\vert$, $D=$ Г $\overline{}$ 1 0 0 0 0 *−*1 0 0 0 0 0 1 0 0 1 0 ٦ $\vert \cdot$ ▶ *G* and *H* act on $k(V) = k(w_1, w_2, w_3, w_4)$ by $A: w_1 \mapsto -w_2 \mapsto -w_1 \mapsto w_2 \mapsto w_1, w_3 \mapsto -w_4 \mapsto -w_3 \mapsto w_4 \mapsto w_3$ $B: w_1 \mapsto -w_3 \mapsto -w_1 \mapsto w_3 \mapsto w_1, w_2 \mapsto w_4 \mapsto -w_2 \mapsto -w_4 \mapsto w_2$ $C: w_1 \mapsto -w_2 \mapsto w_3 \mapsto w_1, w_4 \mapsto w_4, D: w_1 \mapsto w_1, w_2 \mapsto -w_2, w_3 \leftrightarrow w_4.$ \blacktriangleright $k(\mathbb{P}(V)) = k(x, y, z), x = w_1/w_4, y = w_2/w_4, z = w_3/w_4.$ ▶ *G* and *H* act on $k(x, y, z)$ as $G/Z(G) \simeq S_4$ and $H/Z(H) \simeq A_4$: $A: x \mapsto \frac{y}{z}$ $\frac{y}{z}$, $y \mapsto \frac{-x}{z}$ $\frac{-x}{z}$, $z \mapsto \frac{-1}{z}$ $\frac{-1}{z}$, $B: x \mapsto \frac{-z}{y}$ $\frac{-z}{y}$, $y \mapsto \frac{-1}{y}$ $\frac{-1}{y}$, $z \mapsto \frac{x}{y}$ $\frac{x}{y}$ $C: x \mapsto y \mapsto z \mapsto x, \ D: x \mapsto \frac{x}{z}$ $\frac{x}{z}, y \mapsto \frac{-y}{z}$ $\frac{-y}{z}, z \mapsto \frac{1}{z}$ $\frac{1}{z}$. ▶ $k(\mathbb{P}(V))$ ^{*G*}: rational $\Longrightarrow k(V)^{G}$: rational $\Longrightarrow k(G)$: rational. Akinari Hoshi (Niigata University) Rationality problem for fields of invariants Becember 16, 2024 20/67

Example: Noether's problem for $GL_2(\mathbb{F}_3)$ and $SL_2(\mathbb{F}_3)$

Monomial action $(1/3)$ $[3$ -dim. case]

Theorem (Hajja,1987) 2-dim. monomial action

 $k(x_1,x_2)^G$ is rational over $k.$

Theorem (Hajja-Kang 1994, Hoshi-Rikuna 2008) 3-dim. purely monomial

 $k(x_1,x_2,x_3)^G$ is rational over $k.$

Theorem (Prokhorov, 2010) 3-dim. monomial action over $k = \mathbb{C}$

 $\mathbb{C}(x_1,x_2,x_3)^G$ is rational over $\mathbb{C}.$

However,

 $\mathbb{Q}(x_1,x_2,x_3)^{\langle\sigma\rangle}$, $\sigma: x_1\mapsto x_2\mapsto x_3\mapsto \frac{-1}{x_1x_2x_3}$ is not rational over $\mathbb Q$ (Hajja,1983).

Monomial action (2/3) [3-dim. case]

Theorem (Saltman, 2000) char $k \neq 2$

If
$$
[k(\sqrt{a_1}, \sqrt{a_2}, \sqrt{a_3}) : k] = 8
$$
, then $k(x_1, x_2, x_3)^{\langle \sigma \rangle}$,
\n
$$
\sigma: x_1 \mapsto \frac{a_1}{x_1}, x_2 \mapsto \frac{a_2}{x_2}, x_3 \mapsto \frac{a_3}{x_3}
$$

is not retract rational over *k* (hence not rational over *k*).

Theorem (Kang, 2004)

 $k(x_1, x_2, x_3)^{\langle \sigma \rangle}, \sigma: x_1 \mapsto x_2 \mapsto x_3 \mapsto \frac{c}{x_1 \cdot x_2}$ $\frac{c}{x_1x_2x_3} \mapsto x_1$, is rational over *k ⇐⇒* at least one of the following conditions is satisfied: (i) char $k = 2$; (ii) $c ∈ k^2$; (iii) $-4c ∈ k^4$; (iv) $-1 ∈ k^2$. If $k(x, y, z)^{\langle \sigma \rangle}$ is not rational over k , then it is not retract rational over k .

Recall that

▶ "rational"=*⇒*"stably rational" =*⇒*"retract rational"=*⇒*"unirational"

Akinari Hoshi (Niigata University) Rationality problem for fields of invariants December 16, 2024 22/67

Monomial action $(3/3)$ [3-dim. case] (char $k \neq 2$)

Theorem (Yamasaki, 2012) 3-dim. monomial

 $∃ 8$ cases $G \le GL_3(\mathbb{Z})$ s.t $k(x_1, x_2, x_3)^G$ is not retract rational over $k.$ Moreover, the necessary and sufficient conditions are given.

- ▶ Two of 8 cases are Saltman's and Kang's cases.
- ▶ *∃G ≤ GL*3(Z); 73 finite subgroups (up to conjugacy)

Theorem (Hoshi-Kitayama-Yamasaki, 2011) 3-dim. monomial

 $k(x_1,x_2,x_3)^G$ is rational over k except for the 8 cases and $G=A_4.$ For $G = A_4$, if $[k(\sqrt{a}, \sqrt{-1}) : k] \leq 2$, then it is rational over *k*.

Corollary

 $\exists L = k(\sqrt{a})$ such that $L(x_1, x_2, x_3)^G$ is rational over $L.$

▶ However, \exists 4-dim. $\mathbb{C}(x_1, x_2, x_3, x_4)^{C_2 \times C_2}$ is not retract rational.

§2. Noether's problem over \mathbb{C} (1/3)

Let G be a p -group. $\mathbb{C}(G) := \mathbb{C}(x_g \mid g \in G)^G$.

- \blacktriangleright (Fisher, 1915) $\mathbb{C}(A)$ is rational over $\mathbb C$ if A ; finite abelian group.
- ▶ (Saltman, 1984, Invent. Math.) For *∀p*; prime, *∃* meta-abelian *p*-group *G* of order *p* 9 such that $\mathbb{C}(G)$ is not retract rational over \mathbb{C} .
- ▶ (Bogomolov, 1988) For *∀p*; prime, *∃ p*-group *G* of order *p* 6 such that $\mathbb{C}(G)$ is not retract rational over \mathbb{C} .

Indeed they showed $Br_{nr}(\mathbb{C}(G)/\mathbb{C}) \neq 0$; unramified Brauer group

- ▶ rational \implies stably rational \implies retract rational \implies $\text{Br}_{nr}(\mathbb{C}(G)) = 0$. not rational \Leftarrow not stably rational \Leftarrow not retract rational \Leftarrow $\text{Br}_{nr}(\mathbb{C}(G)) \neq 0$.
	- ▶ $k(G)$; retract rational \implies IGP for (k, G) has an affirmative answer.

Unramified Brauer group

Definition (Unramified Brauer group) Saltman (1984)

Let *k ⊂ K* be an extension of fields. $Br_{nr}(K/k) = \bigcap_R \text{Image}\{Br(R) \to Br(K)\}$ where $Br(R) \to Br(K)$ is the natural map of Brauer groups and *R* runs over all the DVR such that $k \subset R \subset K$ and $K = \mathrm{Quot}(R)$.

- ▶ If *K* is retract rational over *k*, then $Br(k) \xrightarrow{\sim} Br_{nr}(K/k)$. In particular, if *K* is retract rational over *C*, then $Br_{nr}(K/\mathbb{C}) = 0$.
- \blacktriangleright For a smooth projective variety *X* over $\mathbb C$ with function field *K*, ${\rm Br}_{\rm nr}(K/{\mathbb C}) \simeq H^3(X,{\mathbb Z})_{\rm tors}$ which is given by Artin-Mumford (1972).

Theorem (Bogomolov 1988, Saltman 1990) $Br_{nr}(\mathbb{C}(G)/\mathbb{C}) \simeq B_0(G)$

Let *G* be a finite group. Then $Br_{nr}(\mathbb{C}(G)/\mathbb{C})$ is isomorphic to

$$
B_0(G) = \bigcap_A \text{Ker}\{\text{res} : H^2(G, \mathbb{Q}/\mathbb{Z}) \to H^2(A, \mathbb{Q}/\mathbb{Z})\}
$$

where *A* runs over all the bicyclic subgroups of *G* $(bicyclic = cyclic or direct product of two cyclic groups).$

- ▶ $\mathbb{C}(G)$: "retract rational" \Longrightarrow $B_0(G) = 0$. $B_0(G) \neq 0 \Longrightarrow \mathbb{C}(G)$: not (retract) rational over *k*.
- ▶ $B_0(G)$ $\leq H^2(G,\mu)$ \simeq $H_2(G,\mathbb{Z})$; Schur multiplier.
- \blacktriangleright $B_0(G)$ is called Bogomolov multiplier.

Noether's problem over \mathbb{C} (2/3)

▶ (Chu-Kang, 2001) *G* is *p*-group $(|G| \leq p^4)$ \Longrightarrow $\mathbb{C}(G)$ is rational.

Theorem (Moravec, 2012, Amer. J. Math.)

Assume $|G| = 3^5 = 243$. $B_0(G) \neq 0 \iff G = G(243, i)$, $28 \leq i \leq 30$. In particular, $∃3$ groups G such that $\mathbb{C}(G)$ is not retract rational over \mathbb{C} .

▶ $\exists G$: 67 groups such that $|G| = 243$.

Theorem (Hoshi-Kang-Kunyavskii, 2013, Asian J. Math.)

Assume $|G| = p^5$ where p is odd prime. $B_0(G) \neq 0 \iff G$ belongs to the isoclinism family Φ_{10} . In particular, *∃* gcd(4*, p −* 1)+ gcd(3*, p −* 1) + 1 (resp. *∃*3) groups *G* of order p^5 $(p \ge 5)$ (resp. $p=3)$ s.t. $\mathbb{C}(G)$ is not retract rational over $\mathbb{C}.$

▶ *∃*2*p* + 61+ gcd(4*, p −* 1) + 2 gcd(3*, p −* 1) groups $\mathsf{such\ that}\ |G|=p^{5}(p\geq5).\ \ (\exists \Phi_1,\ldots,\Phi_{10})$

From the proof $(1/3)$

Definition (isoclinic)

 p -groups G_1 and G_2 are isoclinic $\stackrel{\text{def}}{\iff}$ isom. *θ* : *G*1*/Z*(*G*1) *[∼][→] ^G*2*/Z*(*G*2), *^φ* : [*G*1*, G*1] *[∼][→]* [*G*2*, G*2] such that

$$
G_1/Z(G_1) \times G_1/Z(G_1) \xrightarrow{\ (\theta, \theta) \ } G_2/Z(G_2) \times G_2/Z(G_2)
$$
\n
$$
\begin{array}{c}\n\begin{array}{c}\n\cdot & \cdot \\
\downarrow & \cdot \\
\hline\n\end{array} \\
\begin{array}{c}\n[G_1, G_1] \xrightarrow{\phi} & \begin{array}{c}\n\cdot & \cdot \\
\downarrow & \cdot \\
\hline\n\end{array} \\
\end{array}
$$

Invariants

- ▶ lower central series
- \blacktriangleright # of conj. classes with precisely p^i members
- \blacktriangleright # of irr. complex rep. of G of degree p^i

From the proof (2/3)

- ▶ $|G| = p^4(p > 2)$. *∃*15 groups (Φ_1, Φ_2, Φ_3)
- ▶ $|G| = 2^4 = 16$. *∃*14 groups (Φ_1, Φ_2, Φ_3)
- ▶ $|G| = p^5(p > 3)$. $\exists 2p + 61 + (4, p 1) + 2 \times (3, p 1)$ groups $(\Phi_1, \ldots, \Phi_{10})$

Φ_1	Φ_2	Φ_3	Φ_4	Φ_5	Φ_6	Φ_7	Φ_8	
#	7	15	13	$p+8$	2	$p+7$	5	1
#	Φ_9	Φ_{10}						
#	$2 + (3, p - 1)$	$1 + (4, p - 1) + (3, p - 1)$						

From the proof (3/3)

[HKK, Question 1.11] (2013) (arXiv:1202.5812)

Let *G*¹ and *G*² be isoclinic *p*-groups. Is it true that the fields $k(G_1)$ and $k(G_2)$ are stably isomorphic, or, at least, that $B_0(G_1)$ is isomorphic to $B_0(G_2)$?

Theorem (Moravec, 2013) (arXiv:1203.2422)

*G*₁ and *G*₂ are isoclinic \implies $B_0(G_1) \simeq B_0(G_2)$.

Theorem (Bogomolov-Böhning, 2013) (arXiv: 1204.4747)

*G*₁ and *G*₂ are isoclinic \Longrightarrow $\mathbb{C}(G_1)$ and $\mathbb{C}(G_2)$ are stably isomorphic.

Proof (Φ_{10}) : $B_0(G) \neq 0$

Lemma 1. $N \lhd G$.

 ${\rm (i)}$ ${\rm tr}\colon H^1(N,{\mathbb Q}/{\mathbb Z})^G\to H^2(G/N,{\mathbb Q}/{\mathbb Z})$ is not surjective where tr is the transgression map. (ii) $AN/N \leq G/N$ is cyclic ($\forall A \leq G$; bicyclic). \implies $B_0(G) \neq 0$.

Proof. Consider the Hochschild-Serre 5-term exact sequence

$$
0 \to H^1(G/N, \mathbb{Q}/\mathbb{Z}) \to H^1(G, \mathbb{Q}/\mathbb{Z}) \to H^1(N, \mathbb{Q}/\mathbb{Z})^G
$$

$$
\xrightarrow{\operatorname{tr}} H^2(G/N, \mathbb{Q}/\mathbb{Z}) \xrightarrow{\psi} H^2(G, \mathbb{Q}/\mathbb{Z})
$$

where *ψ* is an inflation map.

 $(i) \implies \psi$ is not zero-map \implies Image $(\psi) \neq 0$. We will show that $\text{Image}(\psi) \subset B_0(G)$ by (ii).

It suffices to show that $H^2(G/N,{\mathbb Q}/{\mathbb Z})\stackrel{\psi}{\to} H^2(G,{\mathbb Q}/{\mathbb Z})\stackrel{\text{res}}{\longrightarrow} H^2(A,{\mathbb Q}/{\mathbb Z})$ is zero-map ($\forall A \leq G$: bicyclic).

Akinari Hoshi (Niigata University) Rationality problem for fields of invariants December 16, 2024 31/67

Consider the following commutative diagram:

$$
H^2(G/N, \mathbb{Q}/\mathbb{Z}) \xrightarrow{\psi} H^2(G, \mathbb{Q}/\mathbb{Z}) \xrightarrow{\text{res}} H^2(A, \mathbb{Q}/\mathbb{Z})
$$

$$
\downarrow^{\psi_0} \qquad \qquad \downarrow^{\psi_1}
$$

$$
H^2(AN/N, \mathbb{Q}/\mathbb{Z}) \xrightarrow{\tilde{\psi}} H^2(A/A \cap N, \mathbb{Q}/\mathbb{Z})
$$

where ψ_0 is the restriction map, ψ_1 is the inflation map, $\widetilde{\psi}$ is the natural isomorphism.

(ii)
$$
\implies
$$
 $AN/N \simeq C_m \Longrightarrow H^2(C_m, \mathbb{Q}/\mathbb{Z}) = 0.$

=*⇒ ψ*⁰ is zero-map.

$$
\Longrightarrow \text{res}\circ \psi\colon H^2(G/N,{\mathbb Q}/{\mathbb Z})\to H^2(A,{\mathbb Q}/{\mathbb Z})\,\,\text{is zero-map}.
$$

∴ Image(ψ) ⊂ *B*₀(*G*)

 $\text{Image}(\psi) \subset B_0(G)$ and $\text{Image}(\psi) \neq 0$ (by (i)) $\Longrightarrow B_0(G) \neq 0$. \Box

Proof (Φ_6) : $B_0(G) = 0$

▶ *G* = $\Phi_6(211)a = \langle f_1, f_2, f_0, h_1, f_2 \rangle, f_1^p = h_1, f_2^p = h_2$, $Z(G) = \langle h_1, h_2 \rangle, f_0^p = h_1^p = h_2^p = 1$ $[f_1, f_2] = f_0$, $[f_0, f_1] = h_1$, $[f_0, f_2] = h_2$

Hochschild-Serre 5-term exact sequence:

 $0 \to H^1(G/N, \mathbb{Q}/\mathbb{Z}) \to H^1(G, \mathbb{Q}/\mathbb{Z}) \to H^1(N, \mathbb{Q}/\mathbb{Z})^G \xrightarrow{\text{tr}} H^2(G/N, \mathbb{Q}/\mathbb{Z}) \xrightarrow{\psi} H^2(G, \mathbb{Q}/\mathbb{Z})$

Proof (Φ_6) : $B_0(G) = 0$

- ▶ *G* = $\Phi_6(211)a = \langle f_1, f_2, f_0, h_1, f_2 \rangle, f_1^p = h_1, f_2^p = h_2$, $Z(G) = \langle h_1, h_2 \rangle, f_0^p = h_1^p = h_2^p = 1$ $[f_1, f_2] = f_0$, $[f_0, f_1] = h_1$, $[f_0, f_2] = h_2$ Hochschild-Serre 5-term exact sequence: $0 \to H^1(G/N, \mathbb{Q}/\mathbb{Z}) \to H^1(G, \mathbb{Q}/\mathbb{Z}) \to H^1(N, \mathbb{Q}/\mathbb{Z})^G \xrightarrow{\text{tr}} H^2(G/N, \mathbb{Q}/\mathbb{Z}) \xrightarrow{\psi} H^2(G, \mathbb{Q}/\mathbb{Z})$ *↓* $Ker\{H^2(G, \mathbb{Q}/\mathbb{Z}) \xrightarrow{\text{res}} H^2(N, \mathbb{Q}/\mathbb{Z})\} =: H^2(G, \mathbb{Q}/\mathbb{Z})_1$ *↓* $H^1(G/N, H^1(N, \mathbb{Q}/\mathbb{Z}))$ *λ ↓* $H^3(G/N, \mathbb{Q}/\mathbb{Z})$
- \blacktriangleright Explicit formula for λ is given by Dekimpe-Hartl-Wauters (2012)
- ▶ $N := \langle f_1, f_0, h_1, h_2 \rangle$ \Rightarrow $G/N \simeq C_p$ \Rightarrow $H^2(G/N, \mathbb{Q}/\mathbb{Z}) = 0$
- ▶ $B_0(G) \subset H^2(G, \mathbb{Q}/\mathbb{Z})_1$
- ▶ We should show $H^2(G, \mathbb{Q}/\mathbb{Z})_1 = 0$ ($\iff \lambda$: injective)
- Akinari Hoshi (Niigata University) Rationality problem for fields of invariants December 16, 2024 34 / 67

Noether's problem over \mathbb{C} (3/3)

Theorem (Hoshi-Kang-Kunyavskii, 2013, Asian J. Math.)

Assume $|G| = p^5$ where p is odd prime. $B_0(G) \neq 0 \iff G$ belongs to the isoclinism family Φ_{10} . Theorem (Chu-Hoshi-Hu-Kang, 2015, J. Algebra) $|G| = 3^5 = 243$ If $B_0(G) = 0$, then $\mathbb{C}(G)$ is rational over \mathbb{C} except for Φ_7 . ▶ Non-rationality of Φ_7 is detected by $H^3_{{\mathrm{nr}}}(\mathbb{C}(G),\mathbb{Q}/\mathbb{Z})$ (later). \blacktriangleright Φ_5 and Φ_7 are very similar: $C = 1$ (Φ_5) , $C = \omega$ (Φ_7) .

 $\mathbb{C}(G)$ is stably isomorphic to $\mathbb{C}(z_1,z_2,z_3,z_4,z_5,z_6,z_7,z_8,z_9)^{\langle f_1,f_2\rangle}$

$$
\begin{aligned} f_1&: z_1\mapsto z_2, z_2\mapsto \frac{1}{z_1z_2}, z_3\mapsto z_4, z_4\mapsto \frac{1}{z_3z_4},\\ z_5&\mapsto \frac{z_5}{z_1^2z_3}, z_6\mapsto \frac{z_1z_6}{z_3}, z_7\mapsto z_8, z_8\mapsto \frac{1}{z_7z_8}, z_9\mapsto \frac{z_4z_9}{z_1},\\ f_2&: z_1\mapsto z_3, z_2\mapsto z_4, z_3\mapsto \frac{1}{z_1z_3}, z_4\mapsto \frac{1}{z_2z_4},\\ z_5\mapsto z_6, z_6\mapsto \frac{1}{z_5z_6}, z_7\mapsto C\frac{z_4z_7}{z_3}, z_8\mapsto C\frac{z_8}{z_3z_4^2}, z_9\mapsto \frac{z_4z_9}{z_1}. \end{aligned}
$$

Unramified Brauer group: purely monomial case (1/3)

Theorem (Hoshi-Kang-Yamasaki, 2023, Mem AMS) purely monomial

Let *G* be a finite group and *M* be a faithful *G*-lattice.

- (1) If $\mathrm{rank}_{\mathbb{Z}} M \leq 3$, then $\mathrm{Br}_{\mathrm{nr}}(\mathbb{C}(M)^G) = 0$.
- (2) When $\mathrm{rank}_{\mathbb{Z}}M = 4$, ∃ 5 M 's with $\mathrm{Br}_{nr}(\mathbb{C}(M)^G) \neq 0$.
- (3) When $\mathrm{rank}_{\mathbb{Z}}M = 5$, \exists 46 M's with $\mathrm{Br}_{\mathrm{nr}}(\mathbb{C}(M)^G) \neq 0$.
- (4) When $\text{rank}_{\mathbb{Z}}M = 6$, \exists 1073 M's with $\text{Br}_{nr}(\mathbb{C}(M)^G) \neq 0$.

▶ If *M* is of rank ≤ 6 and $\text{Br}_{nr}(\mathbb{C}(M^G)) \neq 0$, then *G* is solvable and $\mathsf{non}\text{-}$ abelian, and $\mathrm{Br}_{\mathrm{nr}}(\mathbb{C}(M)^G) \simeq \mathbb{Z}/2\mathbb{Z}$, $\mathbb{Z}/3\mathbb{Z}$ or $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$.

Unramified Brauer group: purely monomial case (2/3)

Theorem (Hoshi-Kang-Yamasaki, 2023, Mem. AMS) $G = A_6$: simple

Embed $A_6 \simeq PSL_2(\mathbb{F}_9) \hookrightarrow S_{10}$. Let $N = \bigoplus_{1 \leq i \leq 10} \mathbb{Z} \cdot x_i$ be the S_{10} -lattice defined by $\sigma \cdot x_i = x_{\sigma(i)}$ for any $\sigma \in S_{10}$; it becomes an A_6 -lattice by restricting the action of S_{10} to A_6 . Define $M = N/({\mathbb Z} \cdot \sum_{i=1}^{10} x_i)$ with rank $\mathbb{Z}M = 9$. $\exists A_6$ -lattices $M = M_1, M_2, \ldots, M_6$ which are Q-conjugate but not $\mathbb Z$ -conjugate to each other; in fact, all these M_i form a single Q-class, but this Q-class consists of six Z-classes. Then we have

 $H_{\text{nr}}^2(A_6, M_1) \simeq H_{\text{nr}}^2(A_6, M_3) \simeq \mathbb{Z}/2\mathbb{Z}, H_{\text{nr}}^2(A_6, M_i) = 0$ for $i = 2, 4, 5, 6$.

In particular, $\mathbb C (M_1)^{A_6}$ and $\mathbb C (M_3)^{A_6}$ are not retract rational over $\mathbb C.$ Furthermore, *M*¹ and *M*³ may be distinguished by Tate cohomologies:

Unramified Brauer group: purely monomial case (1/3)

By using a result of Saltman (1987, J. Algebra, Corollary 3.3), as a corollary of Theorem above, we can get:

Theorem (Hoshi-Kang-Yamasaki, 2023, Mem. AMS) *G* = *A*6: simple

Let $N_1 \simeq (C_{10})^9$ and $N_3 \simeq (C_2)^8 \times C_{10}$. Then, for $i=1,3,$ $Br_u(\mathbb{C}(N_i \rtimes A_6)) \simeq \mathbb{Z}/2\mathbb{Z}$ and Noether's problem for $N_i \rtimes A_6$ over $\mathbb C$ has a negative answer. Moreover, $\mathbb{C}(N_i \rtimes A_6)$ $(i = 1, 3)$ is not retract (stably) rational over \mathbb{C} .

▶ Noether's problem for A_6 over $\mathbb Q$ (resp. over $\mathbb C$) is still unsolved!

Unramified cohomology (1/4)

Colliot-Thélène and Ojanguren (1989) generalized the notion of the unramified Brauer group $\mathrm{Br}_{\mathrm{nr}}(K/\mathbb{C})$ to the unramified cohomology $H^i_{\text{nr}}(K/\mathbb{C}, \mu_n^{\otimes j})$ of degree $i \geq 1$:

Definition (Colliot-Thélène and Ojanguren, 1989, Invent. Math.)

Let K/\mathbb{C} be a function field, that is finitely generated as a field over \mathbb{C} . The unramified cohomology group $H^i_{\text{nr}}(K/\mathbb{C}, \mu_n^{\otimes j})$ of K over $\mathbb C$ of degree *i ≥* 1 is defined to be

$$
H_{\mathrm{nr}}^i(K/\mathbb{C},\mu_n^{\otimes j}) = \bigcap_R \mathrm{Ker}\{r_R : H^i(K,\mu_n^{\otimes j}) \to H^{i-1}(\Bbbk_R,\mu_n^{\otimes (j-1)})\}
$$

where *R* runs over all the DVR of rank one such that $\mathbb{C} \subset R \subset K$ and $K = \text{Quot}(R)$ and r_R is the residue map.

▶ Note that $_n\text{Br}_{nr}(K/\mathbb{C}) \simeq H^2_{nr}(K/\mathbb{C}, \mu_n)$.

Proposition (Colliot-Thélène and Ojanguren, 1989)

If K and L are stably $\mathbb C\text{-isomorphic},$ then $H_{\text{nr}}^{i}(K/\mathbb{C}, \mu_n^{\otimes j}) \overset{\sim}{\to} H_{\text{nr}}^{i}(L/\mathbb{C}, \mu_n^{\otimes j}).$ In particular, K is stably rational over \mathbb{C} , then $H^i_{\text{nr}}(K/\mathbb{C}, \mu_n^{\otimes j}) = 0$.

- ▶ Moreover, if *K* is retract rational over \mathbb{C} , then $H^{i}_{\text{nr}}(K/\mathbb{C}, \mu_n^{\otimes j}) = 0$.
- ▶ CTO (1989) \exists C-unirational field *K* with trdeg_{*C}K* = 6</sub> s.t. $H^3_{\mathrm{nr}}(K/\mathbb{C},\mu_2^{\otimes 3})\neq 0$ and $\mathrm{Br}_{\mathrm{nr}}(K/\mathbb{C})=0.$
- ▶ Peyre (1993) gave a sufficient condition for $H^{i}_{\text{nr}}(K/\mathbb{C}, \mu_p^{\otimes i}) \neq 0$:
- ▶ $\exists K$ s.t. $H^3_{{\mathrm{nr}}}(K/{\mathbb{C}}, \mu_p^{\otimes 3}) \neq 0$ and ${\mathrm{Br}}_{{\mathrm{nr}}}(K/{\mathbb{C}}) = 0;$
- ▶ $\exists K$ s.t. $H^4_{{\mathrm{nr}}}(K/{\mathbb{C}}, \mu_2^{\otimes 4}) \neq 0$ and ${\mathrm{Br}}_{{\mathrm{nr}}}(K/{\mathbb{C}}) = 0$.

Unramified cohomology (2/4)

Take the direct limit with respect to *n*:

$$
H^i(K/\mathbb{C},\mathbb{Q}/\mathbb{Z}(j))=\lim_{\stackrel{\longrightarrow}{n}}H^i(K/\mathbb{C},\mu_n^{\otimes j})
$$

and we also define the unramified cohomology group

$$
H_{\mathrm{nr}}^i(K/\mathbb{C}, \mathbb{Q}/\mathbb{Z}(j))
$$

=
$$
\bigcap_R \mathrm{Ker}\{r_R : H^i(K/\mathbb{C}, \mathbb{Q}/\mathbb{Z}(j)) \to H^{i-1}(\mathbb{k}_R, \mathbb{Q}/\mathbb{Z}(j-1))\}.
$$

Then we have $\mathrm{Br}_{\mathrm{nr}}(K/\mathbb{C}) \simeq H_{\mathrm{nr}}^2(K/\mathbb{C}, \mathbb{Q}/\mathbb{Z}(1)).$

 \blacktriangleright The case $K = \mathbb{C}(G)$:

Theorem (Peyre, 2008, Invent. Math.) *p*: odd prime

 $∃ p$ -group G of order p^{12} such that $B_0(G) = 0$ and $H^3_{{\mathrm{nr}}}(\mathbb{C}(G),\mathbb{Q}/\mathbb{Z}) \neq 0.$ In particular, $\mathbb{C}(G)$ is not (retract, stably) rational over \mathbb{C} .

▶ Asok (2013) generalized Peyre's argument (1993):

Theorem (Asok, 2013, Compos. Math.)

(1) For any *n >* 0, *∃* a smooth projective complex variety *X* that is $\mathbb{C}\textrm{-}$ unirational, for which $H^i_{\textrm{nr}}(\mathbb{C}(X),\mu_2^{\otimes i})=0$ for each $i < n$, yet $H_{\mathrm{nr}}^n(\mathbb{C}(X),\mu_2^{\otimes n}) \neq 0$, and so X is not \mathbb{A}^1 -connected, nor (retract, stably) rational over $\mathbb{C};$ (2) For any prime *l* and any *n ≥* 2, *∃* a smooth projective rationally connected complex variety *Y* such that $H_{\mathrm{nr}}^n(\mathbb{C}(Y), \mu_l^{\otimes n}) \neq 0$. In particular, Y is not \mathbb{A}^1 -connected, nor (retract, stably) rational over $\mathbb{C}.$

- ▶ Namely, the triviality of the unramified Brauer group or the unramified cohomology of higher degree is just a necessary condition of C-rationality of fields.
- ▶ It is interesting to consider an analog of above Theorem for quotient varieties V/G , e.g. $\mathbb{C}(V_{\text{reg}}/G) = \mathbb{C}(G)$.

Unramified cohomology (3/4)

Theorem (Peyre, 2008, Invent. Math.) *p*: odd prime

 $∃ p$ -group G of order p^{12} such that $B_0(G) = 0$ and $H^3_{{\mathrm{nr}}}(\mathbb{C}(G),\mathbb{Q}/\mathbb{Z}) \neq 0.$ In particular, $\mathbb{C}(G)$ is not (retract, stably) rational over \mathbb{C} .

Using Peyre's method, we improve this result:

Theorem (Hoshi-Kang-Yamasaki, 2016, J. Algebra) *p*: odd prime

 \exists p -group G of order p^9 such that $B_0(G) = 0$ and $H^3_{\mathrm{nr}}(\mathbb{C}(G),\mathbb{Q}/\mathbb{Z}) \neq 0.$ In particular, $\mathbb{C}(G)$ is not (retract, stably) rational over \mathbb{C} .

On the other hand, CT and Voisin proved: (*↔* integral Hodge conjecture)

Theorem (Colliot-Thélène and Voisin, 2012, Duke Math. J.)

Let *X* be a smooth projective rationally connected complex variety. Then $H^3_{\text{nr}}(X, \mathbb{Q}/\mathbb{Z}) \simeq \text{Hdg}^4(X, \mathbb{Z})/\text{Hdg}^4(X, \mathbb{Z})_{\text{alg}}.$

Unramified cohomology (4/4)

▶ Using Peyre's formula [Peyre, 2008, Invent. Math.], we get:

Noether's problem over C for 2-groups

- ▶ (Chu-Kang, 2001) *G* is *p*-group $(|G| \leq p^4)$ \Longrightarrow $\mathbb{C}(G)$ is rational.
- ▶ (Chu-Hu-Kang-Prokhorov, 2008) $|G| = 32 = 2^5 \implies \mathbb{C}(G)$ is rational.
- ▶ *∃*267 groups *G* of order 64 = 2⁶ which are classified into 27 isoclinism families $\Phi_1, \ldots, \Phi_{27}$.

Theorem (Chu-Hu-Kang-Kunyavskii, 2010) $|G| = 64 = 2^6$

(1) $B_0(G) \neq 0$ $\Longleftrightarrow G$ belongs to Φ_{16} . (∃9 such *G*'s) Moreover, if $B_0(G) \neq 0$, then $B_0(G) \simeq C_2$. (2) If $B_0(G) = 0$, then $\mathbb{C}(G)$ is rational except for Φ_{13} . ($\exists 5$ such G 's)

- \blacktriangleright ([CHKK10], [HY14]) $(B_0(G) = 0$, but rationality unknown) If G belongs to Φ_{13} , then $\mathbb{C}(G)$ is stably $\mathbb{C}\text{-isomorphic to } L^{(0)}_\mathbb{C}$.
- \blacktriangleright ([CHKK10], [HKK14]) $(B_0(G) \simeq C_2$, not retract rational) If G belongs to Φ_{16} , then $\mathbb{C}(G)$ is stably $\mathbb{C}\text{-isomorphic to } L^{(1)}_\mathbb{C}$.

- \blacktriangleright ([CHKK10], [HY14]) $(B_0(G) = 0$, but rationality unknown) If G belongs to Φ_{13} , then $\mathbb{C}(G)$ is stably $\mathbb{C}\text{-isomorphic to } L^{(0)}_\mathbb{C}$.
- \blacktriangleright ([CHKK10], [HKK14]) $(B_0(G) \simeq C_2$, not retract rational) If G belongs to Φ_{16} , then $\mathbb{C}(G)$ is stably $\mathbb{C}\text{-isomorphic to } L^{(1)}_\mathbb{C}$.

Definition (The fields $L^{(0)}_\mathbb{C}$ and $L^{(1)}_\mathbb{C})$

(i) The field
$$
L_C^{(0)}
$$
 is defined to be $\mathbb{C}(X_1, X_2, X_3, X_4, X_5, X_6)^H$ where
\n $H = \langle \sigma_1, \sigma_2 \rangle \simeq C_2 \times C_2$ act on $\mathbb{C}(X_1, X_2, X_3, X_4, X_5, X_6)$ by
\n $\sigma_1: X_1 \mapsto X_3, X_2 \mapsto \frac{1}{X_1 X_2 X_3}, X_3 \mapsto X_1, X_4 \mapsto X_6, X_5 \mapsto \frac{1}{X_4 X_5 X_6}, X_6 \mapsto X_4,$
\n $\sigma_2: X_1 \mapsto X_2, X_2 \mapsto X_1, X_3 \mapsto \frac{1}{X_1 X_2 X_3}, X_4 \mapsto X_5, X_5 \mapsto X_4, X_6 \mapsto \frac{1}{X_4 X_5 X_6}.$
\n(ii) The field $L_C^{(1)}$ is defined to be $\mathbb{C}(X_1, X_2, X_3, X_4)^{\langle \tau \rangle}$ where $\langle \tau \rangle \simeq C_2$
\nacts on $\mathbb{C}(X_1, X_2, X_3, X_4)$ by
\n $\tau: X_1 \mapsto -X_1, X_2 \mapsto \frac{X_4}{X_2}, X_3 \mapsto \frac{(X_4 - 1)(X_4 - X_1^2)}{X_3}, X_4 \mapsto X_4.$

- \blacktriangleright ([CHKK10], [HY14]) $(B_0(G) = 0$, but rationality unknown) If G belongs to Φ_{13} , then $\mathbb{C}(G)$ is stably $\mathbb{C}\text{-isomorphic to } L^{(0)}_\mathbb{C}$.
- \blacktriangleright ([CHKK10], [HKK14]) $(B_0(G) \simeq C_2$, not retract rational) If G belongs to Φ_{16} , then $\mathbb{C}(G)$ is stably $\mathbb{C}\text{-isomorphic to } L^{(1)}_\mathbb{C}$.

$$
L_{\mathbb{C}}^{(0)} = \mathbb{C}(z_1, z_2, z_3, z_4, u_4, u_5, u_6)
$$
 where
\n
$$
(z_1^2 - a)(z_4^2 - d) = (z_2^2 - b)(z_3^2 - c),
$$

\n
$$
a = u_4(u_4 - 1), b = u_4 - 1, c = u_4(u_4 - u_6^2), d = u_5^2(u_4 - u_6^2).
$$

 $L_{\mathbb{C}}^{(0)} = \mathbb{C}(u, v, t, w_3, w_4, w_5, w_6)$ where

$$
u^{2} - tv^{2} = -(w_{4}^{2}(w_{5}^{2} - 1)t^{2} + (w_{3}^{2} - w_{3}^{2}w_{5}^{2} + 1)t - w_{5}^{2})
$$

\n
$$
\cdot (w_{4}^{2}w_{6}^{2}t^{2} - (w_{4}^{2} + w_{3}^{2}w_{6}^{2})t + w_{3}^{2} - w_{6}^{2} + 1).
$$

\n
$$
L_{\mathbb{C}}^{(0)} = \mathbb{C}(m_{0}, ..., m_{6}) \text{ where}
$$

\n
$$
m_{0}^{2} = (4m_{3} + m_{3}m_{4}^{2} + m_{4}^{2})(m_{3} - m_{5}^{2} + 1)
$$

$$
L_{\mathbb{C}}^{(1)} = \mathbb{C}(u, v, t, w_3, w_4)
$$
 where
\n
$$
L_{\mathbb{C}}^{(1)} = \mathbb{C}(u, v, t, w_3, w_4)
$$
 where
\n
$$
u^2 - tv^2 = (tw_4^2 - w_3^2 + 1)(t + tw_4^2 - w_3^2).
$$

▶ \exists 2328 groups *G* of order $128 = 2^7$ which are classified into 115 isoclinism families Φ1*, . . . ,* Φ115.

Theorem (Moravec, 2012, Amer. J. Math.) $|G| = 128 = 2^7$

 $B_0(G) \neq 0$ if and only if *G* belongs to the isoclinism family Φ_{16} , Φ_{30} , Φ_{31} , Φ_{37} , Φ_{39} , Φ_{43} , Φ_{58} , Φ_{60} , Φ_{80} , Φ_{106} or Φ_{114} . If $B_0(G) \neq 0$, then

$$
B_0(G) \simeq \begin{cases} C_2 & (\Phi_{16}, \Phi_{31}, \Phi_{37}, \Phi_{39}, \Phi_{43}, \Phi_{58}, \Phi_{60}, \Phi_{80}, \Phi_{106}, \Phi_{114}) \\ C_2 \times C_2 & (\Phi_{30}). \end{cases}
$$

In particular, $\mathbb{C}(G)$ is not (retract, stably) rational over \mathbb{C} .

 $\blacktriangleright \fbox{Q.}$ Birational classification of $\mathbb{C}(G)$? In particular, what happens when $B_0(G) \neq 0$? How many $\mathbb{C}(G)$'s exist up to stably $\mathbb{C}\text{-isomorphism?}$

Theorem (Hoshi, 2016, J. Algebra) $|G| = 128 = 2^7$

Assume that $B_0(G)\neq 0.$

Then $\mathbb{C}(G)$ and $L^{(m)}_{\mathbb{C}}$ are stably $\mathbb{C}\text{-isomorphic}$ where

$$
\int_{\Omega} 1 \quad \text{if } G \text{ belongs to } \Phi_{16}, \Phi_{31}, \Phi_{37}, \Phi_{39}, \Phi_{43}, \Phi_{58}, \Phi_{60} \text{ or } \Phi_{80},
$$

$$
m = \begin{cases} 2 & \text{if } G \text{ belongs to } \Phi_{106} \text{ or } \Phi_{114}, \end{cases}
$$

$$
\begin{cases} 3 & \text{if } G \text{ belongs to } \Phi_{30}. \end{cases}
$$

In particular, ${\rm Br}_{\rm nr}(L_{\mathbb C}^{(1)})\simeq {\rm Br}_{\rm nr}(L_{\mathbb C}^{(2)})\simeq C_2$ and ${\rm Br}_{\rm nr}(L_{\mathbb C}^{(3)})\simeq C_2\times C_2$ and hence $L^{(1)}_{\mathbb C}$, $L^{(2)}_{\mathbb C}$ and $L^{(3)}_{\mathbb C}$ are not (retract, stably) rational over ${\mathbb C}.$

- ▶ $L_{\mathbb{C}}^{(1)} \nsim L_{\mathbb{C}}^{(3)}$, $L_{\mathbb{C}}^{(2)} \nsim L_{\mathbb{C}}^{(3)}$ (not stably $\mathbb{C}\text{-isomorphic}$) because their unramified Brauer groups are not isomorphic.
- ▶ However, we do not know whether $L_{\mathbb{C}}^{(1)} \sim L_{\mathbb{C}}^{(2)}.$
- ▶ If not, evaluate the higher unramified cohomologies $H^i_{\text{nr}}(i \geq 3)$? (Peyre's formula can not work for $|G| = 2^m$)

Definition (The fields $L^{(2)}_\mathbb{C}$ and $L^{(3)}_\mathbb{C})$

 $($ i) The field $L^{(2)}_{\mathbb{C}}$ is defined to be $\mathbb{C}(X_1,X_2,X_3,X_4,X_5,X_6)^{\langle\rho\rangle}$ where $\langle \rho \rangle \simeq C_4$ acts on $\mathbb{C}(X_1,X_2,X_3,X_4,X_5,X_6)$ by $\rho: X_1 \mapsto X_2, X_2 \mapsto -X_1, X_3 \mapsto X_4, X_4 \mapsto X_3,$ $X_5 \mapsto X_6, X_6 \mapsto \frac{(X_1^2 X_2^2 - 1)(X_1^2 X_3^2 + X_2^2 - X_3^2 - 1)}{X_5}$ $\frac{X_3 + X_2 - X_3 - 1}{X_5}$. (ii) The field $L_{\mathbb{C}}^{(3)}$ is defined to be $\mathbb{C}(X_1,X_2,X_3,X_4,X_5,X_6,X_7)^{\langle\lambda_1,\lambda_2\rangle}$ where $\langle \lambda_1, \lambda_2 \rangle \simeq C_2 \times C_2$ acts on $\mathbb{C}(X_1,X_2,X_3,X_4,X_5,X_6,X_7)$ by

$$
\lambda_1: X_1 \mapsto X_1, X_2 \mapsto \frac{X_1}{X_2}, X_3 \mapsto \frac{1}{X_1 X_3}, X_4 \mapsto \frac{X_2 X_4}{X_1 X_3},
$$

\n
$$
X_5 \mapsto -\frac{X_1 X_6^2 - 1}{X_5}, X_6 \mapsto -X_6, X_7 \mapsto X_7,
$$

\n
$$
\lambda_2: X_1 \mapsto \frac{1}{X_1}, X_2 \mapsto X_3, X_3 \mapsto X_2, X_4 \mapsto \frac{(X_1 X_6^2 - 1)(X_1 X_7^2 - 1)}{X_4},
$$

\n
$$
X_5 \mapsto -X_5, X_6 \mapsto -X_1 X_6, X_7 \mapsto -X_1 X_7.
$$

§3. (general) quasi-monomial actions

Notion of "quasi-monomial" actions is defined in Hoshi-Kang-Kitayama [HKK14], J. Algebra (2014).

Theorem ([HKK14]) 1-dim. quasi-monomial actions (1) purely quasi-monomial =*⇒ K*(*x*) *^G* is rational over *k*. $\mathbb{P}(2)$ $K(x)^G$ is rational over k excpet for the case: $\exists N \leq G$ such that (i) $G/N = \langle \sigma \rangle \simeq C_2$; (ii) $K(x)^N = k(\alpha)(y)$, $\alpha^2 = a \in K^\times$, $\sigma(\alpha) = -\alpha$ (if char k $\neq 2$), $\alpha^2 + \alpha = a \in K$, $\sigma(\alpha) = \alpha + 1$ (if char $k = 2$); (iii) $\sigma \cdot y = b/y$ for some $b \in k^{\times}$. $\epsilon \mapsto \epsilon$ For the exceptional case, $K(x)^G = k(\alpha)(y)^{G/N}$ is rational over $k \iff k$ Hilbert symbol $(a, b)_k = 0$ (if char $k \neq 2$), $[a, b)_k = 0$ (if char $k = 2$). M oreover, $K(x)^G$ is not rational over $k \Longrightarrow$ not unirational over $k.$

Theorem ([HKK14]) 2-dim. purely quasi-monomial actions

 $N = {\sigma \in G \mid \sigma(x) = x, \space \sigma(y) = y}, \; H = {\sigma \in G \mid \sigma(\alpha) = \alpha(\forall \alpha \in K)}.$ $K(x,y)^G$ is rational over k except for: (1) char $k \neq 2$ and (2) (i) $(G/N, HN/N) \simeq (C_4, C_2)$ or (ii) (D_4, C_2) . For the exceptional case, we have $k(x, y) = k(u, v)$: (i) $(G/N, HN/N) \simeq (C_4, C_2),$ *K*^{*N*} = *k*(\sqrt{a}), *G*/*N* = $\langle \sigma \rangle \simeq C_4$, $\sigma : \sqrt{a} \mapsto -\sqrt{a}$, $u \mapsto \frac{1}{u}$, $v \mapsto -\frac{1}{v}$; (ii) $(G/N, HN/N) \simeq (D_4, C_2);$ *K*^{*N*} = *k*(\sqrt{a} , \sqrt{b}), *G*/*N* = $\langle \sigma, \tau \rangle \simeq D_4$, $\sigma : \sqrt{a} \mapsto -\sqrt{a}$, *√* $b \mapsto$ *√ b*, $u \mapsto \frac{1}{u}, v \mapsto -\frac{1}{v}, \tau : \sqrt{a} \mapsto \sqrt{a},$ $\frac{a}{\sqrt{b}} \rightarrow -\sqrt{b}$, $u \rightarrow u$, $v \rightarrow -v$. Case (i), $K(x,y)^G$ is rational over $k \iff$ Hilbert symbol $(a,-1)_k = 0$. Case (ii), $K(x, y)^G$ is rational over $k \iff$ Hilbert symbol $(a, -b)_k = 0$. M oreover, $K(x,y)^G$ is not rational over $k \Longrightarrow$ $\mathrm{Br}(k) \neq 0$ and $K(x,y)^G$ is not unirational over $k.$

Galois-theoretic interpretation:

 (i) rational over $k \iff k(\sqrt{a})$ may be embedded into C_4 -ext. of k .

(i) rational over $k \iff k(\sqrt{a}, \sqrt{b})$ may be embedded into D_4 -ext. of k .
(ii) rational over $k \iff k(\sqrt{a}, \sqrt{b})$ may be embedded into D_4 -ext. of k .

Application to purely monomial actions $(1/2)$

Theorem ([HKK14]), 4-dim. purely monomial

Let *M* be a *G*-lattice with $\text{rank}_{\mathbb{Z}}M = 4$ and *G* act on $k(M)$ by purely monomial *k*-automorphisms. If *M* is decomposable, i.e. $M = M_1 \oplus M_2$ as $\mathbb{Z}[G]$ -modules where $1 \leq \text{rank}_{\mathbb{Z}} M_1 \leq 3$, then $k(M)^G$ is rational over $k.$

- \blacktriangleright When rank $\mathbb{Z}M_1 = 1$, rank $\mathbb{Z}M_2 = 3$, it is easy to see $k(M)^G$ is rational.
- \blacktriangleright When $\text{rank}_{\mathbb{Z}}M_1 = \text{rank}_{\mathbb{Z}}M_2 = 2$, we may apply Theorem of 2-dim. to $k(M) = k(x_1, x_2, y_1, y_2) = k(x_1, x_2)(y_1, y_2) = K(y_1, y_2).$

Theorem ([HKK14]) char $k \neq 2$

Let $C_2 = \langle \tau \rangle$ act on the rational function field $k(x_1, x_2, x_3, x_4)$ by *k*-automorphisms defined as

$$
\tau: x_1 \mapsto -x_1, \ x_2 \mapsto \frac{x_4}{x_2}, \ x_3 \mapsto \frac{(x_4-1)(x_4-x_1^2)}{x_3}, \ x_4 \mapsto x_4.
$$

Then $k(x_1,x_2,x_3,x_4)^{C_2}$ is not retract rational over $k.$ In particular, it is not rational over *k*.

Theorem A ([HKK14]) char $k \neq 2$, 5-dim. purely monomial

Let $D_4 = \langle \rho, \tau \rangle$ act on the rational function field $k(x_1, x_2, x_3, x_4, x_5)$ by *k*-automorphisms defined as

$$
\rho: x_1 \mapsto x_2, \ x_2 \mapsto x_1, \ x_3 \mapsto \frac{1}{x_1 x_2 x_3}, \ x_4 \mapsto x_5, \ x_5 \mapsto \frac{1}{x_4},
$$

$$
\tau: x_1 \mapsto x_3, \ x_2 \mapsto \frac{1}{x_1 x_2 x_3}, \ x_3 \mapsto x_1, \ x_4 \mapsto x_5, \ x_5 \mapsto x_4.
$$

Then $k(x_1,x_2,x_3,x_4,x_5)^{D_4}$ is not retract rational over k . In particular, it is not rational over *k*.

Application to purely monomial actions (2/2)

Theorem ([HKK14]), 5-dim. purely monomial

Let *M* be a *G*-lattice and *G* act on *k*(*M*) by purely monomial *k*-automorphisms. Assume that (i) $M = M_1 \oplus M_2$ as $\mathbb{Z}[G]$ -modules where $\mathrm{rank}_{\mathbb{Z}}M_1 = 3$ and rank $\mathbb{Z}M_2 = 2$, (ii) either M_1 or M_2 is a faithful G -lattice. Then $k(M)^G$ is rational over k except for the case as in Theorem A.

▶ we may apply Theorem of 2-dim. to $k(M) = k(x_1, x_2, x_3, y_1, y_2) = k(x_1, x_2, x_3)(y_1, y_2) = K(y_1, y_2).$

More recent results

 \blacktriangleright 3-dim. purely quasi-monomial actions (Hoshi-Kitayama, 2020, Kyoto J. Math.)

§4. Rationality problem for algebraic tori (2-dim., 3-dim.)

 $G \simeq \mathrm{Gal}(K/k) \curvearrowright K(x_1,\ldots,x_n)$: purely quasi-monomial, $K(x_1,\ldots,x_n)^G$ may be regarded as the function field of algebraic torus T over k which splits over K $(T \otimes_k K \simeq \mathbb{G}_m^n)$.

- ▶ *T* is unirational over *k*, i.e. $K(x_1, \ldots, x_n)^G \subset k(t_1, \ldots, t_n)$.
- ▶ $∃13$ $ℤ$ -coujugacy subgroups $G \leq GL_2(\mathbb{Z})$.

Theorem (Voskresenskii, 1967) 2-dim. algebraic tori *T*

T is rational over *k*.

▶ *∃*73 Z-coujugacy subgroups *G ≤* GL3(Z).

Theorem (Kunyavskii, 1990) 3-dim. algebraic tori *T*

(i) *T* is rational over $k \iff T$ is stably rational over k *⇐⇒ T* is retract rational over *k ⇐⇒ ∃G*: 58 groups; (ii) *T* is not rational over $k \iff T$ is not stably rational over k *⇐⇒ T* is not retract rational over *k ⇐⇒ ∃G*: 15 groups.

Rationality of algebraic tori (4-dim., 5-dim.)

▶ *∃*710 Z-coujugacy subgroups *G ≤* GL4(Z).

Theorem (Hoshi-Yamasaki, 2017, Mem. AMS) 4-dim. alg. tori *T*

- (i) *T* is stably rational over $k \iff \exists G$: 487 groups;
- (ii) *T* is not stably but retract rational over $k \iff \exists G$: 7 groups;
- (iii) *T* is not retract rational over $k \iff \exists G: 216$ groups.
- ▶ *∃*6079 Z-coujugacy subgroups *G ≤* GL5(Z).

Theorem (Hoshi-Yamasaki, 2017, Mem. AMS) 5-dim. alg. tori *T*

- (i) *T* is stably rational over $k \iff \exists G: 3051$ groups;
- (ii) *T* is not stably but retract rational over $k \iff \exists G: 25$ groups;
- (iii) *T* is not retract rational over $k \iff \exists G: 3003$ groups.
	- ▶ (Voskresenskii's conjecture) any stably rational torus is rational.
	- ▶ *∃*85308 Z-coujugacy subgroups *G ≤* GL6(Z)!

Proof: Flabby (Flasque) resolution (1/2)

- ▶ The function field of *n*-dim. $T \stackrel{\text{identified}}{\longleftrightarrow} L(M)^G$, $G \leq \text{GL}(n, \mathbb{Z})$
- \blacktriangleright *M*: *G*-lattice, i.e. f.g. \mathbb{Z} -free $\mathbb{Z}[G]$ -module.

Definition

- (i) M is permutation $\stackrel{{\rm def}}{\iff} M \simeq \oplus_{1\leq i\leq m}\mathbb{Z}[G/H_i].$
- \downarrow (ii) M is stably permutation $\stackrel{\text{def}}{\iff} M \oplus \exists P \simeq P',\ P,P'$: permutation.
- (iii) *M* is invertible $\xleftrightarrow{\text{def}}$ *M* ⊕ $\exists M' \simeq P$: permutation.
- $(i\mathbf{v})$ *M* is coflabby $\iff H^1(H, M) = 0 \; (\forall H \leq G).$
- (v) *M* is flabby $\iff \widehat{H}^{-1}(H, M) = 0 \; (\forall H \leq G)$. (\widehat{H} : Tate cohomology)
	- ▶ "permutation"
		- =*⇒* "stably permutation"
		- =*⇒* "invertible"
		- =*⇒* "flabby and coflabby".

Proof: Flabby (Flasque) resolution (2/2)

Commutative monoid *M* $M_1 \sim M_2 \stackrel{{\rm def.}}{\iff} M_1 \oplus P_1 \simeq M_2 \oplus P_2 \text{ } (\exists P_1, \exists P_2 \text{: permutation)} .$ \implies commutative monoid *M*: $[M_1] + [M_2] := [M_1 \oplus M_2], 0 = [P].$ Theorem (Endo-Miyata, 1974, Colliot-Thélène-Sansuc, 1977) *∃P*: permutation, *∃F*: flabby such that $0 \to M \to P \to F \to 0$: flabby resolution of M. $[M]$ ^{*fl*} := [*F*], $[M]$ ^{*fl*} is invertible $\stackrel{\text{def}}{\iff} [M]$ ^{*fl*} = [*E*] ($\exists E$: invertible). Theorem (Endo-Miyata, 1973, Voskresenskii, 1974, Saltman, 1984) $(EM73)$ $[M]$ ^{fl} = 0 \iff $L(M)^G$ is stably rational over *k*. $(Vos74) [M]$ ^{fl} = $[M']$ ^{fl} $\iff L(M)^{G}(x_1, ..., x_m) \simeq L(M')^{G}(y_1, ..., y_n)$. $\text{(Sal84)} \; [M]^{fl}$ is invertible $\iff L(M)^G$ is retract rational over $k.$

Our contribution

- ▶ We give a procedure to compute a flabby resolution of *M*, in particular $[M]^{fl} = [F]$, effectively (with smaller rank after base change) by computer software GAP.
- ▶ The function IsFlabby (resp. IsCoflabby) may determine whether *M* is flabby (resp. coflabby).
- \blacktriangleright The function IsInvertibleF may determine whether $[M]^{fl} = [F]$ is ${\sf invertible\ }$ $(\leftrightarrow$ whether $L(M)^G$ (resp. $T)$ is retract rational).
- ▶ We provide some functions for checking a possibility of isomorphism

$$
\left(\bigoplus_{i=1}^r a_i \mathbb{Z}[G/H_i]\right) \oplus a_{r+1}F \simeq \bigoplus_{i=1}^r b'_i \mathbb{Z}[G/H_i]
$$
 (*)

by computing some invariants (e.g. trace, \widehat{Z}^0 , \widehat{H}^0) of both sides.

- ▶ [HY17, Example 10.7]. $G \simeq S_5$ \leq GL(5, Z) with number (5, 946, 4) \Rightarrow rank(*F*) = 17 and rank(*) = 88 holds
- \Longrightarrow $[F]=0 \Longrightarrow L(M)^G$ (resp. $T)$ is stably rational over $k.$ Akinari Hoshi (Niigata University) Rationality problem for fields of invariants December 16, 2024 60/67

Application

$\operatorname{\mathsf{Corollary}}\left([F] = [M]^{fl} \right]$: invertible case, $G \simeq S_5, F_{20}$)

∃T, *T ′* ; 4-dim. not stably rational algebraic tori over *k* such that $T \not\sim T'$ (birational) and $T \times T'$: 8-dim. stably rational over $k.$ $\therefore -[M]^{fl} = [M']^{fl} \neq 0.$

Prop. ([HY17], Krull-Schmidt fails for permutation D_6 -lattices)

 $\{1\}$, $C_2^{(1)}$ $\stackrel{\scriptscriptstyle{(1)}}{2},\stackrel{\scriptscriptstyle{(2)}}{C_2^{\scriptscriptstyle{(2)}}}$ $\stackrel{(2)}{2}$, $\stackrel{(2)}{C_2^{\left(3\right)}}$ $C_2^{(3)}$, C_3 , C_2^{2} , C_6 , $S_3^{(1)}$ $S_3^{(1)}$, $S_3^{(2)}$ $^{(2)}_3$, D_6 : conj. subgroups of D_6 . $\mathbb{Z}[D_6] \oplus \mathbb{Z}[D_6/C_2^2]^{\oplus 2} \oplus \mathbb{Z}[D_6/C_6] \oplus \mathbb{Z}[D_6/S_3^{(1)}] \oplus \mathbb{Z}[D_6/S_3^{(2)}]$ $\simeq \mathbb{Z}[D_6/C_2^{(1)}] \oplus \mathbb{Z}[D_6/C_2^{(2)}] \oplus \mathbb{Z}[D_6/C_2^{(3)}] \oplus \mathbb{Z}[D_6/C_3] \oplus \mathbb{Z}^{\oplus 2}.$

 \blacktriangleright D_6 is the smallest example exhibiting the failure of K-S:

Theorem (Dress, 1973)

Krull-Schmidt holds for permutation *G*-lattices $\iff G/O_p(G)$ is cyclic where $O_p(G)$ is the maximal normal *p*-subgroup of *G*.

Krull-Schmidt and Direct sum cancelation

Theorem (Hindman-Klingler-Odenthal, 1998) Assume $G \neq D_8$

Krull-Schmidt holds for *G*-lattices \iff (i) $G = C_p$ ($p \le 19$; prime), (ii) $G = C_n$ ($n = 1, 4, 8, 9$), (iii) $G = V_4$ or (iv) $G = D_4$.

Theorem (Endo-Hironaka, 1979)

Direct sum cancellation holds, i.e. $M_1 \oplus N \simeq M_2 \oplus N \Longrightarrow M_1 \simeq M_2$, \Longrightarrow *G* is abelian, dihedral, A_4 , S_4 or A_5 (*).

- ▶ via projective class group (see Swan (1988) Corollary 1.3, Section 7).
- ▶ Except for (*) =*⇒* Direct sum cancelation fails =*⇒* K-S fails

Theorem ($[HY17]$) $G \le GL(n, \mathbb{Z})$ (up to conjugacy)

(i) $n \leq 4 \Longrightarrow K-S$ holds.

(ii) $n = 5$. K-S fails \iff 11 groups *G* (among 6079 groups).

(iii) $n = 6$. K-S fails \iff 131 groups *G* (among 85308 groups).

Special case: $T=R_{K/k}^{(1)}(\mathbb{G}_m);$ norm one tori $(1/5)$

 \blacktriangleright Rationality problem for $T=R_{K/k}^{(1)}(\mathbb{G}_m)$ is investigated by S. Endo, Colliot-Thélène and Sansuc, W. Hürlimann, L. Le Bruyn, A. Cortella and B. Kunyavskii, N. Lemire and M. Lorenz, M. Florence, etc.

Theorem (Endo-Miyata, 1974), (Saltman, 1984)

Let K/k be a finite Galois field extension and $G = \text{Gal}(K/k)$. (i) *T* is retract *k*-rational \iff all the Sylow subgroups of *G* are cyclic; (ii) *T* is stably *k*-rational $\iff G$ is a cyclic group, or a direct product of a cyclic group of order m and a group $\langle \sigma, \tau \,|\, \sigma^n = \tau^{2^d} = 1, \tau \sigma \tau^{-1} = \sigma^{-1} \rangle$, where $d, m \ge 1, n \ge 3, m, n$: odd, and $(m, n) = 1$.

Theorem (Endo, 2011)

Let *K/k* be a finite non-Galois, separable field extension and *L/k* be the Galois closure of *K/k*. Assume that the Galois group of *L/k* is nilpotent. Then the norm one torus $T=R_{K/k}^{(1)}(\mathbb{G}_m)$ is not retract k -rational.

Special case: $T=R_{K/k}^{(1)}(\mathbb{G}_m);$ norm one tori (2/5)

- \blacktriangleright Let K/k be a finite non-Galois, separable field extension
- \blacktriangleright Let L/k be the Galois closure of K/k .
- ▶ Let $G = \text{Gal}(L/k)$ and $H = \text{Gal}(L/K) \leq G$.

Theorem (Endo, 2011)

Assume that all the Sylow subgroups of *G* are cyclic. Then *T* is retract *k*-rational. $T = R_{K/k}^{(1)}(\mathbb{G}_m)$ is stably k -rational $\iff G = D_n$, n odd $(n \geq 3)$ or $C_m \times D_n$, m, n odd $(m, n \ge 3)$, $(m, n) = 1$, $H \le D_n$ with $|H| = 2$.

Special case: $T=R_{K/k}^{(1)}(\mathbb{G}_m);$ norm one tori (3/5)

Theorem (Endo, 2011) dim *T* = *n −* 1

Assume that $Gal(L/k) = S_n$, $n \geq 3$, and $Gal(L/K) = S_{n-1}$ is the stabilizer of one of the letters in *Sn*. $\mathcal{O}(n)$ $R^{(1)}_{K/k}(\mathbb{G}_m)$ is retract k -rational $\iff n$ is a prime; $\text{(ii)}\,\,R_{K/k}^{(1)}(\mathbb{G}_m)$ is (stably) k -rational $\iff n=3.$

Theorem (Endo, 2011) dim *T* = *n −* 1

Assume that $Gal(L/k) = A_n$, $n \geq 4$, and $Gal(L/K) = A_{n-1}$ is the stabilizer of one of the letters in *An*. $\mathcal{O}(n)$ $R^{(1)}_{K/k}(\mathbb{G}_m)$ is retract k -rational $\iff n$ is a prime;

 $\mathbf{F}(\mathbf{i}) \; \exists t \in \mathbb{N} \; \mathsf{s.t.} \; [R_{K/k}^{(1)}(\mathbb{G}_m)]^{(t)}$ is stably k -rational $\iff n = 5.$

 \blacktriangleright $[R_{K/k}^{(1)}(\mathbb{G}_m)]^{(t)}$: the product of t copies of $R_{K/k}^{(1)}(\mathbb{G}_m)$.

Special case: $T=R_{K/k}^{(1)}(\mathbb{G}_m);$ norm one tori (4/5)

$\sf Theorem~([HY17],~Rationality~for~$ $R^{(1)}_{K/k}(\mathbb{G}_m)~($ dim. $~4,~[K:k]=5))$

Let *K/k* be a separable field extension of degree 5 and *L/k* be the Galois closure of K/k . Assume that $G = \text{Gal}(L/k)$ is a transitive subgroup of S_5 and $H = \operatorname{Gal}(L/K)$ is the stabilizer of one of the letters in $G.$ Then the rationality of $R^{(1)}_{K/k}(\mathbb{G}_m)$ is given by *G* $L(M) = L(x_1, x_2, x_3, x_4)^G$

 \blacktriangleright This theorem is already known except for the case of A_5 (Endo).

 \blacktriangleright Stably *k*-rationality for the case A_5 is asked by S. Endo (2011).

Special case: $T=R_{K/k}^{(1)}(\mathbb{G}_m);$ norm one tori (5/5)

Corollary of (Endo, 2011) and [HY17]

Assume that $Gal(L/k) = A_n$, $n \geq 4$, and $Gal(L/K) = A_{n-1}$ is the stabilizer of one of the letters in *An*. Then $R_{K/k}^{(1)}(\mathbb{G}_m)$ is stably k -rational $\iff n=5.$

More recent results on stably/retract *k*-rational classification for *T*

- ▶ *G* \leq *S_n* (*n* \leq 10) and *G* \neq 9*T*27 \simeq *PSL*₂(\mathbb{F}_8), $G \leq S_p$ and $G \neq PSL_2(\mathbb{F}_{2^e})$ $(p = 2^e + 1 \geq 17$; Fermat prime) (Hoshi-Yamasaki, 2021, Israel J. Math.)
- ▶ *G* \leq *S_n* (*n* = 12, 14, 15) (*n* = 2^{*e*}) (Hoshi-Hasegawa-Yamasaki, 2020, Math. Comp.)
- $III(T)$ and Hasse norm principle over number fields k
- ▶ (Hoshi-Kanai-Yamasaki, 2022, Math. Comp., 2023, J. Number Theory, 2024, J. Algebra, and arXiv:2210.09119) Akinari Hoshi (Niigata University) Rationality problem for fields of invariants December 16, 2024 67/67