

Birational classification for algebraic tori (joint work with Aiichi Yamasaki)

Akinari Hoshi

Niigata University

January 8, 2026

Table of contents

1. Rationality problem for algebraic k -tori T

[HY17] A. Hoshi, A. Yamasaki,
Rationality problem for algebraic tori,
Mem. Amer. Math. Soc. 248 (2017), no. 1176, v+215 pp.

2. Birational classification for algebraic k -tori T

[HY] A. Hoshi, A. Yamasaki,
Birational classification for algebraic tori, 210 pages,
arXiv:2112.02280.

§1. Rationality problem for algebraic tori T (1/3)

- ▶ k : a base field which is **NOT** algebraically closed! (**TODAY**)
- ▶ T : algebraic k -torus, i.e. k -form of a split torus;
an algebraic group over k (group k -scheme) with $T \times_k \bar{k} \simeq (\mathbb{G}_{m, \bar{k}})^n$.

Rationality problem for algebraic tori

Whether T is **k -rational**?, i.e. $T \approx \mathbb{P}^n$? (birationally k -equivalent)

Let $R_{K/k}^{(1)}(\mathbb{G}_m)$ be **the norm one torus** of K/k , i.e. the kernel of the norm map $N_{K/k} : R_{K/k}(\mathbb{G}_m) \rightarrow \mathbb{G}_m$ where $R_{K/k}$ is the Weil restriction:

$$1 \longrightarrow R_{K/k}^{(1)}(\mathbb{G}_m) \longrightarrow R_{K/k}(\mathbb{G}_m) \xrightarrow{N_{K/k}} \mathbb{G}_m \longrightarrow 1.$$

$$\dim \quad \textcolor{blue}{n-1} \quad \quad \quad n \quad \quad \quad 1$$

- ▶ $\exists 2$ algebraic k -tori T with $\dim(T) = 1$;
the trivial torus \mathbb{G}_m and $R_{K/k}^{(1)}(\mathbb{G}_m)$ with $[K : k] = 2$, are k -**rational**.

Rationality problem for algebraic tori T (2/3)

- ▶ $\exists 13$ algebraic k -tori T with $\dim(T) = 2$.

Theorem (Voskresenskii 1967) 2-dim. algebraic tori T

T is k -rational.

- ▶ $\exists 73$ algebraic k -tori T with $\dim(T) = 3$.

Theorem (Kunyavskii 1990) 3-dim. algebraic tori T

- (i) $\exists 58$ algebraic k -tori T which are k -rational;
- (ii) $\exists 15$ algebraic k -tori T which are not k -rational.

- ▶ What happens in higher dimensions?

Algebraic k -tori T and G -lattices

- ▶ T : algebraic k -torus
 $\implies \exists$ finite Galois extension L/k such that $T \times_k L \simeq (\mathbb{G}_{m,L})^n$.
- ▶ $G = \text{Gal}(L/k)$ where L is the minimal splitting field.

Category of algebraic k -tori which split/ L $\xleftrightarrow{\text{duality}}$ Category of G -lattices
(i.e. finitely generated \mathbb{Z} -free $\mathbb{Z}[G]$ -module)

- ▶ $T \mapsto$ the character group $\widehat{T} = \text{Hom}(T, \mathbb{G}_m)$: G -lattice.
- ▶ $T = \text{Spec}(L[M]^G)$ which splits/ L with $\widehat{T} \simeq M \hookrightarrow M$: G -lattice
- ▶ Tori of dimension $n \xleftrightarrow{1:1}$ elements of the set $H^1(\mathcal{G}, \text{GL}(n, \mathbb{Z}))$
where $\mathcal{G} = \text{Gal}(\bar{k}/k)$ since $\text{Aut}(\mathbb{G}_m^n) = \text{GL}(n, \mathbb{Z})$.
- ▶ k -torus T of dimension n is determined uniquely by the integral representation $h : \mathcal{G} \rightarrow \text{GL}(n, \mathbb{Z})$ up to conjugacy, and the group $h(\mathcal{G})$ is a finite subgroup of $\text{GL}(n, \mathbb{Z})$.
- ▶ The function field of $T \xleftrightarrow{\text{identified}} L(M)^G$: invariant field.

Rationality problem for algebraic tori T (3/3)

- ▶ L/k : Galois extension with $G = \text{Gal}(L/k)$.
- ▶ $M = \bigoplus_{1 \leq i \leq n} \mathbb{Z} \cdot u_i$: G -lattice with a \mathbb{Z} -basis $\{u_1, \dots, u_n\}$.
- ▶ G acts on $L(x_1, \dots, x_n)$ by

$$x_i^\sigma = \prod_{j=1}^n x_j^{a_{i,j}}, \quad 1 \leq i \leq n$$

for any $\sigma \in G$, when $u_i^\sigma = \sum_{j=1}^n a_{i,j} u_j$, $a_{i,j} \in \mathbb{Z}$.

- ▶ $L(M) := L(x_1, \dots, x_n)$ with this action of G .
- ▶ The function field of algebraic k -torus $T \xrightarrow{\text{identified}} L(M)^G$

Rationality problem for algebraic tori T (2nd form)

Whether $L(M)^G$ is **k -rational**?

(= **purely transcendental** over k ?; $L(M)^G = k(\exists t_1, \dots, \exists t_n)?)$

Some definitions.

- ▶ K/k : a finite generated field extension.

Definition (stably rational)

K is called **stably k -rational** if $K(y_1, \dots, y_m)$ is k -rational.

Definition (retract rational)

K is **retract k -rational** if $\exists k\text{-algebra (domain)} R \subset K$ such that

- (i) K is the quotient field of R ;
- (ii) $\exists f \in k[x_1, \dots, x_n] \exists k\text{-algebra hom. } \varphi : R \rightarrow k[x_1, \dots, x_n][1/f]$ and $\psi : k[x_1, \dots, x_n][1/f] \rightarrow R$ satisfying $\psi \circ \varphi = 1_R$.

Definition (unirational)

K is **k -unirational** if $K \subset k(x_1, \dots, x_n)$.

- ▶ k -rational \Rightarrow stably k -rational \Rightarrow retract k -rational \Rightarrow k -unirational.
- ▶ $L(M)^G$ (resp. T) is always **k -unirational**.

Rationality problem for algebraic tori T (2-dim., 3-dim.)

- ▶ The function field of n -dim. $T \xleftrightarrow{\text{identified}} L(M)^G$, $G \leq \text{GL}(n, \mathbb{Z})$
- ▶ $\exists 13 \mathbb{Z}$ -conjugacy subgroups $G \leq \text{GL}(2, \mathbb{Z})$
($\exists 13$ 2-dim. algebraic k -tori T).

Theorem (Voskresenskii 1967) 2-dim. algebraic tori T (restated)

T is k -rational.

- ▶ $\exists 73 \mathbb{Z}$ -conjugacy subgroups $G \leq \text{GL}(3, \mathbb{Z})$
($\exists 73$ 3-dim. algebraic k -tori T).

Theorem (Kunyavskii 1990) 3-dim. algebraic tori T (precise form)

(i) T is k -rational $\iff T$ is stably k -rational
 $\iff T$ is retract k -rational $\iff \exists G$: 58 groups;

(ii) T is not k -rational $\iff T$ is not stably k -rational
 $\iff T$ is not retract k -rational $\iff \exists G$: 15 groups.

Rationality problem for algebraic tori T (4-dim.)

- ▶ The function field of n -dim. $T \xleftrightarrow{\text{identified}} L(M)^G$, $G \leq \text{GL}(n, \mathbb{Z})$
- ▶ $\exists 710 \mathbb{Z}$ -conjugacy subgroups $G \leq \text{GL}(4, \mathbb{Z})$
($\exists 710$ 4-dim. algebraic k -tori T).

Theorem ([HY17]) 4-dim. algebraic tori T

- (i) T is **stably k -rational** $\iff \exists G$: 487 groups;
- (ii) T is **not stably** but **retract k -rational** $\iff \exists G$: 7 groups;
- (iii) T is **not retract k -rational** $\iff \exists G$: 216 groups.

- ▶ We do **not** know “ k -rationality”.
- ▶ **Voskresenskii's conjecture:**
any stably k -rational torus is k -rational (Zariski problem).
- ▶ what happens for dimension 5?

Rationality problem for algebraic tori T (5-dim.)

- ▶ The function field of n -dim. $T \xleftrightarrow{\text{identified}} L(M)^G$, $G \leq \text{GL}(n, \mathbb{Z})$
- ▶ $\exists 6079 \mathbb{Z}$ -conjugacy subgroups $G \leq \text{GL}(5, \mathbb{Z})$
($\exists 6079$ 5-dim. algebraic k -tori T).

Theorem ([HY17]) 5-dim. algebraic tori T

- (i) T is **stably k -rational** $\iff \exists G$: 3051 groups;
- (ii) T is **not stably** but **retract k -rational** $\iff \exists G$: 25 groups;
- (iii) T is **not retract k -rational** $\iff \exists G$: 3003 groups.

- ▶ what happens for dimension 6?
- ▶ **BUT** we do **not** know the answer for dimension 6.
- ▶ $\exists 85308 \mathbb{Z}$ -conjugacy subgroups $G \leq \text{GL}(6, \mathbb{Z})$
($\exists 85308$ 6-dim. algebraic k -tori T).

Strategy: Flabby (Flasque) resolution

- M : G -lattice, i.e. f.g. \mathbb{Z} -free $\mathbb{Z}[G]$ -module.

Definition

- (i) M is **permutation** $\stackrel{\text{def}}{\iff} M \simeq \bigoplus_{1 \leq i \leq m} \mathbb{Z}[G/H_i]$.
- (ii) M is **stably permutation** $\stackrel{\text{def}}{\iff} M \oplus \exists P \simeq P'$, P, P' : permutation.
- (iii) M is **invertible** $\stackrel{\text{def}}{\iff} M \oplus \exists M' \simeq P$: permutation.
- (iv) M is **coflabby** $\stackrel{\text{def}}{\iff} H^1(H, M) = 0$ ($\forall H \leq G$).
- (v) M is **flabby** $\stackrel{\text{def}}{\iff} \widehat{H}^{-1}(H, M) = 0$ ($\forall H \leq G$). (\widehat{H} : Tate cohomology)

- “permutation”
 - \implies “stably permutation”
 - \implies “invertible”
 - \implies “flabby and coflabby”.

Commutative monoid \mathcal{M}

$M_1 \sim M_2 \stackrel{\text{def}}{\iff} M_1 \oplus P_1 \simeq M_2 \oplus P_2$ ($\exists P_1, \exists P_2$: permutation).
 \implies commutative monoid \mathcal{M} : $[M_1] + [M_2] := [M_1 \oplus M_2]$, $0 = [P]$.

Theorem (Endo-Miyata 1974, Colliot-Thélène-Sansuc 1977)

$\exists P$: permutation, $\exists F$: flabby such that

$0 \rightarrow M \rightarrow P \rightarrow F \rightarrow 0$: flabby resolution of M .

► $[M]^{fl} := [F]$; flabby class of M .

Theorem (Endo-Miyata 1973, Voskresenskii 1974, Saltman 1984)

(EM73) $[M]^{fl} = 0 \iff L(M)^G$ is stably k -rational.

(Vos74) $[M]^{fl} = [M']^{fl} \iff L(M)^G(x_1, \dots, x_m) \simeq L(M')^G(y_1, \dots, y_n)$;
stably k -isomorphic.

(Sal84) $[M]^{fl}$ is invertible $\iff L(M)^G$ is retract k -rational.

► $M = M_G \simeq \widehat{T} = \text{Hom}(T, \mathbb{G}_m)$, $k(T) \simeq L(M)^G$, $G = \text{Gal}(L/k)$.

Contributions of [HY17]

- ▶ We give a procedure to compute a flabby resolution of M , in particular $[M]^{fl} = [F]$, **effectively** (with smaller rank after base change) by computer software GAP.
- ▶ The function `IsFlabby` (resp. `IsCoflabby`) may determine whether M is **flabby** (resp. **coflabby**).
- ▶ The function `IsInvertibleF` may determine whether $[M]^{fl} = [F]$ is **invertible** (\leftrightarrow whether $L(M)^G$ (resp. T) is **retract rational**).
- ▶ We provide some functions for checking **a possibility** of isomorphism

$$\left(\bigoplus_{i=1}^r a_i \mathbb{Z}[G/H_i] \right) \oplus a_{r+1} F \simeq \bigoplus_{i=1}^r b'_i \mathbb{Z}[G/H_i] \quad (*)$$

by computing **some invariants** (e.g. trace, \widehat{Z}^0 , \widehat{H}^0) of both sides.

- ▶ [HY17, Example 10.7]. $G \simeq S_5 \leq \mathrm{GL}(5, \mathbb{Z})$ with number $(5, 946, 4)$
 $\implies \mathrm{rank}(F) = 17$ and $\mathrm{rank}(*) = 88$ holds
 $\implies [F] = 0 \implies L(M)^G$ (resp. T) is **stably rational** over k .

Application to Krull-Schmidt

Corollary ($[F] = [M]^{fl}$: invertible case, $G \simeq S_5, F_{20}$)

$\exists T, T'$; 4-dim. **not stably rational** algebraic tori over k such that $T \not\sim T'$ (birational) and $T \times T'$: 8-dim. **stably rational** over k .
 $\therefore -[M]^{fl} = [M']^{fl} \neq 0$.

Prop. ([HY17], Krull-Schmidt fails for permutation D_6 -lattices)

$\{1\}, C_2^{(1)}, C_2^{(2)}, C_2^{(3)}, C_3, V_4, C_6, S_3^{(1)}, S_3^{(2)}, D_6$: conj. subgroups of D_6 .

$$\begin{aligned} & \mathbb{Z}[D_6] \oplus \mathbb{Z}[D_6/V_4]^{\oplus 2} \oplus \mathbb{Z}[D_6/C_6] \oplus \mathbb{Z}[D_6/S_3^{(1)}] \oplus \mathbb{Z}[D_6/S_3^{(2)}] \\ & \simeq \mathbb{Z}[D_6/C_2^{(1)}] \oplus \mathbb{Z}[D_6/C_2^{(2)}] \oplus \mathbb{Z}[D_6/C_2^{(3)}] \oplus \mathbb{Z}[D_6/C_3] \oplus \mathbb{Z}^{\oplus 2}. \end{aligned}$$

► D_6 is the smallest example exhibiting the failure of K-S:

Theorem (Dress 1973)

Krull-Schmidt holds for permutation G -lattices $\iff G/O_p(G)$ is cyclic where $O_p(G)$ is the maximal normal p -subgroup of G .

Krull-Schmidt and Direct sum cancelation

Theorem (Hindman-Klingler-Odenthal 1998) Assume $G \neq D_8$

Krull-Schmidt **holds** for G -lattices \iff (i) $G = C_p$ ($p \leq 19$; prime),
(ii) $G = C_n$ ($n = 1, 4, 8, 9$), (iii) $G = V_4$ or (iv) $G = D_4$.

Theorem (Endo-Hironaka 1979)

Direct sum cancellation **holds**, i.e. $M_1 \oplus N \simeq M_2 \oplus N \implies M_1 \simeq M_2$,
 $\implies G$ is abelian, dihedral, A_4 , S_4 or A_5 (*).

- ▶ via projective class group (see Swan 1988, Corollary 1.3, Section 7).
- ▶ Except for (*) \implies Direct sum cancellation **fails** \implies K-S **fails**

Theorem ([HY17]) $G \leq \mathrm{GL}(n, \mathbb{Z})$ (up to conjugacy)

- (i) $n \leq 4 \implies$ K-S **holds**.
- (ii) $n = 5$. K-S **fails** \iff 11 groups G (among 6079 groups).
- (iii) $n = 6$. K-S **fails** \iff 131 groups G (among 85308 groups).

§2. Birational classification for algebraic tori

- ▶ Two algebraic k -tori T and T' are **stably birationally k -equivalent**, denoted by $T \stackrel{\text{s.b.}}{\approx} T'$, if their function fields $k(T)$ and $k(T')$ are stably k -isomorphic, i.e. $k(T)(x_1, \dots, x_m) \simeq k(T')(y_1, \dots, y_n)$.
- ▶ \mathcal{T} : the category of algebraic k -tori.
- ▶ \mathcal{T}_n : the category of algebraic k -tori of dimension n .

Problem 1: Stably birational classification for algebraic tori

Determine the structure of $\mathcal{T}/\stackrel{\text{s.b.}}{\approx}$ (resp. $\mathcal{T}_n/\stackrel{\text{s.b.}}{\approx}$). In particular, for given two algebraic k -tori T and T' (resp. T and T' of dimension n) determine whether T and T' are **stably birationally k -equivalent**.

- $V_4 := C_2 \times C_2$.

Theorem (Colliot-Thélène and Sansuc 1977) $\dim(T) = \dim(T') = 3$

Let L/k and L'/k be Galois extensions with $\text{Gal}(L/k) \simeq \text{Gal}(L'/k) \simeq V_4$.

Let $T = R_{L/k}^{(1)}(\mathbb{G}_m)$ and $T' = R_{L'/k}^{(1)}(\mathbb{G}_m)$ be the corresponding norm one tori. If $T \stackrel{\text{s.b.}}{\approx} T'$ (stably birationally k -equivalent), then $L = L'$.

- In particular, if k is a number field, then there exist infinitely many stably birationally k -equivalent classes of (non-rational: 1st/15) k -tori which correspond to U_1 (cf. Main theorem 1, later).
- $T \stackrel{\text{s.b.}}{\approx} T'$ (stably birationally k -equivalent) $\iff L = L'$???

- ▶ \bar{k} : a fixed separable closure of k and $\mathcal{G} = \text{Gal}(\bar{k}/k)$.
- ▶ X : a smooth k -compactification of T , i.e. smooth projective k -variety X containing T as a dense open subvariety.
- ▶ $\overline{X} = X \times_k \bar{k}$.

Theorem (Voskresenskii 1969, 1970)

There exists an exact sequence of \mathcal{G} -lattices

$$0 \rightarrow \widehat{T} \rightarrow \widehat{Q} \rightarrow \text{Pic } \overline{X} \rightarrow 0$$

where \widehat{Q} is permutation and $\text{Pic } \overline{X}$ is flabby.

- ▶ $M_G \simeq \widehat{T}$, $[\widehat{T}]^{fl} = [\text{Pic } \overline{X}]$ as \mathcal{G} -lattices.

Theorem (Voskresenskii 1970, 1973)

- T is **stably k -rational** if and only if $[\text{Pic } \overline{X}] = 0$ as a \mathcal{G} -lattice.
- $T \stackrel{\text{s.b.}}{\approx} T'$ (**stably birationally k -equivalent**) if and only if $[\text{Pic } \overline{X}] = [\text{Pic } \overline{X}']$ as \mathcal{G} -lattices.

► From \mathcal{G} -lattice to G -lattice

Let L be the minimal splitting field of T with $G = \text{Gal}(L/k) \simeq \mathcal{G}/\mathcal{H}$. We obtain a flabby resolution of \widehat{T} :

$$0 \rightarrow \widehat{T} \rightarrow \widehat{Q} \rightarrow \text{Pic } X_L \rightarrow 0$$

with $[\widehat{T}]^{fl} = [\text{Pic } X_L]$ as G -lattices. We get:

Theorem (Voskresenskii 1970, 1973)

(ii)' $T \xrightarrow{\text{s.b.}} T'$ (**stably birationally k -equivalent**) if and only if $[\text{Pic } X_{\widetilde{L}}] = [\text{Pic } X'_{\widetilde{L}}]$ as \widetilde{H} -lattices where $\widetilde{L} = LL'$ and $\widetilde{H} = \text{Gal}(\widetilde{L}/k)$.

The group \widetilde{H} becomes a **subdirect product** of $G = \text{Gal}(L/k)$ and $G' = \text{Gal}(L'/k)$, i.e. a subgroup \widetilde{H} of $G \times G'$ with surjections $\varphi_1 : \widetilde{H} \twoheadrightarrow G$ and $\varphi_2 : \widetilde{H} \twoheadrightarrow G'$.

- ▶ This observation yields a concept of “*weak stably k-equivalence*”.

Definition

- (i) $[M]^{fl}$ and $[M']^{fl}$ are *weak stably k-equivalent*, if there exists a **subdirect product** $\tilde{H} \leq G \times G'$ of G and G' with surjections $\varphi_1 : \tilde{H} \twoheadrightarrow G$ and $\varphi_2 : \tilde{H} \twoheadrightarrow G'$ such that $[M]^{fl} = [M']^{fl}$ as \tilde{H} -lattices where \tilde{H} acts on M (resp. M') through the surjection φ_1 (resp. φ_2).
- (ii) Algebraic k -tori T and T' are *weak stably birationally k-equivalent*, denoted by $T \stackrel{\text{s.b.}}{\sim} T'$, if $[\widehat{T}]^{fl}$ and $[\widehat{T'}]^{fl}$ are weak stably k -equivalent.

Remark

- (1) $T \stackrel{\text{s.b.}}{\approx} T'$ (stably bir. k -equiv.) $\Rightarrow T \stackrel{\text{s.b.}}{\sim} T'$ (*weak* stably bir. k -equiv.).
- (2) $\stackrel{\text{s.b.}}{\sim}$ becomes an equivalence relation and we call this equivalent class *the weak stably k-equivalent class* of $[\widehat{T}]^{fl}$ (or T) denoted by **WSEC_r** ($r \geq 0$) with *the stably k-rational class* **WSEC₀**.

- ▶ Let L be the minimal splitting field of T with $G = \text{Gal}(L/k) \simeq \mathcal{G}/\mathcal{H}$.
- ▶ By the inflation-restriction exact sequence

$$0 \rightarrow H^1(G, \text{Pic } X_L) \xrightarrow{\text{inf}} H^1(k, \text{Pic } \overline{X}) \xrightarrow{\text{res}} H^1(L, \text{Pic } \overline{X}),$$
 we get $\text{inf} : H^1(G, \text{Pic } X_L) \xrightarrow{\sim} H^1(k, \text{Pic } \overline{X})$ because $H^1(L, \text{Pic } \overline{X}) = 0$.
- ▶ $H^1(k, \text{Pic } \overline{X}) \simeq \text{Br}(X)/\text{Br}(k) \simeq \text{Br}_{\text{nr}}(k(X)/k)/\text{Br}(k)$
 by Colliot-Thélène-Sansuc 1987
 where $\text{Br}(X)$ is the étale cohomological/Azumaya Brauer group of X
 and $\text{Br}_{\text{nr}}(k(X)/k)$ is **the unramified Brauer group** of $k(X)$ over k .

- ▶ Let $G, G' \leq \mathrm{GL}(n, \mathbb{Z})$ be $\mathrm{GL}(n, \mathbb{Z})$ -conjugate.
Then $\exists \psi : G \xrightarrow{\sim} G', g \mapsto u^{-1}gu$ ($u \in \mathrm{GL}(n, \mathbb{Z})$).
- ▶ Let T, T' be algebraic k -tori of dimension n with the minimal splitting fields L and L' and the character modules $\widehat{T} = M_G$ and $\widehat{T}' = M_{G'}$.
- ▶ Assume that $L = L'$. Then $G \simeq G' \simeq \mathrm{Gal}(L/k)$ and
 $\exists \varphi_1 : \mathrm{Gal}(L/k) \xrightarrow{\sim} G \leq \mathrm{GL}(n, \mathbb{Z}), f \mapsto \varphi_1(f),$
 $\exists \varphi_2 : \mathrm{Gal}(L'/k) \xrightarrow{\sim} G' \leq \mathrm{GL}(n, \mathbb{Z}), f \mapsto \varphi_2(f), \exists$ a subdirect product $\widetilde{H} = \{(\varphi_1(f), \varphi_2(f)) \mid f \in \mathrm{Gal}(L/k)\} \leq G \times G'$ ($\widetilde{H} \simeq G$).
- ▶ Hence we can obtain $\sigma \in \mathrm{Aut}(G)$ such that $(\psi^{-1})(\varphi_2 \varphi_1^{-1})(g) = g^\sigma$ ($\forall g \in G$) and hence we can identify $\psi^{-1} : G' \simeq G^\sigma$ ($\sigma \in \mathrm{Aut}(G)$).
- ▶ Let T^σ be an algebraic k -torus of dimension n with the minimal splitting field L and the character module $\widehat{T}^\sigma = M_{G^\sigma}$ ($\sigma \in \mathrm{Aut}(G)$) with $G \simeq G^\sigma \simeq \mathrm{Gal}(L/k)$.
- ▶ Then the set

$$\{T^\sigma \mid \sigma \in \mathrm{Aut}(G)\}$$

gives all algebraic k -tori of dimension n with the minimal splitting field L and the character module $\widehat{T}^\sigma \simeq M_G$.

Definition (the groups X, Y, Z)

We define the following subgroups of $\text{Aut}(G)$ for $G \leq \text{GL}(n, \mathbb{Z})$:

$$\text{Inn}(G) \leq X \leq Y \leq Z \leq \text{Aut}(G),$$

$$X = \text{Aut}_{\text{GL}(n, \mathbb{Z})}(G)$$

$$= \{\sigma \in \text{Aut}(G) \mid \exists u \in \text{GL}(n, \mathbb{Z}) \text{ s.t. } u^{-1}gu = g^\sigma (\forall g \in G)\}$$

$$\simeq N_{\text{GL}(n, \mathbb{Z})}(G)/Z_{\text{GL}(n, \mathbb{Z})}(G),$$

$$Y = \{\sigma \in \text{Aut}(G) \mid [M_G]^{fl} = [M_{G^\sigma}]^{fl} \text{ as } \tilde{H}\text{-lattices}$$

$$\text{where } \tilde{H} = \{(g, g^\sigma) \mid g \in G\} \simeq G\},$$

$$Z = \{\sigma \in \text{Aut}(G) \mid [M_H]^{fl} \sim [M_{H^\sigma}]^{fl} \text{ for any } H \leq G\}.$$

Corollary

The set $\{T^\sigma \mid \sigma \in \text{Aut}(G)\}$ gives all algebraic k -tori of dimension n with the minimal splitting field L and $\widehat{T}^\sigma \simeq M_G$ and splits into λ stably birationally k -equivalent classes consist of μ birationally k -equivalent classes where $\lambda = |Y \setminus \text{Aut}(G)| \leq \mu \leq |X \setminus \text{Aut}(G)|$.

Theorem ([HY, Theorem 1.26])

- (1) For $\sigma \in \text{Aut}(G)$, T and T^σ are weak stably birationally k -equivalent;
- (2) For $\sigma \in \text{Aut}(G)$, $\sigma \in X$ if and only if $M_G \simeq M_{G^\sigma}$ as **Gal(L/k)-lattices**. In particular, T and T^σ are birationally k -equivalent, i.e. $k(T) \simeq L(M)^G \simeq L(M^\sigma)^{G^\sigma} \simeq k(T^\sigma)$;
- (3) For $\sigma \in \text{Aut}(G)$, $\sigma \in Y$ if and only if T and T^σ are stably birationally k -equivalent. In particular, $\{T^\sigma \mid \sigma \in \text{Aut}(G)\}$ splits into λ stably birationally k -equivalent classes where $\lambda = |Y \setminus \text{Aut}(G)|$;
- (4) For $\sigma \in \text{Aut}(G)$, $\sigma \in Z$ if and only if $T \times_k K$ and $T^\sigma \times_k K$ are weak stably birationally K -equivalent for any $k \subset K \subset L$.

In particular, (i) if $Y = Z$, then $\sigma \in Z$ if and only if T and T^σ are stably birationally k -equivalent; and (ii) if $X = Y = Z$ (resp. $X = Y$), then $\sigma \in Z$ (resp. $\sigma \in Y$) if and only if T and T^σ are birationally k -equivalent.

Rationality problem for 3-dimensional algebraic k -tori T was solved by Kunyavskii (1990). Stably/retract rationality for algebraic k -tori T of dimensions 4 and 5 are given in Hoshi and Yamasaki [HY17, Chapter 1].

Definition $(N_{3,i}, N_{31,i}, N_{4,i}, I_{4,i})$

- (1) The 15 groups $G = N_{3,i} \leq \mathrm{GL}(3, \mathbb{Z})$ ($1 \leq i \leq 15$) for which $k(T) \simeq L(M)^G$ is **not retract k -rational** are as in [HY, Table 6].
- (2) The 64 groups $G = N_{31,i} \leq \mathrm{GL}(4, \mathbb{Z})$ ($1 \leq i \leq 64$) for which $k(T) \simeq L(M)^G$ is **not retract k -rational** where $M \simeq M_1 \oplus M_2$ with rank $M = 3 + 1$ are as in [HY, Table 7].
- (3) The 152 groups $G = N_{4,i} \leq \mathrm{GL}(4, \mathbb{Z})$ ($1 \leq i \leq 152$) for which $k(T) \simeq L(M)^G$ is **not retract k -rational** with rank $M = 4$ are as in [HY, Table 8].
- (4) The 7 groups $G = I_{4,i} \leq \mathrm{GL}(4, \mathbb{Z})$ ($1 \leq i \leq 7$) for which $k(T) \simeq L(M)^G$ is **not stably** but **retract k -rational** with rank $M = 4$ are as in [HY, Table 9].

Main Theorems 1, 2, 3, 4, 5, 6, 7

- ▶ Main theorem 1 $\dim(T) = 3$: up to $\overset{\text{s.b.}}{\sim}$ (weak)
- ▶ Main theorem 2 $\dim(T) = 3$: up to $\overset{\text{s.b.}}{\approx}$
- ▶ Main theorem 3 $\dim(T) = 4$: up to $\overset{\text{s.b.}}{\sim}$ (weak)
- ▶ Main theorem 4 $\dim(T) = 4$ ($N_{4,i}$): up to $\overset{\text{s.b.}}{\approx}$
- ▶ Main theorem 5 $\dim(T) = 4$ ($I_{4,i}$): up to $\overset{\text{s.b.}}{\approx}$
- ▶ Main theorem 6 $\dim(T) = 4$: $I_{4,i}$ cases ($1 \leq i \leq 7$)
- ▶ Main theorem 7 higher dimensional cases: $\dim(T) \geq 3$

Definition

The G -lattice M_G of rank n is defined to be the G -lattice with a \mathbb{Z} -basis $\{u_1, \dots, u_n\}$ on which G acts by $u_i^\sigma = \sum_{j=1}^n a_{i,j} u_j$ for any $\sigma = [a_{i,j}] \in G \leq \mathrm{GL}(n, \mathbb{Z})$.

Main theorem 1 ([HY, Theorem 1.28]) $\dim(T) = 3$: up to $\overset{\text{s.b.}}{\sim}$

There exist exactly $14 = 1 + 13$ weak stably birationally k -equivalent classes of algebraic k -tori T of dimension 3 which consist of the stably rational class WSEC_0 and 13 classes WSEC_r ($1 \leq r \leq 13$) for $[\widehat{T}]^{fl}$ with $\widehat{T} = M_G$ and $G = N_{3,i}$ ($1 \leq i \leq 15$): (red \leftrightarrow norm one tori)

r	$G = N_{3,i} : [\widehat{T}]^{fl} = [M_G]^{fl} \in \text{WSEC}_r$	$G_r \simeq G$	$\lambda_r = \text{WSEC}_{r,L} $
1	$N_{3,1} \simeq U_1$ ([CTS 1977])	V_4	1
2	$N_{3,2} \simeq U_2$	C_2^3	7
3	$N_{3,3} \simeq W_2$	C_2^3	1
4	$N_{3,4} \simeq W_1$	$C_4 \times C_2$	1
5	$N_{3,5} \simeq U_3, N_{3,6} \simeq U_4$	D_4	2
6	$N_{3,7} \simeq U_6$	$D_4 \times C_2$	4
7	$N_{3,8} \simeq U_5$	A_4	1
8	$N_{3,9} \simeq U_7$	$A_4 \times C_2$	1
9	$N_{3,10} \simeq W_3$	$A_4 \times C_2$	1
10	$N_{3,11} \simeq U_9, N_{3,13} \simeq U_{10}$	S_4	1
11	$N_{3,12} \simeq U_8$	S_4	1
12	$N_{3,14} \simeq U_{12}$	$S_4 \times C_2$	1
13	$N_{3,15} \simeq U_{11}$	$S_4 \times C_2$	2

Main theorem 2 ([HY, Theorem 1.29]) $\dim(T) = 3$: up to $\overset{\text{s.b.}}{\approx}$

Let T_i and T'_j ($1 \leq i, j \leq 15$) be algebraic k -tori of dimension 3 with the minimal splitting fields L_i and L'_j , and $\widehat{T}_i = M_G$ and $\widehat{T}'_j = M_{G'}$ which satisfy that G and G' are $\text{GL}(3, \mathbb{Z})$ -conjugate to $N_{3,i}$ and $N_{3,j}$ respectively. For $1 \leq i, j \leq 15$, the following conditions are equivalent:

- (1) $T_i \overset{\text{s.b.}}{\approx} T'_j$ (stably birationally k -equivalent);
- (2) $G \simeq G'$, $L_i = L'_j$, $T_i \times_k K$ and $T'_j \times_k K$ are weak stably birationally K -equivalent for any $k \subset K \subset L_i$;
- (3) $G \simeq G'$, $L_i = L'_j$, $T_i \times_k K$ and $T'_j \times_k K$ are weak stably birationally K -equivalent for any $k \subset K \subset L_i$ corresponding to WSEC_r ($r \geq 1$);
- (4) $G \simeq G'$, $L_i = L'_j$, $T_i \times_k K$ and $T'_j \times_k K$ are weak stably birationally K -equivalent for any $k \subset K \subset L_i$ corresponding to WSEC_r ($r \geq 1$)

with $[K : k] = d$ where

$$d = \begin{cases} 1 & (i = 1, 3, 4, 8, 9, 10, 11, 12, 13, 14), \\ 1, 2 & (i = 2, 5, 6, 7, 15). \end{cases}$$

In particular, for $d = 1$, (4) $\Leftrightarrow G \simeq G'$, $L_i = L'_j$, i.e. $\widetilde{H} \simeq G \simeq G'$.

Main theorem 2 ([HY, Theorem 1.29]) $\dim(T) = 3$: up to $\approx^{\text{s.b.}}$

Moreover, if $i = j$ with $G \simeq G'$, $L_i = L'_j$, i.e. $\tilde{H} \simeq G \simeq G'$, then $Y = Z$ (which is equivalent to $(1) \Leftrightarrow (2)$)

and for $1 \leq r \leq 13$, we get the following disjoint union decompositions

$$\text{WSEC}_r = \coprod_{\substack{L/k \\ \text{Gal}(L/k) \simeq G_r}} \text{WSEC}_{r,L}, \quad \text{WSEC}_{r,L} = \coprod_{t=1}^{\lambda_r} \text{SEC}_{r,L,t}$$

modulo $\approx^{\text{s.b.}}$ where $\text{Gal}(L/k) \simeq G_r \simeq N_{3,i}$ ($1 \leq r \leq 13$) and

$\lambda_r = |\text{WSEC}_{r,L}| = |Y \setminus \text{Aut}(G)|$ is given as in Main theorem 1.

Furthermore, for the cases $G = N_{3,i}$ ($i = 1, 5, 6, 8, 9, 10, 11, 12, 13, 15$) with $X = Y$, the following conditions are also equivalent:

- (0) T_i and T'_i are **birationally k -equivalent**;
- (1) T_i and T'_i are **stably birationally k -equivalent**.

Corollary (Stably birational classification for T with $\dim(T) = 3$)

Let \mathcal{T}_3 be the category of algebraic k -tori of dimension 3. We get a classification (disjoint union decomposition) of \mathcal{T}_3 with respect to the stably birationally k -equivalence $\approx^{\text{s.b.}}$:

$$\mathcal{T}_3 = \coprod_{r=0}^{13} \text{WSEC}_r = \text{SEC}_0 \coprod \left(\coprod_{r=1}^{13} \coprod_{\substack{L/k \\ \text{Gal}(L/k) \simeq G_r}} \coprod_{t=1}^{\lambda_r} \text{SEC}_{r,L,t} \right)$$

modulo $\approx^{\text{s.b.}}$ where SEC_0 is the stably k -equivalent class consists of stably k -rational tori $T \in \mathcal{T}_3$, $\text{Gal}(L/k) \simeq G_r \simeq N_{3,i}$ ($1 \leq r \leq 13$) and $\lambda_r = |\text{WSEC}_{r,L}| = |Y \setminus \text{Aut}(G)|$ is given as in Main theorem 1.

Example of Main theorem 2: WSEC₅;

$G = N_{3,6} \simeq U_4 \simeq D_4$, $G' = N_{3,6} \simeq U_4 \simeq D_4$ with $\lambda_5 = 2$

- ▶ $k = \mathbb{Q}$, $K_4 = \mathbb{Q}(\sqrt[4]{2})$, $K'_4 = \mathbb{Q}(\sqrt[4]{2}\zeta_8)$ with $[K_4 : \mathbb{Q}] = [K'_4 : \mathbb{Q}] = 4$ and the same Galois closure $L = \mathbb{Q}(\sqrt[4]{2}, \sqrt{-1})$, $\text{Gal}(L/\mathbb{Q}) \simeq D_4$.
- ▶ $T = R_{K_4/\mathbb{Q}}^{(1)}(\mathbb{G}_m)$, $T' = R_{K'_4/\mathbb{Q}}^{(1)}(\mathbb{G}_m)$: the corresponding norm one tori with $\widehat{T} = M_G$, $\widehat{T}' = M_{G'}$, $G = N_{3,6} \simeq U_4 \simeq D_4$, $G' = N_{3,6} \simeq U_4 \simeq D_4$, $[\widehat{T}]^{fl}, [\widehat{T}']^{fl} \in \text{WSEC}_2$ (**not retract \mathbb{Q} -rational**).
- ▶ By Main theorem 2, T and T' are **not stably birationally \mathbb{Q} -equivalent** although both T and T' correspond to $N_{3,6} \simeq U_4 \simeq D_4$ with the same splitting field L .
- ▶ Because $\lambda_5 = 2$, if we take an algebraic \mathbb{Q} -torus T'' of dimension 3 with the minimal splitting field $L = \mathbb{Q}(\sqrt[4]{2}, \sqrt{-1})$ and $[T'']^{fl} \in N_{3,5} \simeq U_3$, then T'' is **stably birationally \mathbb{Q} -equivalent to either** $T = R_{K_4/\mathbb{Q}}^{(1)}(\mathbb{G}_m)$ **or** $T' = R_{K'_4/\mathbb{Q}}^{(1)}(\mathbb{G}_m)$.

Example of Main theorem 2: WSEC_2 ;

$G = N_{3,2} \simeq U_2 \simeq C_2^3$, $G' = N_{3,2} \simeq U_2 \simeq C_2^3$ with $\lambda_2 = 7$

- ▶ $k = \mathbb{Q}$ and T is an algebraic \mathbb{Q} -torus with the minimal splitting field $L = \mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$, $[L : \mathbb{Q}] = 8$, $\widehat{T} = M_G$, $G = N_{3,2} \simeq U_2 \simeq C_2^3$, $[\widehat{T}]^{fl} \in \text{WSEC}_2$ (**not retract \mathbb{Q} -rational**).
- ▶ \exists exactly 7 subgroups $H_i \leq G$ ($1 \leq i \leq 7$) with $[G : H_i] = 2$ and \exists exactly 7 subgroups $H'_i \leq G$ ($1 \leq i \leq 7$) with $[G : H'_i] = 4$.
- ▶ If $H_1 \simeq U_1 \simeq C_2^2$, then $[M_G |_{H_i}]^{fl} = [M_{H_i}]^{fl} = 0$ ($2 \leq i \leq 7$) and $[M_G |_{H'_i}]^{fl} = [M_{H'_i}]^{fl} = 0$ ($1 \leq i \leq 7$) (**stably \mathbb{Q} -rational**).
- ▶ $G' = G^\sigma \leq \text{GL}(3, \mathbb{Z})$ with $G' \simeq G \simeq C_2^3 \simeq (\mathbb{F}_2)^3$ ($\sigma \in \text{Aut}(G)$) where $\text{Aut}(G) \simeq \text{GL}(3, \mathbb{F}_2) \simeq \text{PGL}(3, \mathbb{F}_2) \simeq \text{SL}(3, \mathbb{F}_2) \simeq \text{PSL}(3, \mathbb{F}_2) \simeq \text{PSL}(2, \mathbb{F}_7)$ with $|\text{Aut}(G)| = 168$.
- ▶ By Main theorem 2, we have $\lambda_2 = |\text{WSEC}_{r,L}| = |Y \setminus \text{Aut}(G)| = 7$ where $Y = \text{Stab}_{H_1}(\text{Aut}(G)) \simeq S_4$ with $|Y| = 24$.
- ▶ $\text{WSEC}_{2,L} = \coprod_{t=1}^7 \text{SEC}_{2,L,t} = \{[\widehat{T}_i]^{fl} \mid 1 \leq i \leq 7\}$.
- ▶ $Y \setminus \text{Aut}(G) \simeq \text{Gr}_{\mathbb{F}_2}(2, 3) \simeq \text{Gr}_{\mathbb{F}_2}(1, 3) \simeq \mathbb{P}_{\mathbb{F}_2}^2$ with $|\mathbb{P}_{\mathbb{F}_2}^2| = 7$ where $\text{Gr}_{\mathbb{F}_2}(d, 3)$ is the Grassmannian of d -dimensional subspaces of $(\mathbb{F}_2)^3$.

Main theorems 3, 4, 5: $\dim(T) = 4$

- ▶ $\exists G = N_{31,i} \leq \mathrm{GL}(4, \mathbb{Z})$ ($1 \leq i \leq 64$) for which $k(T) \simeq L(M)^G$ is **not retract k -rational** where $M \simeq M_1 \oplus M_2$ with rank $M = 3 + 1$.
- ▶ $\exists G = N_{4,i} \leq \mathrm{GL}(4, \mathbb{Z})$ ($1 \leq i \leq 152$) for which $k(T) \simeq L(M)^G$ is **not retract k -rational** with rank $M = 4$.
- ▶ $\exists G = I_{4,i} \leq \mathrm{GL}(4, \mathbb{Z})$ ($1 \leq i \leq 7$) for which $k(T) \simeq L(M)^G$ is **not stably** but **retract k -rational** with rank $M = 4$.

Main theorem 3 ([HY, Theorem 1.34]) $\dim(T) = 4$: up to $\overset{\text{s.b.}}{\sim}$

There exist exactly $129 = 1 + 121 + 7$ weak stably birationally k -equivalent classes of algebraic k -tori T of dimension 4 which consist of the stably rational class WSEC_0 , 121 classes WSEC_r ($1 \leq r \leq 121$) for $[\widehat{T}]^{fl}$ with $\widehat{T} = M_G$ and $G = N_{31,i}$ ($1 \leq i \leq 64$) as in [HY, Table 3] and for $[\widehat{T}]^{fl}$ with $\widehat{T} = M_G$ and $G = N_{4,i}$ ($1 \leq i \leq 152$) as in [HY, Table 4], and 7 classes WSEC_r ($122 \leq r \leq 128$) for $[\widehat{T}]^{fl}$ with $\widehat{T} = M_G$ and $G = I_{4,i}$ ($1 \leq i \leq 7$): (red \leftrightarrow norm one tori)

r	$G = I_{4,i} : [\widehat{T}]^{fl} = [M_G]^{fl} \in \text{WSEC}_r$	$G_r \simeq G$	$\lambda_r = \text{WSEC}_{r,L} $
122	$I_{4,1}$	F_{20}	1
123	$I_{4,2}$	F_{20}	1
124	$I_{4,3}$	$F_{20} \times C_2$	2
125	$I_{4,4}$	S_5	1
126	$I_{4,5}$	S_5	1
127	$I_{4,6}$	$S_5 \times C_2$	2
128	$I_{4,7}$	$C_3 \rtimes C_8$	2

Main theorem 4 ([HY, Theorem 1.36]) $\dim(T) = 4$ ($N_{4,i}$): up to $\approx^{\text{s.b.}}$

Let T_i and T'_j ($1 \leq i, j \leq 152$) be algebraic k -tori of dimension 4 with the minimal splitting fields L_i and L'_j and the character modules $\widehat{T}_i = M_G$ and $\widehat{T}'_j = M_{G'}$ which satisfy that G and G' are $\text{GL}(4, \mathbb{Z})$ -conjugate to $N_{4,i}$ and $N_{4,j}$ respectively. For $1 \leq i, j \leq 152$ **except for the cases**

$i = j = 137, 139, 145, 147$, the following conditions are equivalent:

- (1) $T_i \approx^{\text{s.b.}} T'_j$ (**stably birationally k -equivalent**);
- (2) $G \simeq G'$, $L_i = L'_j$, $T_i \times_k K$ and $T'_j \times_k K$ are **weak** stably birationally K -equivalent for any $k \subset K \subset L_i$;
- (3) $G \simeq G'$, $L_i = L'_j$, $T_i \times_k K$ and $T'_j \times_k K$ are **weak** stably birationally K -equivalent for any $k \subset K \subset L_i$ corresponding to **WSEC_r** ($r \geq 1$);
- (4) $G \simeq G'$, $L_i = L'_j$, $T_i \times_k K$ and $T'_j \times_k K$ are **weak** stably birationally K -equivalent for any $k \subset K \subset L_i$ corresponding to **WSEC_r** ($r \geq 1$) with $[K : k] = d$ where d is given as in [HY, Theorem 1.26].

In particular, for $d = 1$, (4) $\Leftrightarrow G \simeq G'$, $L_i = L'_j$, i.e. $\widetilde{H} \simeq G \simeq G'$.

Main theorem 4 ([HY, Theorem 1.36]) $\dim(T) = 4$ ($N_{4,i}$): up to $\approx^{\text{s.b.}}$

For the exceptional cases $i = j = 137, 139, 145, 147$

$(G \simeq Q_8 \times C_3, (Q_8 \times C_3) \rtimes C_2, \text{SL}(2, \mathbb{F}_3) \rtimes C_4,$

$(\text{GL}(2, \mathbb{F}_3) \rtimes C_2) \rtimes C_2 \simeq (\text{SL}(2, \mathbb{F}_3) \rtimes C_4) \rtimes C_2$), we have the implications $(1) \Rightarrow (2) \Leftrightarrow (3) \Leftrightarrow (4)$, there exists $\sigma \in \text{Aut}(G)$ such that $G' = G^\sigma$ and $X = Y \triangleleft Z$ with $Z/Y \simeq C_2, C_2^2, C_2, C_2$ respectively ($Y = Z$ is equivalent to $(1) \Leftrightarrow (2)$) and we have $(1) \Leftrightarrow M_G \simeq M_{G^\sigma}$ as \tilde{H} -lattices $\Leftrightarrow M_G \otimes_{\mathbb{Z}} \mathbb{F}_p \simeq M_{G^\sigma} \otimes_{\mathbb{Z}} \mathbb{F}_p$ as $\mathbb{F}_p[\tilde{H}]$ -lattices for $p = 2$ ($i = j = 137$), for $p = 2$ and 3 ($i = j = 139$), for $p = 3$ ($i = j = 145, 147$).

Furthermore, for the cases $G = N_{4,i}$ with $X = Y$ (82 cases of 152), the following conditions are also equivalent:

- (0) T_i and T'_i are **birationally k -equivalent**;
- (1) T_i and T'_i are **stably birationally k -equivalent**.

Main theorem 5 ([HY, Theorem 1.39]) $\dim(T) = 4$ ($I_{4,i}$): up to $\approx^{\text{s.b.}}$

Let T_i and T'_j ($1 \leq i, j \leq 7$) be algebraic k -tori of dimension 4 with the minimal splitting fields L_i and L'_j and the character modules $\widehat{T}_i = M_G$ and $\widehat{T}'_j = M_{G'}$ which satisfy that G and G' are $\text{GL}(4, \mathbb{Z})$ -conjugate to $I_{4,i}$ and $I_{4,j}$ respectively. For $1 \leq i, j \leq 7$ **except for the case $i = j = 7$** , the following conditions are equivalent:

- (1) $T_i \approx^{\text{s.b.}} T'_j$ (**stably birationally k -equivalent**);
- (2) $G \simeq G'$, $L_i = L'_j$, $T_i \times_k K$ and $T'_j \times_k K$ are **weak** stably birationally K -equivalent for any $k \subset K \subset L_i$;
- (3) $G \simeq G'$, $L_i = L'_j$, $T_i \times_k K$ and $T'_j \times_k K$ are **weak** stably birationally K -equivalent for any $k \subset K \subset L_i$ corresponding to **WSEC_r** ($r \geq 1$);
- (4) $G \simeq G'$, $L_i = L'_j$, $T_i \times_k K$ and $T'_j \times_k K$ are **weak** stably birationally K -equivalent for any $k \subset K \subset L_i$ corresponding to **WSEC_r** ($r \geq 1$) with $[K : k] = d$ where $d = 1$ ($i = 1, 2, 4, 5, 7$), $d = 1, 2$ ($i = 3, 6$).

In particular, for $d = 1$, (4) $\Leftrightarrow G \simeq G'$, $L_i = L'_j$, i.e. $\widetilde{H} \simeq G \simeq G'$.

Main theorem 5 ([HY, Theorem 1.39]) $\dim(T) = 4$ ($I_{4,i}$): up to $\approx^{\text{s.b.}}$

For the exceptional case $i = j = 7$ ($G \simeq C_3 \rtimes C_8$), we have the implications $(1) \Rightarrow (2) \Leftrightarrow (3) \Leftrightarrow (4)$, there exists $\sigma \in \text{Aut}(G)$ such that $G' = G^\sigma$ and $D_6 \simeq X = Y \triangleleft Z$ with $Z/Y \simeq C_2$ ($Y = Z$ is equivalent to $(1) \Leftrightarrow (2)$) and we have $(1) \Leftrightarrow M_G \simeq M_{G^\sigma}$ as \tilde{H} -lattices $\Leftrightarrow M_G \otimes_{\mathbb{Z}} \mathbb{F}_3 \simeq M_{G^\sigma} \otimes_{\mathbb{Z}} \mathbb{F}_3$ as $\mathbb{F}_3[\tilde{H}]$ -lattices.

Furthermore, we have $X = Y$ for all the cases $G = I_{4,i}$ ($1 \leq i \leq 7$), and hence the following conditions are also equivalent:

- (0) T_i and T'_i are **birationally k -equivalent**;
- (1) T_i and T'_i are **stably birationally k -equivalent**.

Corollary (Stably birational classification for T with $\dim(T) = 4$)

Let \mathcal{T}_4 be the category of algebraic k -tori of dimension 4. We get a classification (disjoint union decomposition) of \mathcal{T}_4 with respect to the stably birationally k -equivalence $\overset{\text{s.b.}}{\approx}$:

$$\mathcal{T}_4 = \coprod_{r=0}^{128} \text{WSEC}_r = \text{SEC}_0 \coprod \left(\coprod_{r=1}^{128} \coprod_{\substack{L/k \\ \text{Gal}(L/k) \simeq G_r}} \coprod_{t=1}^{\lambda_r} \text{SEC}_{r,L,t} \right)$$

modulo $\overset{\text{s.b.}}{\approx}$ where SEC_0 is the stably k -equivalent class consists of stably k -rational tori $T \in \mathcal{T}_4$, $\text{Gal}(L/k) \simeq G_r \simeq N_{4,i}$ ($1 \leq r \leq 128$) and $\lambda_r = |\text{WSEC}_{r,L}| = |Y \setminus \text{Aut}(G)|$ is given as in [HY, Table 4] and Main theorem 3.

Main theorem 6 ([HY, Theorem 1.42]) $\dim(T) = 4$: seven $I_{4,i}$ cases

Let T_i ($1 \leq i \leq 7$) be an algebraic k -torus of dimension 4 with the minimal splitting field L_i and the character module $\widehat{T}_i = M_{G_i}$ which satisfies that G_i is $\mathrm{GL}(4, \mathbb{Z})$ -conjugate to $I_{4,i}$. Let T_i^σ be the algebraic k -torus with $\widehat{T}_i^\sigma = M_{G_i^\sigma}$ ($\sigma \in \mathrm{Aut}(G_i)$). Then T_i and T_i^σ are **not stably** but **retract k -rational**, i.e. $[M_{G_i}]^{fl} \neq 0$, $[M_{G_i^\sigma}]^{fl} \neq 0$ but invertible of infinite order. We have:

- (1) [HY17, Theorem 1.27] If $L_1 = L_2$, then $T_1 \times_k T_2$ is **stably k -rational**;
 $T_3 \times_k T_3^\sigma$ is **stably k -rational** for $\sigma \in \mathrm{Aut}(G_3)$ with
 $1 \neq \bar{\sigma} \in \mathrm{Aut}(G_3)/\mathrm{Inn}(G_3) \simeq C_2$;
- (3) [HY17, Theorem 1.27] If $L_4 = L_5$, then $T_4 \times_k T_5$ is **stably k -rational**;
- (4) $T_6 \times_k T_6^\sigma$ is **stably k -rational** for $\sigma \in \mathrm{Aut}(G_6)$ with
 $1 \neq \bar{\sigma} \in \mathrm{Aut}(G_6)/\mathrm{Inn}(G_6) \simeq C_2$;
- (5) $T_7 \times_k T_7^\sigma$ is **stably k -rational** for $\sigma \in \mathrm{Aut}(G_7)$ with
 $1 \neq \bar{\sigma} \in \mathrm{Aut}(G_7)/X \simeq C_2$ where

$$X = \mathrm{Aut}_{\mathrm{GL}(4, \mathbb{Z})}(G_7) = \{\sigma \in \mathrm{Aut}(G_7) \mid G_7 \text{ and } G_7^\sigma \text{ are conjugate in } \mathrm{GL}(4, \mathbb{Z})\} \simeq D_6.$$

Higher dimensional cases: $\dim(T) \geq 3$

The following theorem can answer Problem 1 for algebraic k -tori T and T' of dimensions $m \geq 3$ and $n \geq 3$ respectively with $[\widehat{T}]^{fl}, [\widehat{T}']^{fl} \in \mathbf{WSEC}_r$ ($1 \leq r \leq 128$) via Main theorem 2, Main theorem 4, and Main theorem 5.

Main theorem 7 ([HY, Theorem 1.44]) higher dimensional cases

Let T be an algebraic k -torus of dimension $m \geq 3$ with the minimal splitting field L , $\widehat{T} = M_G$, $G \leq \mathrm{GL}(m, \mathbb{Z})$ and $[\widehat{T}]^{fl} \in \mathbf{WSEC}_r$ ($1 \leq r \leq 128$). Then there exists an algebraic k -torus T'' of dimension 3 or 4 with the minimal splitting field L'' , $\widehat{T}'' = M_{G''}$, and $G'' = N_{3,i}$ ($1 \leq i \leq 15$), $G'' = N_{4,i}$ ($1 \leq i \leq 152$) or $G'' = I_{4,i}$ ($1 \leq i \leq 7$) such that T'' and T are stably birationally k -equivalent and $L'' \subset L$, i.e. $[M_{G''}]^{fl} = [M_G]^{fl}$ as G -lattices and G acts on $[M_{G''}]^{fl}$ through $G'' \simeq G/N$ for the corresponding normal subgroup $N \triangleleft G$.

Corollary (Stably birational classification for T with $[\widehat{T}]^{fl} \in \text{WSEC}_r$ ($0 \leq r \leq 128$))

Let \mathcal{T}' be the category of algebraic k -tori T with $[\widehat{T}]^{fl} \in \text{WSEC}_r$ ($0 \leq r \leq 128$). We get a classification (disjoint union decomposition) of \mathcal{T}' with respect to the stably birationally k -equivalence $\overset{\text{s.b.}}{\approx}$:

$$\mathcal{T}' = \coprod_{r=0}^{128} \text{WSEC}_r = \text{SEC}_0 \coprod \left(\coprod_{r=1}^{128} \coprod_{\substack{L/k \\ \text{Gal}(L/k) \simeq G_r}} \coprod_{t=1}^{\lambda_r} \text{SEC}_{r,L,t} \right)$$

modulo $\overset{\text{s.b.}}{\approx}$ where SEC_0 is the stably k -equivalent class consists of **stably k -rational tori** $T \in \mathcal{T}'$, $\text{Gal}(L/k) \simeq G_r \simeq N_{3,i} \in \text{WSEC}_r$ ($1 \leq r \leq 13$), $N_{4,i} \in \text{WSEC}_r$ ($14 \leq r \leq 121$), $I_{4,i} \in \text{WSEC}_r$ ($122 \leq r \leq 128$) and $\lambda_r = |\text{WSEC}_{r,L}| = |Y \setminus \text{Aut}(G)|$ is given as in Main theorem 1, [HY, Table 4] and Main theorem 3.

Sketch: Proof of Main theorems 1, 2, 3, 4, 5, 6, 7

- ▶ For Main theorems 1 (and 3), we obtain WSEC_r use **torus invariants** and establish $[\widehat{T}_i]^{fl} = [\widehat{T}_j]^{fl}$ as \widetilde{H} -lattices for some $i < j$ for $\widehat{T}_i = M_{G_i}$, $G_i = N_{3,i}$ with $G_i \simeq G'_i$, $L_i = L'_j$, i.e. $\widetilde{H} \simeq G_i \simeq G'_i$.
- ▶ For Main theorems 2 (and 4, 5), (1) \Rightarrow (2), we should show that $[\widehat{T}_i]^{fl} = [\widehat{T}_j]^{fl}$ as \widetilde{H} -lattices for $i = j$ with $G \simeq G'$, $L_i = L'_j$, i.e. $\widetilde{H} \simeq G \simeq G'$ via **the p -part of the flabby class $[\widehat{T}]^{fl}$ ($p = 2, 3$) as a (faithful and indecomposable) $\mathbb{Z}_p[\text{Syl}_p(G)]$ -lattice via p -adic analysis.**
- ▶ For Main theorems 2 (and 4, 5), (2) \Rightarrow (1), we should show that if $i = j$ with $G \simeq G'$, $L_i = L'_j$, i.e. $\widetilde{H} \simeq G \simeq G'$, then $Y = Z$ (which is equivalent to (1) \Leftrightarrow (2)) with some exceptional cases.
- ▶ For Main theorems 2 (and 4, 5), (2) \Leftrightarrow (3) \Leftrightarrow (4), we should show that (4) \Rightarrow (2) because we already have (2) \Rightarrow (3) \Rightarrow (4).
- ▶ For Main theorem 6, we should show that $[M_{G_i}]^{fl} + [M_{G_i^\sigma}]^{fl} = 0$ ($i = 3, 6, 7$).
- ▶ For Main theorem 7, we should show that $L'' \subset L$.

Torus invariants (1/2)

Define

$$\text{III}_{\omega}^i(G, M) := \text{Ker} \left\{ H^i(G, M) \xrightarrow{\text{res}} \prod_{g \in G} H^i(\langle g \rangle, M) \right\} \quad (i \geq 1).$$

Theorem (Kunyavskii, Skorobogatov and Tsfasman, 1989)

Let M be a G -lattice. Then three groups

$$\text{III}_{\omega}^1(G, [M]^{fl}) \simeq \text{III}_{\omega}^2(G, M) \simeq H^1(G, [M]^{fl}),$$

$$\text{III}_{\omega}^2(G, ([M]^{fl})^{\circ}) \simeq \text{III}_{\omega}^1(G, M^{\circ}) \simeq H^1(G, (([M]^{fl})^{\circ})^{fl}),$$

$$\text{III}_{\omega}^2(G, [M]^{fl}) \simeq \text{III}_{\omega}^1(G, ([M]^{fl})^{fl}) \simeq H^1(G, ([M]^{fl})^{fl})$$

are invariants of the flabby class $[M]^{fl}$ of M .

Torus invariants (2/2)

Definition (Torus invariants)

Let $G \leq \mathrm{GL}(n, \mathbb{Z})$ and M_G be the corresponding G -lattice of \mathbb{Z} -rank n . The **torus invariants** $TI_G = [l_1, l_2, l_3, l_4]$ of $[M_G]^{fl}$ are defined to be

$$l_1 = \begin{cases} 0 & \text{if } [M_G]^{fl} = 0, \\ 1 & \text{if } [M_G]^{fl} \neq 0 \text{ but is invertible,} \\ 2 & \text{if } [M_G]^{fl} \text{ is not invertible,} \end{cases}$$

l_2 (resp. l_3, l_4) is the abelian invariants of $\mathrm{III}_\omega^1(G, [M_G]^{fl})$ (resp. $\mathrm{III}_\omega^2(G, ([M_G]^{fl})^\circ)$, $\mathrm{III}_\omega^2(G, [M_G]^{fl})$).

Definition (The p -part \tilde{N}_p of $[M]^{fl}$ as a $\mathbb{Z}_p[\text{Syl}_p(G)]$ -lattice)

Let G be a finite group, M be a G -lattice and

$$0 \rightarrow M \rightarrow P \rightarrow F \rightarrow 0$$

be a flabby resolution of M where P is permutation and F is flabby.

(1) (Kunyavskii, 1990) By tensering with \mathbb{Z}_2 , we also get a flabby resolution of $\tilde{M} = M \otimes_{\mathbb{Z}} \mathbb{Z}_2$ as $\mathbb{Z}_2[G]$ -lattices:

$$0 \rightarrow \tilde{M} \rightarrow \tilde{P} \rightarrow \tilde{F} \rightarrow 0$$

where $\tilde{P} = P \otimes_{\mathbb{Z}} \mathbb{Z}_2$ is permutation and $\tilde{F} = F \otimes_{\mathbb{Z}} \mathbb{Z}_2$ is flabby. Take a direct sum decomposition $\tilde{F} \simeq \tilde{N} \oplus \tilde{Q}$ where \tilde{N} does not contain a permutation direct summand and \tilde{Q} is permutation.

(2) Take a flabby resolution of $M_p = M|_{\text{Syl}_p(G)}$ as $\mathbb{Z}[\text{Syl}_p(G)]$ -lattices:

$$0 \rightarrow M_p \rightarrow P_p \rightarrow F_p \rightarrow 0$$

where P_p is permutation and F_p is flabby. Then $[F_p] = [F|_{\text{Syl}_p(G)}]$ and take the direct sum decomposition $\tilde{F}_p = F_p \otimes_{\mathbb{Z}} \mathbb{Z}_p \simeq \tilde{N}_p \oplus \tilde{Q}_p$ as $\mathbb{Z}_p[\text{Syl}_p(G)]$ -lattices where \tilde{N}_p does not contain a permutation direct summand and \tilde{Q}_p is permutation.

Example (\tilde{N} is not uniquely determined)

- ▶ $G = I_{4,1} \leq \mathrm{GL}(4, \mathbb{Z})$ with $G \simeq F_{20}$.
- ▶ M_G is the corresponding G -lattice with rank $M_G = 4$.
- ▶ Take $\tilde{M} = M_G \otimes \mathbb{Z}_2$.
- ▶ Then we see that \tilde{M} is an indecomposable $\mathbb{Z}_2[G]$ -lattice and $\tilde{M} \oplus \mathbb{Z}_2 \simeq \mathbb{Z}_2[G/C_4]$ as $\mathbb{Z}_2[G]$ -lattices.
- ▶ In particular, $\tilde{M}^{\oplus r}$ does not contain a permutation direct summand for any $r \geq 1$.
- ▶ We get that $F = [M_G]^{fl}$ with rank $F = 16$ and $\tilde{F} = F \otimes_{\mathbb{Z}} \mathbb{Z}_2 \simeq \tilde{M} \oplus \tilde{M} \oplus \tilde{M} \oplus \mathbb{Z}_2[G/C_5]$ as $\mathbb{Z}_2[G]$ -lattices with $\tilde{N} \simeq \tilde{M} \oplus \tilde{M} \oplus \tilde{M}$.
- ▶ On the other hand, we also see that $\tilde{F} \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \simeq \mathbb{Z}_2[G/C_4] \oplus \mathbb{Z}_2[G/C_4] \oplus \mathbb{Z}_2[G/C_4] \oplus \mathbb{Z}_2[G/C_5]$ and hence $\tilde{N} = 0$.
- ▶ \tilde{N} is not uniquely determined in general when G is not a 2-group.

- Retract non-rationality of an algebraic k -torus T can be detected by the non-vanishing of \tilde{N}_p .

Lemma ([HY, Lemma 7.5])

Let M be a G -lattice and \tilde{N}_p be the p -part of $[M]^{fl}$ as a $\mathbb{Z}_p[\text{Syl}_p(G)]$ -lattice. If $\tilde{N}_p \neq 0$, then $[M]^{fl}$ is **not invertible**. In particular, the corresponding torus T with $\widehat{T} = M$ is **not retract k -rational**.

- The following theorem is given by Kunyavskii (1990) except for the indecomposability of \tilde{N}_2 .

Theorem ([HY, Theorem 7.14], see also Kunyavskii (1990))

Let $G = N_{3,i}$ ($1 \leq i \leq 15$) and M_G be the corresponding G -lattice. The 2-part \tilde{N}_2 of $[M_G]^{fl}$ as a $\mathbb{Z}_2[\text{Syl}_2(G)]$ -lattice is a **faithful and indecomposable** $\mathbb{Z}_2[\text{Syl}_2(G)]$ -lattice and **the \mathbb{Z}_2 -rank** of \tilde{N}_2 is given as in [HY, Table 14].

Theorem ([HY, Theorem 7.15])

Let $G = N_{4,i}$ ($1 \leq i \leq 152$) and M_G be the corresponding G -lattice. The 2-part \tilde{N}_2 (resp. 3-part \tilde{N}_3) of $[M_G]^{fl}$ as a $\mathbb{Z}_2[\text{Syl}_2(G)]$ -lattice (resp. $\mathbb{Z}_3[\text{Syl}_3(G)]$ -lattice) is a **faithful and indecomposable** $\mathbb{Z}_2[\text{Syl}_2(G)]$ -lattice (resp. $\mathbb{Z}_3[\text{Syl}_3(G)]$ -lattice) unless it vanishes and **the \mathbb{Z}_2 -rank** of N_2 (resp. **the \mathbb{Z}_3 -rank** of N_3) is given as in [HY, Table 15].