Birational classification for algebraic tori (joint work with Aiichi Yamasaki)

Akinari Hoshi

Niigata University

December 19, 2024

Table of contents

1. Rationality problem for algebraic *k*-tori *T*

[HY17] A. Hoshi, A. Yamasaki, Rationality problem for algebraic tori, Mem. Amer. Math. Soc. 248 (2017), no. 1176, v+215 pp.

- $+$ Hasse norm principle (HNP) for K/k (via T. Ono's theorem) [HKY22], [HKY23], [HKY24] A. Hoshi, K. Kanai, A. Yamasaki.
- 2. Birational classification for algebraic *k*-tori *T*

[HY] A. Hoshi, A. Yamasaki, Birational classification for algebraic tori, 175 pages, arXiv:2112.02280.

§1. Rationality problem for algebraic tori *T* (1/3)

- ▶ *k*: a base field which is NOT algebraically closed! (TODAY)
- ▶ *T*: algebraic *k*-torus, i.e. *k*-form of a split torus; an algebraic group over k (group k -scheme) with $T\times_k \overline{k}\simeq (\mathbb{G}_{m,\overline{k}})^n.$

Rationality problem for algebraic tori

Whether T is k -rational?, i.e. $T \approx \mathbb{P}^n$? (birationally k -equivalent)

Let $R^{(1)}_{K/k}(\mathbb{G}_m)$ be the norm one torus of K/k , i.e. the kernel of the norm $\max_{K/k} K_{K/k} \colon R_{K/k}(\mathbb{G}_m) \to \mathbb{G}_m$ where $R_{K/k}$ is the Weil restriction:

$$
1 \longrightarrow R_{K/k}^{(1)}(\mathbb{G}_m) \longrightarrow R_{K/k}(\mathbb{G}_m) \stackrel{N_{K/k}}{\longrightarrow} \mathbb{G}_m \longrightarrow 1.
$$

dim $n-1$ n 1

►
$$
\exists 2
$$
 algebraic *k*-tori *T* with dim(*T*) = 1;
the trivial torus \mathbb{G}_m and $R_{K/k}^{(1)}(\mathbb{G}_m)$ with $[K : k] = 2$, are *k*-rational.

Rationality problem for algebraic tori *T* (2/3)

▶ \exists 13 algebraic *k*-tori *T* with $\dim(T) = 2$.

Theorem (Voskresenskii 1967) 2-dim. algebraic tori *T*

T is *k*-rational.

▶ $∃73$ algebraic *k*-tori *T* with $dim(T) = 3$.

Theorem (Kunyavskii 1990) 3-dim. algebraic tori *T*

- (i) *∃*58 algebraic *k*-tori *T* which are *k*-rational;
- (ii) *∃*15 algebraic *k*-tori *T* which are not *k*-rational.
	- ▶ What happens in higher dimensions?

Algebraic *k*-tori *T* and *G*-lattices

- ▶ *T*: algebraic *k*-torus
	- \Longrightarrow ∃ finite Galois extension L/k such that $T\times_k L \simeq (\mathbb{G}_{m,L})^n.$
- \blacktriangleright $G = \text{Gal}(L/k)$ where L is the minimal splitting field.

Category of algebraic *k*-tori which split/ $L \stackrel{\text{duality}}{\longleftrightarrow}$ Category of *G*-lattices (i.e. finitely generated \mathbb{Z} -free $\mathbb{Z}[G]$ -module)

- ▶ *T* \mapsto the character group $\hat{T} = \text{Hom}(T, \mathbb{G}_m)$: *G*-lattice.
- ▶ $T = \operatorname{Spec}(L[M]^G)$ which splits/ L with $\widehat{T} \simeq M \leftrightarrow M$: *G*-lattice
- ▶ Tori of dimension $n \stackrel{1:1}{\longleftrightarrow}$ elements of the set $H^1(\mathcal{G},{\rm GL}(n,\mathbb{Z}))$ where $\mathcal{G} = \operatorname{Gal}(\overline{k}/k)$ since $\operatorname{Aut}(\mathbb{G}_m^n) = \operatorname{GL}(n,\mathbb{Z}).$
- \blacktriangleright *k*-torus *T* of dimension *n* is determined uniquely by the integral representation $h : \mathcal{G} \to \mathrm{GL}(n, \mathbb{Z})$ up to conjugacy, and the group $h(\mathcal{G})$ is a finite subgroup of $\mathrm{GL}(n,\mathbb{Z})$.
- ▶ The function field of $T \stackrel{\text{identified}}{\longleftrightarrow} L(M)^G$: invariant field.

Rationality problem for algebraic tori *T* (3/3)

- \blacktriangleright *L*/*k*: Galois extension with $G = \text{Gal}(L/k)$.
- ▶ $M = \bigoplus_{1 \leq i \leq n} \mathbb{Z} \cdot u_i$: *G*-lattice with a \mathbb{Z} -basis $\{u_1, \ldots, u_n\}$.
- \blacktriangleright *G* acts on $L(x_1, \ldots, x_n)$ by

$$
\sigma(x_i) = \prod_{j=1}^n x_j^{a_{i,j}}, \quad 1 \le i \le n
$$

for any $\sigma \in G$, when $\sigma(u_i) = \sum_{j=1}^n a_{i,j} u_j$, $a_{i,j} \in \mathbb{Z}$. \blacktriangleright $L(M) := L(x_1, \ldots, x_n)$ with this action of *G*.

▶ The function field of algebraic *k*-torus $T \stackrel{\text{identified}}{\longleftrightarrow} L(M)^G$

Rationality problem for algebraic tori *T* (2nd form)

Whether $L(M)^G$ is k -rational? $(=$ purely transcendental over $k?$; $L(M)^G = k(\exists t_1, \ldots, \exists t_n)?$

Some definitions.

 \blacktriangleright *K/k*: a finite generated field extension.

Definition (stably rational)

K is called stably *k*-rational if $K(y_1, \ldots, y_m)$ is *k*-rational.

Definition (retract rational)

K is retract *k*-rational if *∃k*-algebra (domain) *R ⊂ K* such that (i) *K* is the quotient field of *R*; (i) $∃f ∈ k[x_1, ..., x_n]$ $∃k$ -algebra hom. $φ : R → k[x_1, ..., x_n][1/f]$ and $\psi: k[x_1,\ldots,x_n][1/f] \to R$ satisfying $\psi \circ \varphi = 1_R$.

Definition (unirational)

K is *k*-unirational if $K \subset k(x_1, \ldots, x_n)$.

- ▶ *k*-rational *⇒* stably *k*-rational *⇒* retract *k*-rational *⇒ k*-unirational.
- \blacktriangleright $L(M)^G$ (resp. *T*) is always *k*-unirational.

Rationality problem for algebraic tori *T* (2-dim., 3-dim.)

- ▶ The function field of *n*-dim. $T \stackrel{\text{identified}}{\longleftrightarrow} L(M)^G$, $G \leq \text{GL}(n, \mathbb{Z})$
- ▶ *∃*13 Z-coujugacy subgroups *G ≤* GL(2*,* Z) (*∃*13 2-dim. algebraic *k*-tori *T*).

Theorem (Voskresenskii 1967) 2-dim. algebraic tori *T* (restated)

T is *k*-rational.

▶ *∃*73 Z-coujugacy subgroups *G ≤* GL(3*,* Z) (*∃*73 3-dim. algebraic *k*-tori *T*).

Theorem (Kunyavskii 1990) 3-dim. algebraic tori *T* (precise form)

(i) *T* is *k*-rational \iff *T* is stably *k*-rational *⇐⇒ T* is retract *k*-rational *⇐⇒ ∃G*: 58 groups; (ii) *T* is not *k*-rational \iff *T* is not stably *k*-rational *⇐⇒ T* is not retract *k*-rational *⇐⇒ ∃G*: 15 groups.

Rationality problem for algebraic tori *T* (4-dim.)

- ▶ The function field of *n*-dim. $T \stackrel{\text{identified}}{\longleftrightarrow} L(M)^G$, $G \leq \text{GL}(n, \mathbb{Z})$
- ▶ *∃*710 Z-coujugacy subgroups *G ≤* GL(4*,* Z) (*∃*710 4-dim. algebraic *k*-tori *T*).

Theorem ([HY17]) 4-dim. algebraic tori *T*

- (i) *T* is stably *k*-rational \iff ∃*G*: 487 groups;
- (ii) *T* is not stably but retract *k*-rational $\iff \exists G: 7$ groups;
- (iii) *T* is not retract *k*-rational \iff ∃*G*: 216 groups.
	- \blacktriangleright We do not know " k -rationality".
	- ▶ Voskresenskii's conjecture: any stably *k*-rational torus is *k*-rational (Zariski problem).
	- \blacktriangleright what happens for dimension 5?

Rationality problem for algebraic tori *T* (5-dim.)

- ▶ The function field of *n*-dim. $T \stackrel{\text{identified}}{\longleftrightarrow} L(M)^G$, $G \leq \text{GL}(n, \mathbb{Z})$
- ▶ *∃*6079 Z-coujugacy subgroups *G ≤* GL(5*,* Z) (*∃*6079 5-dim. algebraic *k*-tori *T*).

Theorem ([HY17]) 5-dim. algebraic tori *T*

- (i) *T* is stably *k*-rational \iff ∃*G*: 3051 groups;
- (ii) *T* is not stably but retract *k*-rational $\iff \exists G: 25$ groups;
- (iii) *T* is not retract *k*-rational $\iff \exists G: 3003$ groups.
	- \blacktriangleright what happens for dimension 6?
	- \triangleright BUT we do not know the answer for dimension 6.
	- ▶ *∃*85308 Z-coujugacy subgroups *G ≤* GL(6*,* Z) (*∃*85308 6-dim. algebraic *k*-tori *T*).

Flabby (Flasque) resolution

 \blacktriangleright *M*: *G*-lattice, i.e. f.g. \mathbb{Z} -free $\mathbb{Z}[G]$ -module.

Definition

- (i) M is permutation $\stackrel{\text{def}}{\iff} M \simeq \oplus_{1 \leq i \leq m} \mathbb{Z}[G/H_i].$
- (ii) *M* is stably permutation $\stackrel{\text{def}}{\iff} M \oplus \exists P \simeq P',\ P,P'$: permutation.
- (iii) *M* is invertible $\xleftrightarrow{\text{def}}$ $M \oplus \exists M' \simeq P$: permutation.
- $(i\mathbf{v})$ *M* is coflabby $\iff H^1(H, M) = 0 \; (\forall H \leq G).$
- $($ v $)$ M is flabby $\stackrel{\text{def}}{\iff} \widehat{H}^{-1}(H,M) = 0$ $(\forall H \leq G)$. $(\widehat{H}$: Tate cohomology)
- ▶ "permutation"
	- =*⇒* "stably permutation"
	- =*⇒* "invertible"
	- =*⇒* "flabby and coflabby".

Commutative monoid *M*

 $M_1 \sim M_2 \stackrel{{\rm def.}}{\iff} M_1 \oplus P_1 \simeq M_2 \oplus P_2 \text{ } (\exists P_1, \exists P_2 \text{: permutation)} .$ \implies commutative monoid *M*: [*M*₁] + [*M*₂] := [*M*₁ ⊕ *M*₂], 0 = [*P*].

Theorem (Endo-Miyata 1974, Colliot-Thélène-Sansuc 1977)

∃P: permutation, *∃F*: flabby such that

 $0 \to M \to P \to F \to 0$: flabby resolution of M.

 \blacktriangleright $[M]^{fl} := [F]$; flabby class of M

Theorem (Endo-Miyata 1973, Voskresenskii 1974, Saltman 1984)

 (EM73) $[M]^{fl} = 0 \iff L(M)^G$ is stably *k*-rational. $(Vos74) [M]$ ^{fl} = $[M']$ ^{fl} \iff $L(M)$ ^G $(x_1, ..., x_m) \simeq L(M')$ ^G $(y_1, ..., y_n)$; stably *k*-equivalent. $(Sal84)$ $[M]$ ^{fl} is invertible $\iff L(M)^G$ is retract *k*-rational.

$$
\blacktriangleright M = M_G \simeq \widehat{T} = \text{Hom}(T, \mathbb{G}_m), \ k(T) \simeq L(M)^G, \ G = \text{Gal}(L/k)
$$
\nKinari Hospital (Nijgata University)

\nBirational classification for algebraic tori

\nDecember 19, 2024

\n12/45

Contributions of [HY17]

- \blacktriangleright We give a procedure to compute a flabby resolution of M , in particular $[M]^{fl} = [F]$, effectively (with smaller rank after base change) by computer software GAP.
- ▶ The function IsFlabby (resp. IsCoflabby) may determine whether *M* is flabby (resp. coflabby).
- \blacktriangleright The function IsInvertibleF may determine whether $[M]^{fl} = [F]$ is ${\sf invertible\ }$ $(\leftrightarrow$ whether $L(M)^G$ (resp. $T)$ is retract rational).
- ▶ We provide some functions for checking a possibility of isomorphism

$$
\left(\bigoplus_{i=1}^r a_i \mathbb{Z}[G/H_i]\right) \oplus a_{r+1}F \simeq \bigoplus_{i=1}^r b'_i \mathbb{Z}[G/H_i]
$$
 (*)

by computing some invariants (e.g. trace, \widehat{Z}^0 , \widehat{H}^0) of both sides.

- ▶ [HY17, Example 10.7]. $G \simeq S_5$ \leq GL(5, Z) with number (5, 946, 4) \Rightarrow rank(*F*) = 17 and rank(*) = 88 holds
	- \Longrightarrow $[F]=0 \Longrightarrow L(M)^G$ (resp. $T)$ is stably rational over $k.$

Akinari Hoshi (Niigata Univeristy) Birational classification for algebraic tori December 19, 2024 13 / 45

Application to Krull-Schmidt

where *Op*(*G*) is the maximal normal *p*-subgroup of *G*.

e.

Krull-Schmidt and Direct sum cancelation

Theorem (Hindman-Klingler-Odenthal 1998) Assume $G \neq D_8$

Krull-Schmidt holds for *G*-lattices \iff (i) $G = C_p$ ($p \le 19$; prime), (ii) $G = C_n$ ($n = 1, 4, 8, 9$), (iii) $G = V_4$ or (iv) $G = D_4$.

Theorem (Endo-Hironaka 1979)

Direct sum cancellation holds, i.e. $M_1 \oplus N \simeq M_2 \oplus N \Longrightarrow M_1 \simeq M_2$, \Longrightarrow *G* is abelian, dihedral, A_4 , S_4 or A_5 (*).

- ▶ via projective class group (see Swan 1988, Corollary 1.3, Section 7).
- ▶ Except for (*) =*⇒* Direct sum cancelation fails =*⇒* K-S fails

Theorem ([HY17]) $G \leq \mathrm{GL}(n,\mathbb{Z})$ (up to conjugacy)

(i) $n \leq 4 \implies$ K-S holds.

(ii) $n = 5$. K-S fails \iff 11 groups *G* (among 6079 groups).

(iii) $n = 6$. K-S fails \iff 131 groups *G* (among 85308 groups).

$\mathsf{Special\ case}\colon T=R_{K/k}^{(1)}(\mathbb{G}_m);$ norm one tori $(1/5)$

 \blacktriangleright Rationality problem for $T=R_{K/k}^{(1)}(\mathbb{G}_m)$ is investigated by S. Endo, Colliot-Thélène and Sansuc, W. Hürlimann, L. Le Bruyn, A. Cortella and B. Kunyavskii, N. Lemire and M. Lorenz, M. Florence, etc.

Theorem (Endo-Miyata 1974), (Saltman 1984)

Let K/k be a finite Galois field extension and $G = \text{Gal}(K/k)$. (i) *T* is retract *k*-rational \iff all the Sylow subgroups of *G* are cyclic; (ii) *T* is stably *k*-rational $\iff G$ is a cyclic group, or a direct product of a cyclic group of order m and a group $\langle \sigma, \tau \,|\, \sigma^n = \tau^{2^d} = 1, \tau \sigma \tau^{-1} = \sigma^{-1} \rangle$, where $d, m \ge 1, n \ge 3, m, n$: odd, and $(m, n) = 1$.

Theorem (Endo 2011)

Let *K/k* be a finite non-Galois, separable field extension and *L/k* be the Galois closure of *K/k*. Assume that the Galois group of *L/k* is nilpotent. Then the norm one torus $T=R_{K/k}^{(1)}(\mathbb{G}_m)$ is not retract k -rational.

 $\mathsf{Special\ case}\colon T=R_{K/k}^{(1)}(\mathbb{G}_m);$ norm one tori $(2/5)$

- \blacktriangleright Let K/k be a finite non-Galois, separable field extension
- \blacktriangleright Let L/k be the Galois closure of K/k .
- ▶ Let $G = \text{Gal}(L/k)$ and $H = \text{Gal}(L/K) \leq G$.

Theorem (Endo 2011)

Assume that all the Sylow subgroups of *G* are cyclic. Then *T* is retract *k*-rational. $T = R_{K/k}^{(1)}(\mathbb{G}_m)$ is stably k -rational $\iff G = D_n$, n odd $(n \geq 3)$ or $C_m \times D_n$, *m, n* odd $(m, n \ge 3)$, $(m, n) = 1$, $H \le D_n$ with $|H| = 2$.

$\mathsf{Special\ case}\colon T=R_{K/k}^{(1)}(\mathbb{G}_m);$ norm one tori $(3/5)$

Theorem (Endo 2011) dim *T* = *n −* 1

Assume that $Gal(L/k) = S_n$, $n \geq 3$, and $Gal(L/K) = S_{n-1}$ is the stabilizer of one of the letters in *Sn*. $\mathcal{O}(n)$ $R^{(1)}_{K/k}(\mathbb{G}_m)$ is retract k -rational $\iff n$ is a prime; $\text{(ii)}\,\,R_{K/k}^{(1)}(\mathbb{G}_m)$ is (stably) k -rational $\iff n=3.$

Theorem (Endo 2011) dim *T* = *n −* 1

Assume that $Gal(L/k) = A_n$, $n \geq 4$, and $Gal(L/K) = A_{n-1}$ is the stabilizer of one of the letters in *An*. $\mathcal{O}(n)$ $R^{(1)}_{K/k}(\mathbb{G}_m)$ is retract k -rational $\iff n$ is a prime;

 $\mathbf{F}(\mathbf{i}) \; \exists t \in \mathbb{N} \; \mathsf{s.t.} \; [R_{K/k}^{(1)}(\mathbb{G}_m)]^{(t)}$ is stably k -rational $\iff n = 5.$

 \blacktriangleright $[R_{K/k}^{(1)}(\mathbb{G}_m)]^{(t)}$: the product of t copies of $R_{K/k}^{(1)}(\mathbb{G}_m)$.

 $\mathsf{Special\ case}\colon T=R_{K/k}^{(1)}(\mathbb{G}_m);$ norm one tori $(4/5)$

$\sf Theorem~([HY17],~Rationality~for~$ $R^{(1)}_{K/k}(\mathbb{G}_m)~($ dim. $~4,~[K:k]=5))$

Let *K/k* be a separable field extension of degree 5 and *L/k* be the Galois closure of K/k . Assume that $G = \text{Gal}(L/k)$ is a transitive subgroup of S_5 and $H = \operatorname{Gal}(L/K)$ is the stabilizer of one of the letters in $G.$ Then the rationality of $R^{(1)}_{K/k}(\mathbb{G}_m)$ is given by *G* $L(M) = L(x_1, x_2, x_3, x_4)^G$

 \blacktriangleright This theorem is already known except for the case of A_5 (Endo).

 \blacktriangleright Stably *k*-rationality for the case A_5 is asked by S. Endo (2011).

 $\mathsf{Special\ case}\colon T=R_{K/k}^{(1)}(\mathbb{G}_m);$ norm one tori $(\mathsf{5}/\mathsf{5})$

Corollary of (Endo 2011) and [HY17]

Assume that $Gal(L/k) = A_n$, $n \geq 4$, and $Gal(L/K) = A_{n-1}$ is the stabilizer of one of the letters in *An*. Then $R_{K/k}^{(1)}(\mathbb{G}_m)$ is stably *k*-rational $\iff n=5.$

More recent results on stably/retract *k*-rational classification for *T*

- ▶ $G \leq S_n$ $(n \leq 10)$ and $G \neq 9T27 \simeq PSL_2(\mathbb{F}_8)$, $G \leq S_p$ and $G \neq PSL_2(\mathbb{F}_{2^e})$ $(p = 2^e + 1 \geq 17$; Fermat prime) (Hoshi-Yamasaki [HY21] Israel J. Math.)
- ▶ *G* \leq *S_n* (*n* = 12, 14, 15) (*n* = 2^{*e*}) (Hasegawa-Hoshi-Yamasaki [HHY20] Math. Comp.)
- $\text{III}(T)$ and Hasse norm principle over number fields $k \mid (\text{see next slides})$
- ▶ (Hoshi-Kanai-Yamasaki [HKY22] Math. Comp., [HKY23] JNT)

$III(T)$ and HNP for K/k : Ono's theorem (1963)

- \blacktriangleright *T* : algebraic *k*-torus, i.e. $T\times_k \overline{k} \simeq (\mathbb{G}_{m,\overline{k}})^n.$
- ▶ $III(T) := \text{Ker}\lbrace H^1(k, T) \stackrel{\text{res}}{\longrightarrow} \bigoplus$ *v∈V^k* $H^1(k_v,T)\}$: Shafarevich-Tate gp.
- \blacktriangleright $T = R_{K/k}^{(1)}(\mathbb{G}_m)$ is biregularly isomorphic to the norm hyper surface $f(x_1,\ldots,x_n)=1$ where $f\in k[x_1,\ldots,x_n]$ is the norm form of $K/k.$

Theorem (Ono 1963, Ann. of Math.)

Let K/k be a finite extension of number fields and $T=R_{K/k}^{(1)}(\mathbb{G}_m).$ Then

$$
\mathrm{III}(T)\simeq (N_{K/k}(\mathbb{A}_K^\times)\cap k^\times)/N_{K/k}(K^\times)
$$

where \mathbb{A}_K^\times is the idele group of $K.$ In particular,

 $III(T) = 0 \iff$ Hasse norm principle holds for K/k .

Known results for HNP (2/2)

- \blacktriangleright $T = R_{K/k}^{(1)}(\mathbb{G}_m).$
- ▶ $III(T) = 0 \iff$ Hasse norm principle holds for K/k .

Theorem (Kunyavskii 1984)

Let $[K : k] = 4$ *,* $G = \text{Gal}(L/k) \simeq 4Tm (1 \le m \le 5)$ *. Then* $\text{III}(T) = 0$ *except for* $4T2$ *and* $4T4$ *. For* $4T2 \simeq V_4$ *,* $4T4 \simeq A_4$ *,* (i) $\text{III}(T) \leq \mathbb{Z}/2\mathbb{Z}$; (ii) $\mathbf{III}(T) = 0 \Leftrightarrow \exists v \in V_k$ such that $V_4 \leq G_v$.

Theorem (Drakokhrust-Platonov 1987)

Let $[K : k] = 6$, $G = \text{Gal}(L/k) \simeq 6Tm \ (1 \le m \le 16).$ Then $III(T) = 0$ except for 6*T*4 and 6*T*12. For 6*T*4 $\simeq A_4$, 6*T*12 $\simeq A_5$, (i) $\mathop{\rm III}\nolimits(T) \leq \mathbb{Z}/2\mathbb{Z};$ (ii) $\text{III}(T) = 0 \Leftrightarrow \exists v \in V_k$ such that $V_4 \leq G_v$.

Voskresenskii's theorem (1969) (1/2)

▶ Let *X* be a smooth *k*-compactification of an algebraic *k*-torus *T*

Theorem (Voskresenskii 1969)

Let *k* be a global field, *T* be an algebraic *k*-torus and *X* be a smooth *k*-compactification of *T*. Then there exists an exact sequence

$$
0 \to A(T) \to H^1(k, \text{Pic } \overline{X})^{\vee} \to \text{III}(T) \to 0
$$

where $M^{\vee} = \text{Hom}(M, \mathbb{Q}/\mathbb{Z})$ is the Pontryagin dual of M.

- ▶ The group $A(T):=\left(\prod_{v\in V_k} T(k_v)\right)\left/\overline{T(k)}$ is called the kernel of the weak approximation of *T*.
- ▶ *T* : retract_rational \Longleftrightarrow $[\widehat{T}]^{fl} = [\operatorname{Pic} \overline{X}]$ is invertible \implies Pic \overline{X} is flabby and coflabby
	- $\implies H^1(k, \text{Pic }\overline{X})^{\vee} = 0 \implies A(T) = \text{III}(T) = 0.$
- \blacktriangleright when $T = R_{K/k}^{(1)}(\mathbb{G}_m)$, by Ono's theorem, *T* : retract *k*-rational \implies $III(T) = 0$ (HNP holds for *K/k*).
- Akinari Hoshi (Niigata Univeristy) Birational classification for algebraic tori December 19, 2024 23/45

Voskresenskii's theorem (1969) (2/2)

- \blacktriangleright when $T = R_{K/k}^{(1)}(\mathbb{G}_m)$, $\widehat{T} = J_{G/H}$ where $J_{G/H} = (I_{G/H})^{\circ} = \mathrm{Hom}(I_{G/H}, \mathbb{Z})$ is the dual lattice of $I_{G/H} = \text{Ker}(\varepsilon)$ and $\varepsilon : \mathbb{Z}[G/H] \to \mathbb{Z}$ is the augmentation map.
- ▶ (Hasegawa-Hoshi-Yamasaki [HHY20], Hoshi-Yamasaki [HY21]) For $[K : k] = n \le 15$ except $9T27 \simeq \mathrm{PSL}_2(\mathbb{F}_8)$, the classificasion of stably/retract rational $R^{(1)}_{K/k}(\mathbb{G}_m)$ was given.
- ▶ when $T = R_{K/k}^{(1)}(\mathbb{G}_m)$, T : retract k -rational $\Longrightarrow H^1(k,\text{Pic}\,\overline{X}) = 0$
- \blacktriangleright $H^1(k, \text{Pic }\overline{X}) \simeq \text{Br}(X)/\text{Br}(k) \simeq \text{Br}_{nr}(k(X)/k)/\text{Br}(k)$ by Colliot-Thélène-Sansuc 1987 where $Br(X)$ is the étale cohomological/Azumaya Brauer group of X and $\text{Br}_{nr}(k(X)/k)$ is the unramified Brauer group of $k(X)$ over k .

Theorems 1,2,3,4 in [HKY22], [HKY23] (1/3)

▶ *∃* 2*,* 13*,* 73*,* 710*,* 6079 cases of alg. *k*-tori *T* of dim(*T*) = 1*,* 2*,* 3*,* 4*,* 5.

Theorem 1 ([HKY22, Theorem 1.5 and Theorem 1.6])
\n(i) dim(T) = 4. Among the 216 cases (of 710) of not retract rational T,
\n
$$
H^1(k, Pic\overline{X}) \simeq \begin{cases} 0 & (194 \text{ of } 216), \\ \mathbb{Z}/2\mathbb{Z} & (20 \text{ of } 216), \\ (\mathbb{Z}/2\mathbb{Z})^{\oplus 2} & (2 \text{ of } 216). \end{cases}
$$
\n(ii) dim(T) = 5. Among 3003 cases (of 6079) of not retract rational T,
\n
$$
H^1(k, Pic\overline{X}) \simeq \begin{cases} 0 & (2729 \text{ of } 3003), \\ \mathbb{Z}/2\mathbb{Z} & (263 \text{ of } 3003), \\ (\mathbb{Z}/2\mathbb{Z})^{\oplus 2} & (11 \text{ of } 3003). \end{cases}
$$

▶ Kunyavskii (1984) showed that among the 15 cases (of 73) of not retract rational T of $\dim(T) = 3$, $H^1(k, \text{Pic }\overline{X}) = 0$ (13 of 15), $H^1(k, \text{Pic }\overline{X}) \simeq \mathbb{Z}/2\mathbb{Z}$ (2 of 15).

Theorems 1,2,3,4 in [HKY22], [HKY23] (2/3)

- \blacktriangleright *k* : a field, K/k : a separable field extension of $[K : k] = n$.
- ▶ $T = R_{K/k}^{(1)}(\mathbb{G}_m)$ with $\dim(T) = n 1$.
- \blacktriangleright *X* : a smooth *k*-compactification of *T*.
- \blacktriangleright *L*/ k : Galois closure of K/k , $G := \text{Gal}(L/k)$ and $H = \text{Gal}(L/K)$ with $[G : H] = n \Longrightarrow G = nTm \leq S_n$: transitive.
- ▶ The number of transitive subgroups nTm of S_n $(2 \le n \le 15)$ up to conjugacy is given as follows:

Theorem 2 ([HKY22, Theorem 1.5], [HKY23, Theorem 1.1])

Let $2\leq n\leq 15$ be an integer. Then $H^1(k,\mathrm{Pic}\,\overline{X})\neq 0 \Longleftrightarrow G=nTm$ is given as in [HKY22, Table 1] $(n \neq 12)$ or [HKY23,Table 1] $(n = 12)$.

 $[HKY22, \text{ Table 1}]: H^1(k, \text{Pic }\overline{X}) \simeq H^1(G, [J_{G/H}]^{fl}) \neq 0$ where $G = nTm$ with $2 \leq n \leq 15$ and $n \neq 12$

G	$H^1(k, \text{Pic }\overline{X}) \simeq H^1(G, [J_{G/H}]^{ft})$
$4T2 \simeq V_4$	$\mathbb{Z}/2\mathbb{Z}$
$4T4 \simeq A_4$	$\mathbb{Z}/2\mathbb{Z}$
$6T4 \simeq A_4$	$\mathbb{Z}/2\mathbb{Z}$
$6T12 \simeq A_5$	$\mathbb{Z}/2\mathbb{Z}$
$8T2 \simeq C_4 \times C_2$	$\mathbb{Z}/2\mathbb{Z}$
$8T3 \simeq (C_2)^3$	$(\mathbb{Z}/2\mathbb{Z})^{\oplus 3}$
$8T4 \simeq D_4$	$\mathbb{Z}/2\mathbb{Z}$
$8T9 \simeq D_4 \times C_2$	$\mathbb{Z}/2\mathbb{Z}$
$8T11 \simeq (C_4 \times C_2) \rtimes C_2$	$\mathbb{Z}/2\mathbb{Z}$
$8T13 \simeq A_4 \times C_2$	$\mathbb{Z}/2\mathbb{Z}$
$8T14 \simeq S_4$	$\mathbb{Z}/2\mathbb{Z}$
$8T15 \simeq C_8 \rtimes V_4$	$\mathbb{Z}/2\mathbb{Z}$
$8T19 \simeq (C_2)^3 \rtimes C_4$	$\mathbb{Z}/2\mathbb{Z}$
$8T21 \simeq (C_2)^3 \rtimes C_4$	$\mathbb{Z}/2\mathbb{Z}$
$8T22 \simeq (C_2)^3 \rtimes V_4$	$\mathbb{Z}/2\mathbb{Z}$
$8T31 \simeq ((C_2)^4 \rtimes C_2) \rtimes C_2$	$\mathbb{Z}/2\mathbb{Z}$
$8T32 \simeq ((C_2)^3 \rtimes V_4) \rtimes C_3$	$\mathbb{Z}/2\mathbb{Z}$
$8T37 \simeq \mathrm{PSL}_3(\mathbb{F}_2) \simeq \mathrm{PSL}_2(\mathbb{F}_7)$	$\mathbb{Z}/2\mathbb{Z}$
$8T38 \simeq (((C_2)^4 \rtimes C_2) \rtimes C_2) \rtimes C_3$	$\mathbb{Z}/2\mathbb{Z}$

$[HKY22, \text{ Table 1}]: H^1(k, \text{Pic }\overline{X}) \simeq H^1(G, [J_{G/H}]^{fl}) \neq 0$ where $G = nTm$ with $2 \leq n \leq 15$ and $n \neq 12$

Theorems 1,2,3,4 in [HKY22], [HKY23] (3/3)

- \blacktriangleright *k* : a number field, K/k : a separable field extension of $[K : k] = n$.
- \blacktriangleright $T = R_{K/k}^{(1)}(\mathbb{G}_m)$, X : a smooth k -compactification of $T.$

Theorem 3 ([HKY22, Theorem 1.18], [HKY23, Theorem 1.3])

Let $2 \le n \le 15$ be an integer. For the cases in [HKY22, Table 1] $(n \le 15, n \ne 12)$ or [HKY23,Table 1] $(n = 12)$,

 $\text{III}(T) = 0 \Longleftrightarrow G = nTm$ satisfies some conditions of G_v

where *G^v* is the decomposition group of *G* at *v*.

▶ By Ono's theorem, $III(T) = 0 \iff HNP$ holds for K/k , Theorem 3 gives a necessary and sufficient condition for HNP for *K/k*.

Theorem 4 ([HKY22, Theorem 1.17])

Assume that $G = M_n \leq S_n$ $(n = 11, 12, 22, 23, 24)$ is the Mathieu group of degree $n.$ Then $H^1(k,\mathrm{Pic}\,\overline{X})=0.$ In particular, $\mathrm{III}(T)=0.$

Examples of Theorem 3

Example $(G = 8T4 \simeq D_4, 8T13 \simeq A_4 \times C_2, 8T14 \simeq S_4$, $8T37 \simeq \text{PSL}_2(\mathbb{F}_7)$, $10T7 \simeq A_5$, $14T30 \simeq \text{PSL}_2(\mathbb{F}_{13})$) $\text{III}(T) = 0 \Longleftrightarrow \exists v \in V_k$ such that $V_4 \leq G_v$. Example $(G = 10T26 \simeq \mathrm{PSL}_2(\mathbb{F}_9)$) $\text{III}(T) = 0 \Longleftrightarrow \exists v \in V_k \text{ such that } D_4 \leq G_v.$ $\left($ Example $(G = 10T32 \simeq S_6 \leq S_{10})\right)$ $III(T) = 0 \Longleftrightarrow \exists v \in V_k$ such that (i) $V_4 \leq G_v$ where $N_{\widetilde{G}}(V_4) \simeq C_8 \rtimes (C_2 \times C_2)$ for the normalizer $N_{\widetilde{G}}(V_4)$ of V_4 in \widetilde{G} with the normalizer $\widetilde{G} = N_{S_{10}}(G) \simeq \text{Aut}(G)$ of G in S_{10} or (ii) $D_4 \leq G_v$ where $D_4 \leq [G, G] \simeq A_6$. ▶ 45/165 subgroups V_4 \le *G* satisfy (i). ▶ 45/180 subgroups $D_4 \le G$ satisfy (ii).

Akinari Hoshi (Niigata Univeristy) Birational classification for algebraic tori December 19, 2024 30/45

§2. Birational classification for algebraic tori

Problem 1: (Stably) birational classification for algebraic tori For given two algebraic *k*-tori *T* and *T ′* ,

whether T and T' are stably birationally k -equivalent?, i.e. $T \stackrel{\text{s.b.}}{\approx} T'$?

 $\text{Theorem (Colliot-Thélène and Sansuc 1977) } \dim(T) = \dim(T') = 3$ Let L/k and L'/k be Galois extensions with $\operatorname{Gal}(L/k)\simeq \operatorname{Gal}(L'/k)\simeq V_4.$ Let $T=R_{L/k}^{(1)}(\mathbb{G}_m)$ and $T'=R_{L'/k}^{(1)}(\mathbb{G}_m)$ be the corresponding norm one tori. Then $T\stackrel{\text{s.b.}}{\approx}T'$ (stably birationally k -equivalent) if and only if $L=L'$.

 \blacktriangleright In particular, if k is a number field, then there exist infinitely many stably birationally *k*-equivalent classes of (non-rational: 1st*/*15) *k*-tori which correspond to U_1 (cf. Main theorem 1, later).

- \blacktriangleright \overline{k} : a fixed separable closure of *k* and $\mathcal{G} = \text{Gal}(\overline{k}/k)$
- \blacktriangleright *X*: a smooth *k*-compactification of *T*, i.e. smooth projective *k*-variety *X* containing *T* as a dense open subvariety
- $\blacktriangleright \overline{X} = X \times_k \overline{k}$

Theorem (Voskresenskii 1969, 1970)

There exists an exact sequence of *G*-lattices

 $0 \to \widehat{T} \to \widehat{Q} \to \operatorname{Pic} \overline{X} \to 0$

where \widehat{Q} is permutation and Pic \overline{X} is flabby.

 $\blacktriangleright M_G \simeq \widehat{T}$, $[\widehat{T}]^{fl} = [\operatorname{Pic} \overline{X}]$ as \mathcal{G} -lattices

Theorem (Voskresenskii 1970, 1973)

(i) *T* is stably *k*-rational if and only if $[\text{Pic }\overline{X}] = 0$ as a *G*-lattice. $\left(\text{ii} \right)$ $T \stackrel{\text{s.b.}}{\approx} T'$ (stably birationally k -equivalent) if and only if $[\operatorname{Pic}\overline{X}] = [\operatorname{Pic}\overline{X'}]$ as ${\mathcal G}$ -lattices.

Birational classification for algebraic tori December 19, 2024 32/45

▶ From *G*-lattice to *G*-lattice

Let *L* be the minimal splitting field of *T* with $G = \text{Gal}(L/k) \simeq \mathcal{G}/\mathcal{H}$. We obtain a flabby resolution of \hat{T} :

$$
0 \to \widehat{T} \to \widehat{Q} \to \text{Pic } X_L \to 0
$$

with $[\widehat{T}]^{fl} = [\text{Pic } X_L]$ as *G*-lattices.

By the inflation-restriction exact sequence $0 \to H^1(G,\text{Pic}\, X_L) \stackrel{\text{inf}}{\longrightarrow} H^1(k,\text{Pic}\,\overline X) \stackrel{\text{res}}{\longrightarrow} H^1(L,\text{Pic}\,\overline X),$ we get $\inf : H^1(G,\mathrm{Pic}\, X_L) \xrightarrow{\sim} H^1(k,\mathrm{Pic}\,\overline X)$ because $H^1(L,\mathrm{Pic}\,\overline X)=0.$ We get:

Theorem (Voskresenskii 1970, 1973)

 $\left(\textrm{ii}\right)^\prime$ $T\stackrel{\textrm{s.b.}}{\approx}T^\prime$ (stably birationally k -equivalent) if and only if $[\text{Pic } X_{\widetilde{L}}] = [\text{Pic } X'_{\widetilde{L}}]$ as \widetilde{H} -lattices where $\widetilde{L} = LL'$ and $\widetilde{H} = \text{Gal}(\widetilde{L}/k)$.

The group \tilde{H} becomes a *subdirect product* of $G = \text{Gal}(L/k)$ and $G' = \operatorname*{Gal}(L'/k)$, i.e. a subgroup \widetilde{H} of $G \times G'$ with surjections $\varphi_1 : \tilde H \twoheadrightarrow G$ and $\varphi_2 : \tilde H \twoheadrightarrow G'.$

▶ This observation yields a concept of "*weak stably k-equivalence*".

Definition

 (i) $[M]$ ^{fl} and $[M']$ l^l are *weak stably k-equivalent*, if there exists a subdirect product $\widetilde{H}\leq G\times G'$ of G and G' with surjections $\varphi_1:\widetilde{H}\twoheadrightarrow G$ and $\varphi_2 : \widetilde{H} \twoheadrightarrow G'$ such that $[M]^{{fl}} = [M']^{{fl}}$ as \widetilde{H} -lattices where \widetilde{H} acts on *M* (resp. M') through the surjection φ_1 (resp. φ_2). (ii) Algebraic *k*-tori *T* and *T ′* are *weak stably birationally k-equivalent*, denoted by $T \stackrel{\text{s.b.}}{\sim} T'$, if $[\widehat{T}]^{fl}$ and $[\widehat{T}']^{fl}$ are weak stably k -equivalent.

Remark

 (1) $T \stackrel{\text{s.b.}}{\approx} T'$ (birational k -equiv.) $⇒ T \stackrel{\text{s.b.}}{\sim} T'$ (weak birational k -equiv.). (2) ^s*.*b*. ∼* becomes an equivalence relation and we call this equivalent class t he weak stably k -equivalent class of $[\widehat{T}]^{fl}$ (or $T)$ denoted by WSEC_r $(r \geq 0)$ with the stably *k*-rational class $WSEC_0$.

Rationality problem for 3-dimensional algebraic *k*-tori *T* was solved by Kunyavskii (1990). Stably/retract rationality for algebraic *k*-tori *T* of dimensions 4 and 5 are given in Hoshi and Yamasaki [HY17, Chapter 1].

Definition

(1) The 15 groups $G = N_{3,i} \leq GL(3, \mathbb{Z})$ $(1 \leq i \leq 15)$ for which $k(T) \simeq L(M)^G$ is not retract k -rational are as in [HY, Table 6]. (2) The 64 groups $G = N_{31,i} \leq GL(4, \mathbb{Z})$ $(1 \leq i \leq 64)$ for which $k(T) \simeq L(M)^G$ is not retract k -rational where $M \simeq M_1 \oplus M_2$ with $\operatorname*{rank}% \left\{ \mathcal{M}_{2} \right\}$ $M = 3 + 1$ are as in [HY, Table 7]. (3) The 152 groups $G = N_{4,i} \leq GL(4, \mathbb{Z})$ $(1 \leq i \leq 152)$ for which $k(T) \simeq L(M)^G$ is not retract k -rational with $\operatorname*{rank}M=4$ are as in [HY, Table 8]. (4) The 7 groups $G = I_{4,i} \leq GL(4, \mathbb{Z})$ $(1 \leq i \leq 7)$ for which $k(T) \simeq L(M)^G$ is not stably but retract k -rational with $\operatorname*{rank}M=4$ are as in [HY, Table 9].

Main Theorems 1, 2, 3, 4, 5, 6, 7

- ▶ Main theorem 1 $\dim(T) = 3$: up to ^{s.b.}
- ▶ Main theorem 2 $\dim(T) = 3$: up to $\stackrel{\text{s.b.}}{\approx}$
- ▶ Main theorem 3 $\dim(T) = 4$: up to ^{s.b.}
- ▶ Main theorem 4 $\dim(T) = 4$ $(N_{4,i})$: up to $\stackrel{\text{s.b.}}{\approx}$
- ▶ Main theorem 5 $\dim(T) = 4$ ($I_{4,i}$): up to $\stackrel{\text{s.b.}}{\approx}$
- \blacktriangleright Main theorem 6 dim $(T) = 4$: seven $I_{4,i}$ cases
- ▶ Main theorem 7 higher dimensional cases: dim(*T*) *≥* 3

Definition

The G-lattice M_G of rank n is defined to be the *G*-lattice with a \mathbb{Z} -basis $\{u_1, \ldots, u_n\}$ on which G acts by $\sigma(u_i) = \sum_{j=1}^n a_{i,j} u_j$ for any $\sigma = [a_{i,j}] \in G \leq \mathrm{GL}(n, \mathbb{Z}).$

Main theorem 1 ([HY, Theorem 1.22]) $\dim(T) = 3$: up to ^{s.b.}

There exist exactly 14 weak stably birationally *k*-equivalent classes of algebraic *k*-tori *T* of dimension 3 which consist of the stably rational class WSEC_0 and 13 classes WSEC_r $(1 \leq r \leq 13)$ for $[\widehat{T}]^{fl}$ with $\widehat{T} = M_G$ and *G* = $N_{3,i}$ (1 $\leq i \leq 15$) as in the following: (red \leftrightarrow norm one tori)

$\mathsf{Main}\ \mathsf{theorem}\ 2\ \mathsf{(HY,\ Theorem}\ 1.23])\ \dim(T) = 3\colon \mathsf{up}\ \mathsf{to}\ \stackrel{\text{s.b.}}{\approx} \ \mathsf{a}$

Let T_i and T'_j $(1\leq i,j\leq 15)$ be algebraic k -tori of dimension 3 with the minimal splitting fields L_i and L'_j , and $\widehat{T}_i = M_G$ and $\widehat{T}'_j = M_{G'}$ which satisfy that G and G' are $\mathrm{GL}(3,\mathbb{Z})$ -conjugate to $N_{3,i}$ and $N_{3,j}$ respectively. For $1 \leq i, j \leq 15$, the following conditions are equivalent: (1) $T_i \stackrel{\text{s.b.}}{\approx} T'_j$ (stably birationally *k*-equivalent); (2) $L_i = L'_j$, $T_i \times_k K$ and $T'_j \times_k K$ are weak stably birationally *K*-equivalent for any *k ⊂ K ⊂ Lⁱ* ; (3) $L_i = L'_j$, $T_i \times_k K$ and $T'_j \times_k K$ are weak stably birationally *K*-equivalent for any $k \subset K \subset L_i$ corresponding to $WSECr$ ($r \ge 1$); (4) $L_i = L'_j$, $T_i \times_k K$ and $T'_j \times_k K$ are weak stably birationally *K*-equivalent for any $k \subset K \subset L_i$ corresponding to $WSECr$ ($r \ge 1$) with $[K : k] = d$ where $d =$ $(1 \quad (i = 1, 3, 4, 8, 9, 10, 11, 12, 13, 14),$ 1*,* 2 (*i* = 2*,* 5*,* 6*,* 7*,* 15)*.*

- ▶ $\exists G = N_{31,i} \leq \mathrm{GL}(4,\mathbb{Z}) \,\, (1 \leq i \leq 64)$ for which $k(T) \simeq L(M)^G$ is not retract *k*-rational where $M \simeq M_1 \oplus M_2$ with rank $M = 3 + 1$.
- ▶ $G = N_{4,i}$ \le $\text{GL}(4,\mathbb{Z})$ $(1 \leq i \leq 152)$ for which $k(T) \simeq L(M)^G$ is not retract *k*-rational with rank $M = 4$.
- ▶ $\exists G = I_{4,i} \leq \operatorname{GL}(4, \mathbb{Z}) \ (1 \leq i \leq 7)$ for which $k(T) \simeq L(M)^G$ is not stably but retract *k*-rational with rank $M = 4$.

Main theorem 3 ([HY, Theorem 1.24]) $\dim(T) = 4$: up to ^{s.b.}

There exist exactly 129 weak stably birationally *k*-equivalent classes of algebraic *k*-tori *T* of dimension 4 which consist of the stably rational class WSEC_0 , 121 classes WSEC_r $(1 \leq r \leq 121)$ for $[\widehat{T}]^{fl}$ with $\widehat{T} = M_G$ and $G = N_{31,i}$ $(1 \leq i \leq 64)$ as in [HY, Table 3] and for $[\widehat{T}]^{fl}$ with $\widehat{T} = M_G$ and $G = N_{4,i}$ ($1 \le i \le 152$) as in [HY, Table 4], and 7 classes $WSEC_r$ $(122 \leq r \leq 128)$ for $[\widehat{T}]^{fl}$ with $\widehat{T} = M_G$ and $G = I_{4,i} \ (1 \leq i \leq 7)$ as in [HY, Table 5].

Main theorem 4 ([HY, Theorem 1.26]) $\dim(T) = 4$ $(N_{4,i})$: up to $\stackrel{\text{s.b.}}{\approx}$

Let T_i and T'_j $(1 \leq i,j \leq 152)$ be algebraic k -tori of dimension 4 with the minimal splitting fields L_i and L'_j and the character modules $\widehat{T}_i = M_G$ and $\widehat{T}^{\prime}_{j} = M_{G^{\prime}}$ which satisfy that G and G^{\prime} are $\mathrm{GL}(4,\mathbb{Z})$ -conjugate to $N_{4,i}$ and $\check{N}_{4,j}$ respectively. For $1 \leq i, j \leq 152$ except for the cases $i = j = 137, 139, 145, 147$, the following conditions are equivalent: (1) $T_i \stackrel{\text{s.b.}}{\approx} T'_j$ (stably birationally *k*-equivalent); (2) $L_i = L'_j$, $T_i \times_k K$ and $T'_j \times_k K$ are weak stably birationally *K*-equivalent for any *k ⊂ K ⊂ Lⁱ* ; (3) $L_i = L'_j$, $T_i \times_k K$ and $T'_j \times_k K$ are weak stably birationally *K*-equivalent for any $k \subset K \subset L_i$ corresponding to $WSECr$ ($r \ge 1$); (4) $L_i = L'_j$, $T_i \times_k K$ and $T'_j \times_k K$ are weak stably birationally *K*-equivalent for any $k \subset K \subset L_i$ corresponding to $WSEC_r$ $(r \ge 1)$ with $[K : k] = d$ where *d* is given as in [HY, Theorem 1.26]. For the exceptional cases $i = j = 137, 139, 145, 147$ $(G \simeq Q_8 \times C_3, (Q_8 \times C_3) \rtimes C_2, \, SL(2, \mathbb{F}_3) \rtimes C_4,$ $(GL(2, \mathbb{F}_3) \rtimes C_2) \rtimes C_2 \simeq (SL(2, \mathbb{F}_3) \rtimes C_4) \rtimes C_2$, we have the Akinari Hoshi (Niigata Univeristy) Birational classification for algebraic tori December 19, 2024 40 / 45

Main theorem 4 ([HY, Theorem 1.26]) $\dim(T) = 4$ $(N_{4,i})$: up to $\stackrel{\text{s.b.}}{\approx}$

For the exceptional cases $i = j = 137, 139, 145, 147$ $(G \simeq Q_8 \times C_3, (Q_8 \times C_3) \rtimes C_2, SL(2, \mathbb{F}_3) \rtimes C_4,$ $(GL(2, \mathbb{F}_3) \rtimes C_2) \rtimes C_2 \simeq (SL(2, \mathbb{F}_3) \rtimes C_4) \rtimes C_2$, we have the implications $(1) \Rightarrow (2) \Leftrightarrow (3) \Leftrightarrow (4)$, there exists $\tau \in \text{Aut}(G)$ such that $G'=G^\tau$ and $X=Y\lhd Z$ with $Z/Y\simeq C_2, C_2^2, C_2, C_2$ respectively where

$$
\operatorname{Inn}(G) \le X \le Y \le Z \le \operatorname{Aut}(G),
$$

 $X = \text{Aut}_{\text{GL}(4,\mathbb{Z})}(G) = \{ \sigma \in \text{Aut}(G) \mid G \text{ and } G^{\sigma} \text{ are conjugate in } \text{GL}(4,\mathbb{Z}) \},$ $Y = \{ \sigma \in \text{Aut}(G) \mid [M_G]^{fl} = [M_G \sigma]^{fl} \text{ as } \widetilde{H} \text{-lattices where } \widetilde{H} = \{ (g, g^{\sigma}) \mid g \in G \} \simeq G \},$ $Z = \{ \sigma \in \text{Aut}(G) \mid [M_H]^{fl} \sim [M_{H^{\sigma}}]^{fl} \text{ for any } H \leq G \}.$

Moreover, we have $(1) \Leftrightarrow M_G \simeq M_{G^\tau}$ as \widetilde{H} -lattices \Leftrightarrow $M_G \otimes_{\mathbb{Z}} \mathbb{F}_p \simeq M_{G^{\tau}} \otimes_{\mathbb{Z}} \mathbb{F}_p$ as $\mathbb{F}_p[\widetilde{H}]$ -lattices for $p = 2$ $(i = j = 137)$, for $p = 2$ and 3 ($i = j = 139$), for $p = 3$ ($i = j = 145, 147$).

Main theorem 5 ([HY, Theorem 1.29]) $\dim(T) = 4$ $(I_{4,i})$: <code>up</code> to $\stackrel{\text{s.b.}}{\approx}$

Let T_i and T'_j $(1 \leq i,j \leq 7)$ be algebraic k -tori of dimension 4 with the minimal splitting fields L_i and L'_j and the character modules $\widehat{T}_i = M_G$ and $\widehat{T}^{\prime}_{j} = M_{G^{\prime}}$ which satisfy that G and G^{\prime} are $\mathrm{GL}(4,\mathbb{Z})$ -conjugate to $I_{4,i}$ and $I_{4,j}$ respectively. For $1 \leq i, j \leq 7$ except for the case $i = j = 7$, the following conditions are equivalent: (1) $T_i \stackrel{\text{s.b.}}{\approx} T'_j$ (stably birationally *k*-equivalent); (2) $L_i = L'_j$, $T_i \times_k K$ and $T'_j \times_k K$ are weak stably birationally *K*-equivalent for any *k ⊂ K ⊂ Lⁱ* ; (3) $L_i = L'_j$, $T_i \times_k K$ and $T'_j \times_k K$ are weak stably birationally *K*-equivalent for any $k \subset K \subset L_i$ corresponding to $WSECr$ ($r \ge 1$); (4) $L_i = L'_j$, $T_i \times_k K$ and $T'_j \times_k K$ are weak stably birationally *K*-equivalent for any $k \subset K \subset L_i$ corresponding to $WSEC_r$ $(r \ge 1)$ with $[K : k] = d$ where $d = 1$ $(i = 1, 2, 4, 5, 7), d = 1, 2$ $(i = 3, 6).$ For the exceptional case $i = j = 7$ ($G \simeq C_3 \rtimes C_8$), we have the implications $(1) \Rightarrow (2) \Leftrightarrow (3) \Leftrightarrow (4)$, there exists $\tau \in \text{Aut}(G)$ such that $G' = G^{\tau}$ and $X = Y \lhd Z$ with $Z/Y \simeq C_2$ where Akinari Hoshi (Niigata Univeristy) Birational classification for algebraic tori December 19, 2024 42/45

Main theorem 5 ([HY, Theorem 1.29]) $\dim(T) = 4$ $(I_{4,i})$: <code>up</code> to $\stackrel{\text{s.b.}}{\approx}$

For the exceptional case $i = j = 7$ ($G \simeq C_3 \rtimes C_8$), we have the implications $(1) \Rightarrow (2) \Leftrightarrow (3) \Leftrightarrow (4)$, there exists $\tau \in \text{Aut}(G)$ such that $G' = G^{\tau}$ and $X = Y \lhd Z$ with $Z/Y \simeq C_2$ where

 $\text{Inn}(G) \simeq S_3 \leq X \leq Y \leq Z \leq \text{Aut}(G) \simeq S_3 \times C_2^2,$

 $X = \text{Aut}_{\text{GL}(4,\mathbb{Z})}(G) = \{ \sigma \in \text{Aut}(G) \mid G \text{ and } G^{\sigma} \text{ are conjugate in } \text{GL}(4,\mathbb{Z}) \} \simeq D_6$ $Y = \{ \sigma \in \text{Aut}(G) \mid [M_G]^{fl} = [M_{G^{\sigma}}]^{fl} \text{ as } \widetilde{H} \text{-lattices where } \widetilde{H} = \{ (g, g^{\sigma}) \mid g \in G \} \simeq G \},$ $Z = \{ \sigma \in Aut(G) \mid [M_H]^{fl} \sim [M_{H^{\sigma}}]^{fl} \text{ for any } H \le G \} \simeq S_3 \times C_2^2.$

Moreover, we have $(1) \Leftrightarrow M_G \simeq M_{G^\tau}$ as \widetilde{H} -lattices \Leftrightarrow $M_G \otimes_{\mathbb{Z}} \mathbb{F}_3 \simeq M_{G^\tau} \otimes_{\mathbb{Z}} \mathbb{F}_3$ as $\mathbb{F}_3[H]$ -lattices.

Main theorem 6 ([HY, Theorem 1.31]) $\dim(T) = 4$: seven $I_{4,i}$ cases

Let T_i $(1 \le i \le 7)$ be an algebraic *k*-torus of dimension 4 with the character module $\widehat{T}_i = M_G$ which satisfies that G is $\mathrm{GL}(4,\mathbb{Z})$ -conjugate to $I_{4,i}$. Let T_i^{σ} be the algebraic *k*-torus with $\widehat{T}_i^{\sigma} = M_{G^{\sigma}} \ (\sigma \in \text{Aut}(G)).$ Then T_i and T_i^{σ} are not stably k -rational but we have: (1) $T_1 \times_k T_2$ is stably *k*-rational; (2) $T_3 \times_k T_3^{\sigma}$ stably *k*-rational for $\sigma \in \text{Aut}(G)$ with $1 \neq \overline{\sigma} \in \text{Aut}(G)/\text{Inn}(G) \simeq C_2;$ (3) $T_4 \times_k T_5$ is stably *k*-rational; (4) $T_6 \times_k T_6^{\sigma}$ is stably *k*-rational for $\sigma \in \text{Aut}(G)$ with $1 \neq \overline{\sigma} \in \text{Aut}(G)/\text{Inn}(G) \simeq C_2;$ (5) $T_7 \times_k T_7^{\sigma}$ is stably *k*-rational for $\sigma \in \mathrm{Aut}(G)$ with $1 \neq \overline{\sigma} \in \text{Aut}(G)/X \simeq C_2$ where $X = \text{Aut}_{\text{GL}(4,\mathbb{Z})}(G) = \{ \sigma \in \text{Aut}(G) \mid G \text{ and } G^{\sigma} \text{ are conjugate in } \text{GL}(4,\mathbb{Z}) \} \simeq D_6.$

Higher dimensional cases: $\dim(T) \geq 3$

The following theorem can answer Problem 1 for algebraic k -tori T and T' of dimensions $m \geq 3$ and $n \geq 3$ respectively with $[\widehat{T}]^{fl}, [\widehat{T}']^{fl} \in \mathrm{WSEC}_r$ $(1 \le r \le 128)$ via Main theorem 2, Main theorem 4, and Main theorem 5.

