Birational classification for algebraic tori (joint work with Aiichi Yamasaki)

Akinari Hoshi

Niigata University

December 6, 2023

Table of contents

1. Rationality problem for algebraic k-tori T
[HY17] A. Hoshi, A. Yamasaki,
Rationality problem for algebraic tori,
Mem. Amer. Math. Soc. 248 (2017), no. 1176, v+215 pp.

+ Hasse norm principle (HNP) for K / k (via T. Ono's theorem) [HKY22], [HKY23] A. Hoshi, K. Kanai, A. Yamasaki.

2. Birational classification for algebraic k-tori T
> [HY] A. Hoshi, A. Yamasaki,
> Birational classification for algebraic tori, 175 pages, arXiv:2112.02280.

§1. Rationality problem for algebraic tori $T(1 / 3)$

- k : a base field which is NOT algebraically closed! (TODAY)
- T : algebraic k-torus, i.e. k-form of a split torus; an algebraic group over k (group k-scheme) with $T \times_{k} \bar{k} \simeq\left(\mathbb{G}_{m, \bar{k}}\right)^{n}$.

Rationality problem for algebraic tori

Whether T is k-rational?, i.e. $T \approx \mathbb{P}^{n}$? (birationally k-equivalent)
Let $R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ be the norm one torus of K / k, i.e. the kernel of the norm $\operatorname{map} N_{K / k}: R_{K / k}\left(\mathbb{G}_{m}\right) \rightarrow \mathbb{G}_{m}$ where $R_{K / k}$ is the Weil restriction:

$$
\begin{array}{ccc}
1 \longrightarrow R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right) \longrightarrow R_{K / k}\left(\mathbb{G}_{m}\right) \xrightarrow{N_{K / k}} \mathbb{G}_{m} \longrightarrow 1 . \\
\operatorname{dim} & n-1 & 1
\end{array}
$$

- $\exists 2$ algebraic k-tori T with $\operatorname{dim}(T)=1$; the trivial torus \mathbb{G}_{m} and $R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ with $[K: k]=2$, are k-rational.

Rationality problem for algebraic tori $T(2 / 3)$

- $\exists 13$ algebraic k-tori T with $\operatorname{dim}(T)=2$.

Theorem (Voskresenskii 1967) 2-dim. algebraic tori T

T is k-rational.

- $\exists 73$ algebraic k-tori T with $\operatorname{dim}(T)=3$.

Theorem (Kunyavskii 1990) 3-dim. algebraic tori T

(i) $\exists 58$ algebraic k-tori T which are k-rational; (ii) $\exists 15$ algebraic k-tori T which are not k-rational.

- What happens in higher dimensions?

Algebraic k-tori T and G-lattices

- T: algebraic k-torus
$\Longrightarrow \exists$ finite Galois extension L / k such that $T \times_{k} L \simeq\left(\mathbb{G}_{m, L}\right)^{n}$.
- $G=\operatorname{Gal}(L / k)$ where L is the minimal splitting field.

Category of algebraic k-tori which split/ $L \stackrel{\text { duality }}{\longleftrightarrow}$ Category of G-lattices (i.e. finitely generated \mathbb{Z}-free $\mathbb{Z}[G]$-module)

- $T \mapsto$ the character group $\widehat{T}=\operatorname{Hom}\left(T, \mathbb{G}_{m}\right): G$-lattice.
- $T=\operatorname{Spec}\left(L[M]^{G}\right)$ which splits $/ L$ with $\widehat{T} \simeq M \leftrightarrow M$: G-lattice
- Tori of dimension $n \stackrel{1: 1}{\longleftrightarrow}$ elements of the set $H^{1}(\mathcal{G}, \operatorname{GL}(n, \mathbb{Z}))$

$$
\text { where } \mathcal{G}=\operatorname{Gal}(\bar{k} / k) \text { since } \operatorname{Aut}\left(\mathbb{G}_{m}^{n}\right)=\operatorname{GL}(n, \mathbb{Z})
$$

- k-torus T of dimension n is determined uniquely by the integral representation $h: \mathcal{G} \rightarrow \mathrm{GL}(n, \mathbb{Z})$ up to conjugacy, and the group $h(\mathcal{G})$ is a finite subgroup of $\operatorname{GL}(n, \mathbb{Z})$.
- The function field of $T \stackrel{\text { identified }}{\longleftrightarrow} L(M)^{G}$: invariant field.

Rationality problem for algebraic tori $T(3 / 3)$

- L / k : Galois extension with $G=\operatorname{Gal}(L / k)$.
- $M=\bigoplus_{1 \leq j \leq n} \mathbb{Z} \cdot u_{j}: G$-lattice with a \mathbb{Z}-basis $\left\{u_{1}, \ldots, u_{n}\right\}$.
- G acts on $L\left(x_{1}, \ldots, x_{n}\right)$ by

$$
\sigma\left(x_{j}\right)=\prod_{i=1}^{n} x_{i}^{a_{i, j}}, \quad 1 \leq j \leq n
$$

for any $\sigma \in G$, when $\sigma\left(u_{j}\right)=\sum_{i=1}^{n} a_{i, j} u_{i}, a_{i, j} \in \mathbb{Z}$.

- $L(M):=L\left(x_{1}, \ldots, x_{n}\right)$ with this action of G.
- The function field of algebraic k-torus $T \stackrel{\text { identified }}{\longleftrightarrow} L(M)^{G}$

Rationality problem for algebraic tori T (2nd form)

Whether $L(M)^{G}$ is k-rational?
(= purely transcendental over k ?; $L(M)^{G}=k\left(\exists t_{1}, \ldots, \exists t_{n}\right)$?)

Some definitions.

- K / k : a finite generated field extension.

Definition (stably rational)

K is called stably k-rational if $K\left(y_{1}, \ldots, y_{m}\right)$ is k-rational.

Definition (retract rational)

K is retract k-rational if $\exists k$-algebra (domain) $R \subset K$ such that
(i) K is the quotient field of R;
(ii) $\exists f \in k\left[x_{1}, \ldots, x_{n}\right] \exists k$-algebra hom. $\varphi: R \rightarrow k\left[x_{1}, \ldots, x_{n}\right][1 / f]$ and $\psi: k\left[x_{1}, \ldots, x_{n}\right][1 / f] \rightarrow R$ satisfying $\psi \circ \varphi=1_{R}$.

Definition (unirational)

K is k-unirational if $K \subset k\left(x_{1}, \ldots, x_{n}\right)$.

- k-rational \Rightarrow stably k-rational \Rightarrow retract k-rational $\Rightarrow k$-unirational.
- $L(M)^{G}$ (resp. T) is always k-unirational.

Rationality problem for algebraic tori T (2-dim., 3-dim.)

- The function field of n-dim. $T \stackrel{\text { identified }}{\longleftrightarrow} L(M)^{G}, G \leq \mathrm{GL}(n, \mathbb{Z})$
- $\exists 13 \mathbb{Z}$-coujugacy subgroups $G \leq \mathrm{GL}(2, \mathbb{Z})$
($\exists 13$ 2-dim. algebraic k-tori T).

Theorem (Voskresenskii 1967) 2-dim. algebraic tori T (restated)

T is k-rational.

- $\exists 73 \mathbb{Z}$-coujugacy subgroups $G \leq \mathrm{GL}(3, \mathbb{Z})$ ($\exists 73$ 3-dim. algebraic k-tori T).

Theorem (Kunyavskii 1990) 3-dim. algebraic tori T (precise form)

(i) T is k-rational $\Longleftrightarrow T$ is stably k-rational
$\Longleftrightarrow T$ is retract k-rational $\Longleftrightarrow \exists G$: 58 groups;
(ii) T is not k-rational $\Longleftrightarrow T$ is not stably k-rational
$\Longleftrightarrow T$ is not retract k-rational $\Longleftrightarrow \exists G$: 15 groups.

Rationality problem for algebraic tori T (4-dim.)

- The function field of n-dim. $T \stackrel{\text { identified }}{\longleftrightarrow} L(M)^{G}, G \leq \mathrm{GL}(n, \mathbb{Z})$
- $\exists 710 \mathbb{Z}$-coujugacy subgroups $G \leq \mathrm{GL}(4, \mathbb{Z})$ ($\exists 710$ 4-dim. algebraic k-tori T).

Theorem ([HY17]) 4-dim. algebraic tori T

(i) T is stably k-rational $\Longleftrightarrow \exists G$: 487 groups;
(ii) T is not stably but retract k-rational $\Longleftrightarrow \exists G$: 7 groups;
(iii) T is not retract k-rational $\Longleftrightarrow \exists G: 216$ groups.

- We do not know " k-rationality".
- Voskresenskii's conjecture: any stably k-rational torus is k-rational (Zariski problem).
- what happens for dimension 5 ?

Rationality problem for algebraic tori T (5-dim.)

- The function field of n-dim. $T \stackrel{\text { identified }}{\longleftrightarrow} L(M)^{G}, G \leq \mathrm{GL}(n, \mathbb{Z})$
- $\exists 6079 \mathbb{Z}$-coujugacy subgroups $G \leq \mathrm{GL}(5, \mathbb{Z})$ ($\exists 6079$ 5-dim. algebraic k-tori T).

Theorem ([HY17]) 5-dim. algebraic tori T

(i) T is stably k-rational $\Longleftrightarrow \exists G$: 3051 groups;
(ii) T is not stably but retract k-rational $\Longleftrightarrow \exists G$: 25 groups;
(iii) T is not retract k-rational $\Longleftrightarrow \exists G: 3003$ groups.

- what happens for dimension 6 ?
- BUT we do not know the answer for dimension 6.
- $\exists 85308 \mathbb{Z}$-coujugacy subgroups $G \leq \mathrm{GL}(6, \mathbb{Z})$ ($\exists 85308$ 6-dim. algebraic k-tori T).

Flabby (Flasque) resolution

- $M: G$-lattice, i.e. f.g. \mathbb{Z}-free $\mathbb{Z}[G]$-module.

Definition

(i) M is permutation $\stackrel{\text { def }}{\Longleftrightarrow} M \simeq \oplus_{1 \leq i \leq m} \mathbb{Z}\left[G / H_{i}\right]$.
(ii) M is stably permutation $\stackrel{\text { def }}{\Longleftrightarrow} M \oplus \exists P \simeq P^{\prime}, P, P^{\prime}$: permutation.
(iii) M is invertible $\stackrel{\text { def }}{\Longleftrightarrow} M \oplus \exists M^{\prime} \simeq P$: permutation.
(iv) M is coflabby $\stackrel{\text { def }}{\Longleftrightarrow} H^{1}(H, M)=0(\forall H \leq G)$. (v) M is flabby $\stackrel{\text { def }}{\Longleftrightarrow} \widehat{H}^{-1}(H, M)=0(\forall H \leq G) .(\widehat{H}$: Tate cohomology $)$

- "permutation"
\Longrightarrow "stably permutation"
\Longrightarrow "invertible"
\Longrightarrow "flabby and coflabby".

Commutative monoid \mathcal{M}

$M_{1} \sim M_{2} \stackrel{\text { def }}{\Longleftrightarrow} M_{1} \oplus P_{1} \simeq M_{2} \oplus P_{2}\left(\exists P_{1}, \exists P_{2}\right.$: permutation $)$. \Longrightarrow commutative monoid $\mathcal{M}:\left[M_{1}\right]+\left[M_{2}\right]:=\left[M_{1} \oplus M_{2}\right], 0=[P]$.

Theorem (Endo-Miyata 1974, Colliot-Thélène-Sansuc 1977)

$\exists P$: permutation, $\exists F$: flabby such that

$$
0 \rightarrow M \rightarrow P \rightarrow F \rightarrow 0: \text { flabby resolution of } M
$$

- $[M]^{f l}:=[F]$; flabby class of M

Theorem (Endo-Miyata 1973, Voskresenskii 1974, Saltman 1984)

(EM73) $[M]^{f l}=0 \Longleftrightarrow L(M)^{G}$ is stably k-rational.
$(\operatorname{Vos} 74)[M]^{f l}=\left[M^{\prime}\right]^{f l} \Longleftrightarrow L(M)^{G}\left(x_{1}, \ldots, x_{m}\right) \simeq L\left(M^{\prime}\right)^{G}\left(y_{1}, \ldots, y_{n}\right)$; stably k-equivalent.
(Sal84) $[M]^{f l}$ is invertible $\Longleftrightarrow L(M)^{G}$ is retract k-rational.

- $M=M_{G} \simeq \widehat{T}=\operatorname{Hom}\left(T, \mathbb{G}_{m}\right), k(T) \simeq L(M)^{G}, G=\operatorname{Gal}(L / k)$

Contributions of [HY17]

- We give a procedure to compute a flabby resolution of M, in particular $[M]^{f l}=[F]$, effectively (with smaller rank after base change) by computer software GAP.
- The function IsFlabby (resp. IsCoflabby) may determine whether M is flabby (resp. coflabby).
- The function IsInvertibleF may determine whether $[M]^{f l}=[F]$ is invertible $\left(\leftrightarrow\right.$ whether $L(M)^{G}$ (resp. T) is retract rational).
- We provide some functions for checking a possibility of isomorphism

$$
\begin{equation*}
\left(\bigoplus_{i=1}^{r} a_{i} \mathbb{Z}\left[G / H_{i}\right]\right) \oplus a_{r+1} F \simeq \bigoplus_{i=1}^{r} b_{i}^{\prime} \mathbb{Z}\left[G / H_{i}\right] \tag{*}
\end{equation*}
$$

by computing some invariants (e.g. trace, $\widehat{Z}^{0}, \widehat{H}^{0}$) of both sides.

- [HY17, Example 10.7]. $G \simeq S_{5} \leq \operatorname{GL}(5, \mathbb{Z})$ with number $(5,946,4)$
$\Longrightarrow \operatorname{rank}(F)=17$ and $\operatorname{rank}(*)=88$ holds
$\Longrightarrow[F]=0 \Longrightarrow L(M)^{G}$ (resp. T) is stably rational over k.

Application to Krull-Schmidt

Corollary $\left([F]=[M]^{f l}\right.$: invertible case, $\left.G \simeq S_{5}, F_{20}\right)$

$\exists T, T^{\prime} ; 4$-dim. not stably rational algebraic tori over k such that $T \nsim T^{\prime}$ (birational) and $T \times T^{\prime}: 8$-dim. stably rational over k.
$\because-[M]^{f l}=\left[M^{\prime}\right]^{f l} \neq 0$.
Prop. ([HY17], Krull-Schmidt fails for permutation D_{6}-lattices)
$\{1\}, C_{2}^{(1)}, C_{2}^{(2)}, C_{2}^{(3)}, C_{3}, V_{4}, C_{6}, S_{3}^{(1)}, S_{3}^{(2)}, D_{6}$: conj. subgroups of D_{6}.

$$
\begin{aligned}
& \mathbb{Z}\left[D_{6}\right] \oplus \mathbb{Z}\left[D_{6} / V_{4}\right]^{\oplus 2} \oplus \mathbb{Z}\left[D_{6} / C_{6}\right] \oplus \mathbb{Z}\left[D_{6} / S_{3}^{(1)}\right] \oplus \mathbb{Z}\left[D_{6} / S_{3}^{(2)}\right] \\
\simeq & \mathbb{Z}\left[D_{6} / C_{2}^{(1)}\right] \oplus \mathbb{Z}\left[D_{6} / C_{2}^{(2)}\right] \oplus \mathbb{Z}\left[D_{6} / C_{2}^{(3)}\right] \oplus \mathbb{Z}\left[D_{6} / C_{3}\right] \oplus \mathbb{Z}^{\oplus 2}
\end{aligned}
$$

- D_{6} is the smallest example exhibiting the failure of $\mathrm{K}-\mathrm{S}$:

Theorem (Dress 1973)

Krull-Schmidt holds for permutation G-lattices $\Longleftrightarrow G / O_{p}(G)$ is cyclic where $O_{p}(G)$ is the maximal normal p-subgroup of G.

Krull-Schmidt and Direct sum cancelation

Theorem (Hindman-Klingler-Odenthal 1998) Assume $G \neq D_{8}$

Krull-Schmidt holds for G-lattices \Longleftrightarrow (i) $G=C_{p}$ ($p \leq 19$; prime), (ii) $G=C_{n}(n=1,4,8,9)$, (iii) $G=V_{4}$ or (iv) $G=D_{4}$.

Theorem (Endo-Hironaka 1979)

Direct sum cancellation holds, i.e. $M_{1} \oplus N \simeq M_{2} \oplus N \Longrightarrow M_{1} \simeq M_{2}$, $\Longrightarrow G$ is abelian, dihedral, A_{4}, S_{4} or $A_{5}\left(^{*}\right)$.

- via projective class group (see Swan 1988, Corollary 1.3, Section 7).
- Except for $\left(^{*}\right) \Longrightarrow$ Direct sum cancelation fails \Longrightarrow K-S fails

Theorem ([HY17]) $G \leq \mathrm{GL}(n, \mathbb{Z})$ (up to conjugacy)

(i) $n \leq 4 \Longrightarrow$ K-S holds.
(ii) $n=5$. K-S fails $\Longleftrightarrow 11$ groups G (among 6079 groups).
(iii) $n=6$. K-S fails $\Longleftrightarrow 131$ groups G (among 85308 groups).

Special case: $T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right) ;$ norm one tori $(1 / 5)$

- Rationality problem for $T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ is investigated by S . Endo, Colliot-Thélène and Sansuc, W. Hürlimann, L. Le Bruyn, A. Cortella and B. Kunyavskii, N. Lemire and M. Lorenz, M. Florence, etc.

Theorem (Endo-Miyata 1974), (Saltman 1984)

Let K / k be a finite Galois field extension and $G=\operatorname{Gal}(K / k)$.
(i) T is retract k-rational \Longleftrightarrow all the Sylow subgroups of G are cyclic; (ii) T is stably k-rational $\Longleftrightarrow G$ is a cyclic group, or a direct product of a cyclic group of order m and a group $\left\langle\sigma, \tau \mid \sigma^{n}=\tau^{2^{d}}=1, \tau \sigma \tau^{-1}=\sigma^{-1}\right\rangle$, where $d, m \geq 1, n \geq 3, m, n$: odd, and $(m, n)=1$.

Theorem (Endo 2011)

Let K / k be a finite non-Galois, separable field extension and L / k be the Galois closure of K / k. Assume that the Galois group of L / k is nilpotent. Then the norm one torus $T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ is not retract k-rational.

Special case: $T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right) ;$ norm one tori $(2 / 5)$

- Let K / k be a finite non-Galois, separable field extension
- Let L / k be the Galois closure of K / k.
- Let $G=\operatorname{Gal}(L / k)$ and $H=\operatorname{Gal}(L / K) \leq G$.

Theorem (Endo 2011)

Assume that all the Sylow subgroups of G are cyclic.
Then T is retract k-rational.
$T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ is stably k-rational $\Longleftrightarrow G=D_{n}, n$ odd $(n \geq 3)$ or $C_{m} \times D_{n}, m, n$ odd $(m, n \geq 3),(m, n)=1, H \leq D_{n}$ with $|H|=2$.

Special case: $T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right) ;$ norm one tori $(3 / 5)$

Theorem (Endo 2011) $\operatorname{dim} T=n-1$

Assume that $\operatorname{Gal}(L / k)=S_{n}, n \geq 3$, and $\operatorname{Gal}(L / K)=S_{n-1}$ is the stabilizer of one of the letters in S_{n}.
(i) $R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ is retract k-rational $\Longleftrightarrow n$ is a prime; (ii) $R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ is (stably) k-rational $\Longleftrightarrow n=3$.

Theorem (Endo 2011) $\operatorname{dim} T=n-1$

Assume that $\operatorname{Gal}(L / k)=A_{n}, n \geq 4$, and $\operatorname{Gal}(L / K)=A_{n-1}$ is the stabilizer of one of the letters in A_{n}.
(i) $R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ is retract k-rational $\Longleftrightarrow n$ is a prime;
(ii) $\exists t \in \mathbb{N}$ s.t. $\left[R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)\right]^{(t)}$ is stably k-rational $\Longleftrightarrow n=5$.

- $\left[R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)\right]^{(t)}$: the product of t copies of $R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$.

Special case: $T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right) ;$ norm one tori $(4 / 5)$

Theorem ([HY17], Rationality for $R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)(\operatorname{dim} .4,[K: k]=5)$)

Let K / k be a separable field extension of degree 5 and L / k be the Galois closure of K / k. Assume that $G=\operatorname{Gal}(L / k)$ is a transitive subgroup of S_{5} and $H=\operatorname{Gal}(L / K)$ is the stabilizer of one of the letters in G. Then the rationality of $R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ is given by

G		$L(M)=L\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{G}$
$5 T 1$	C_{5}	stably k-rational
$5 T 2$	D_{5}	stably k-rational
$5 T 3$	F_{20}	not stably but retract k-rational
$5 T 4$	A_{5}	stably k-rational
$5 T 5$	S_{5}	not stably but retract k-rational

- This theorem is already known except for the case of A_{5} (Endo).
- Stably k-rationality for the case A_{5} is asked by S. Endo (2011).

Special case: $T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right) ;$ norm one tori $(5 / 5)$

Corollary of (Endo 2011) and [HY17]

Assume that $\operatorname{Gal}(L / k)=A_{n}, n \geq 4$, and $\operatorname{Gal}(L / K)=A_{n-1}$ is the stabilizer of one of the letters in A_{n}. Then
$R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ is stably k-rational $\Longleftrightarrow n=5$.

More recent results on stably/retract k-rational classification for T

- $G \leq S_{n}(n \leq 10)$ and $G \neq 9 T 27 \simeq P S L_{2}\left(\mathbb{F}_{8}\right)$, $G \leq S_{p}$ and $G \neq P S L_{2}\left(\mathbb{F}_{2^{e}}\right)\left(p=2^{e}+1 \geq 17\right.$; Fermat prime) (Hoshi-Yamasaki [HY21] Israel J. Math.)
- $G \leq S_{n}(n=12,14,15)\left(n=2^{e}\right)$
(Hasegawa-Hoshi-Yamasaki [HHY20] Math. Comp.)
$\amalg(T)$ and Hasse norm principle over number fields k (see next slides)
- (Hoshi-Kanai-Yamasaki [HKY22] Math. Comp., [HKY23] JNT)

$Ш(T)$ and HNP for K / k : Ono's theorem (1963)

- T : algebraic k-torus, i.e. $T \times_{k} \bar{k} \simeq\left(\mathbb{G}_{m, \bar{k}}\right)^{n}$.
- $\amalg(T):=\operatorname{Ker}\left\{H^{1}(k, T) \xrightarrow{\text { res }} \bigoplus_{v \in V_{k}} H^{1}\left(k_{v}, T\right)\right\}$: Shafarevich-Tate gp.
- $T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ is biregularly isomorphic to the norm hyper surface $f\left(x_{1}, \ldots, x_{n}\right)=1$ where $f \in k\left[x_{1}, \ldots, x_{n}\right]$ is the norm form of K / k.

Theorem (Ono 1963, Ann. of Math.)

Let K / k be a finite extension of number fields and $T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$. Then

$$
\amalg(T) \simeq\left(N_{K / k}\left(\mathbb{A}_{K}^{\times}\right) \cap k^{\times}\right) / N_{K / k}\left(K^{\times}\right)
$$

where \mathbb{A}_{K}^{\times}is the idele group of K. In particular,
$Ш(T)=0 \Longleftrightarrow$ Hasse norm principle holds for K / k.

Known results for HNP (2/2)

- $T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$.
- $\amalg(T)=0 \Longleftrightarrow$ Hasse norm principle holds for K / k.

Theorem (Kunyavskii 1984)

Let $[K: k]=4, G=\operatorname{Gal}(L / k) \simeq 4 T m(1 \leq m \leq 5)$.
Then $\amalg(T)=0$ except for $4 T 2$ and $4 T 4$. For $4 T 2 \simeq V_{4}, 4 T 4 \simeq A_{4}$,
(i) $\amalg(T) \leq \mathbb{Z} / 2 \mathbb{Z}$;
(ii) $\amalg(T)=0 \Leftrightarrow{ }^{\exists} v \in V_{k}$ such that $V_{4} \leq G_{v}$.

Theorem (Drakokhrust-Platonov 1987)

Let $[K: k]=6, G=\operatorname{Gal}(L / k) \simeq 6 T m(1 \leq m \leq 16)$.
Then $\amalg(T)=0$ except for $6 T 4$ and $6 T 12$. For $6 T 4 \simeq A_{4}, 6 T 12 \simeq A_{5}$,
(i) $\amalg(T) \leq \mathbb{Z} / 2 \mathbb{Z}$;
(ii) $\amalg(T)=0 \Leftrightarrow{ }^{\exists} v \in V_{k}$ such that $V_{4} \leq G_{v}$.

Voskresenskii's theorem (1969) (1/2)

- Let X be a smooth k-compactification of an algebraic k-torus T

Theorem (Voskresenskii 1969)

Let k be a global field, T be an algebraic k-torus and X be a smooth k-compactification of T. Then there exists an exact sequence

$$
0 \rightarrow A(T) \rightarrow H^{1}(k, \operatorname{Pic} \bar{X})^{\vee} \rightarrow \amalg(T) \rightarrow 0
$$

where $M^{\vee}=\operatorname{Hom}(M, \mathbb{Q} / \mathbb{Z})$ is the Pontryagin dual of M.

- The group $A(T):=\left(\prod_{v \in V_{k}} T\left(k_{v}\right)\right) / \overline{T(k)}$ is called the kernel of the weak approximation of T.
- T : retract rational $\Longleftrightarrow[\widehat{T}]^{f l}=[\operatorname{Pic} \bar{X}]$ is invertible
$\Longrightarrow \operatorname{Pic} \bar{X}$ is flabby and coflabby $\Longrightarrow H^{1}(k, \operatorname{Pic} \bar{X})^{\vee}=0 \quad \Longrightarrow A(T)=\amalg(T)=0$.
- when $T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$, by Ono's theorem, T : retract k-rational $\Longrightarrow \amalg(T)=0$ (HNP holds for K / k).

Voskresenskii's theorem (1969) (2/2)

- when $T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right), \widehat{T}=J_{G / H}$ where
$J_{G / H}=\left(I_{G / H}\right)^{\circ}=\operatorname{Hom}\left(I_{G / H}, \mathbb{Z}\right)$ is the dual lattice of $I_{G / H}=\operatorname{Ker}(\varepsilon)$ and $\varepsilon: \mathbb{Z}[G / H] \rightarrow \mathbb{Z}$ is the augmentation map.
- (Hasegawa-Hoshi-Yamasaki [HHY20], Hoshi-Yamasaki [HY21]) For $[K: k]=n \leq 15$ except $9 T 27 \simeq \operatorname{PSL}_{2}\left(\mathbb{F}_{8}\right)$, the classificasion of stably/retract rational $R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ was given.
- when $T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right), T$: retract k-rational $\Longrightarrow H^{1}(k, \operatorname{Pic} \bar{X})=0$
- $H^{1}(k, \operatorname{Pic} \bar{X}) \simeq \operatorname{Br}(X) / \operatorname{Br}(k) \simeq \operatorname{Br}_{\mathrm{nr}}(k(X) / k) / \operatorname{Br}(k)$ by Colliot-Thélène-Sansuc 1987 where $\operatorname{Br}(X)$ is the étale cohomological/Azumaya Brauer group of X and $\operatorname{Br}_{\mathrm{nr}}(k(X) / k)$ is the unramified Brauer group of $k(X)$ over k.

Theorems 1,2,3,4 in [HKY22], [HKY23] (1/3)

- $\exists 2,13,73,710,6079$ cases of alg. k-tori T of $\operatorname{dim}(T)=1,2,3,4,5$.

Theorem 1 ([HKY22, Theorem 1.5 and Theorem 1.6])

(i) $\operatorname{dim}(T)=4$. Among the 216 cases (of 710) of not retract rational T,

$$
H^{1}(k, \operatorname{Pic} \bar{X}) \simeq \begin{cases}0 & (194 \text { of } 216) \\ \mathbb{Z} / 2 \mathbb{Z} & (20 \text { of } 216) \\ (\mathbb{Z} / 2 \mathbb{Z})^{\oplus 2} & (2 \text { of } 216)\end{cases}
$$

(ii) $\operatorname{dim}(T)=5$. Among 3003 cases (of 6079) of not retract rational T,

$$
H^{1}(k, \operatorname{Pic} \bar{X}) \simeq \begin{cases}0 & (2729 \text { of } 3003) \\ \mathbb{Z} / 2 \mathbb{Z} & (263 \text { of } 3003) \\ (\mathbb{Z} / 2 \mathbb{Z})^{\oplus 2} & (11 \text { of } 3003)\end{cases}
$$

- Kunyavskii (1984) showed that among the 15 cases (of 73) of not retract rational T of $\operatorname{dim}(T)=3, H^{1}(k, \operatorname{Pic} \bar{X})=0$ (13 of 15$)$, $H^{1}(k, \operatorname{Pic} \bar{X}) \simeq \mathbb{Z} / 2 \mathbb{Z}(2$ of 15$)$.

Theorems 1,2,3,4 in [HKY22], [HKY23] (2/3)

- k : a field, K / k : a separable field extension of $[K: k]=n$.
- $T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ with $\operatorname{dim}(T)=n-1$.
- X : a smooth k-compactification of T.
- L / k : Galois closure of $K / k, G:=\operatorname{Gal}(L / k)$ and $H=\operatorname{Gal}(L / K)$ with $[G: H]=n \Longrightarrow G=n T m \leq S_{n}$: transitive.
- The number of transitive subgroups $n T m$ of $S_{n}(2 \leq n \leq 15)$ up to conjugacy is given as follows:

n	2	3	4	5	6	7	8	9	10	11	12	13	14	15
\# of $n T m$	1	2	5	5	16	7	50	34	45	8	301	9	63	104

Theorem 2 ([HKY22, Theorem 1.5], [HKY23, Theorem 1.1])

Let $2 \leq n \leq 15$ be an integer. Then $H^{1}(k, \operatorname{Pic} \bar{X}) \neq 0 \Longleftrightarrow G=n T m$ is given as in [HKY22, Table 1] $(n \neq 12)$ or [HKY23,Table 1] $(n=12)$.
[HKY22, Table 1]: $H^{1}(k, \operatorname{Pic} \bar{X}) \simeq H^{1}\left(G,\left[J_{G / H}\right]^{f l}\right) \neq 0$ where $G=n T m$ with $2 \leq n \leq 15$ and $n \neq 12$

G	$H^{1}(k, \operatorname{Pic} \bar{X}) \simeq H^{1}\left(G,\left[J_{G / H}\right]^{f l}\right)$
$4 T 2 \simeq V_{4}$	$\mathbb{Z} / 2 \mathbb{Z}$
$4 T 4 \simeq A_{4}$	\mathbb{Z} / \mathbb{Z}
$6 T 4 \simeq A_{4}$	$\mathbb{Z} / 2 \mathbb{Z}$
$6 T 12 \simeq A_{5}$	$\mathbb{Z} / 2 \mathbb{Z}$
$8 T 2 \simeq C_{4} \times C_{2}$	\mathbb{Z} / \mathbb{Z}
$8 T 3 \simeq\left(C_{2}\right)^{3}$	$(\mathbb{Z} / 2 \mathbb{Z})^{\oplus}{ }^{\oplus}$
$8 T 4 \simeq D_{4}$	$\mathbb{Z} / 2 \mathbb{Z}$
$8 T 9 \simeq D_{4} \times C_{2}$	\mathbb{Z} / \mathbb{Z}
$8 T 11 \simeq\left(C_{4} \times C_{2}\right) \rtimes C_{2}$	$\mathbb{Z} / 2 \mathbb{Z}$
$8 T 13 \simeq A_{4} \times C_{2}$	\mathbb{Z} / \mathbb{Z}
$8 T 14 \simeq S_{4}$	\mathbb{Z} / \mathbb{Z}
$8 T 15 \simeq C_{8} \rtimes V_{4}$	$\mathbb{Z} / 2 \mathbb{Z}$
$8 T 19 \simeq\left(C_{2}\right)^{3} \rtimes C_{4}$	\mathbb{Z} / \mathbb{Z}
$8 T 21 \simeq\left(C_{2}\right)^{3} \rtimes C_{4}$	\mathbb{Z} / \mathbb{Z}
$8 T 22 \simeq\left(C_{2}\right)^{3} \rtimes V_{4}$	$\mathbb{Z} / 2 \mathbb{Z}$
$8 T 31 \simeq\left(\left(C_{2}\right)^{4} \rtimes C_{2}\right) \rtimes C_{2}$	\mathbb{Z} / \mathbb{Z}
$8 T 32 \simeq\left(\left(C_{2}\right)^{3} \rtimes V_{4}\right) \rtimes C_{3}$	\mathbb{Z} / \mathbb{Z}
$8 T 37 \simeq \mathrm{PSL}_{3}\left(\mathbb{F}_{2}\right) \simeq \mathrm{PSL}_{2}\left(\mathbb{F}_{7}\right)$	$\mathbb{Z} / 2 \mathbb{Z}$
$8 T 38 \simeq\left(\left(\left(C_{2}\right)^{4} \rtimes C_{2}\right) \rtimes C_{2}\right) \rtimes C_{3}$	$\mathbb{Z} / 2 \mathbb{Z}$

[HKY22, Table 1]: $H^{1}(k, \operatorname{Pic} \bar{X}) \simeq H^{1}\left(G,\left[J_{G / H}\right]^{f l}\right) \neq 0$ where $G=n T m$ with $2 \leq n \leq 15$ and $n \neq 12$

G	$H^{1}(k, \operatorname{Pic} \bar{X}) \simeq H^{1}\left(G,\left[J_{G / H}\right]^{f l}\right)$
$9 T 2 \simeq\left(C_{3}\right)^{2}$	$\mathbb{Z} / 3 \mathbb{Z}$
$9 T 5 \simeq\left(C_{3}\right)^{2} \rtimes C_{2}$	$\mathbb{Z} / 3 \mathbb{Z}$
$9 T 7 \simeq\left(C_{3}\right)^{2} \rtimes C_{3}$	$\mathbb{Z} / 3 \mathbb{Z}$
$9 T 9 \simeq\left(C_{3}\right)^{2} \rtimes C_{4}$	$\mathbb{Z} / 3 \mathbb{Z}$
$9 T 11 \simeq\left(C_{3}\right)^{2} \rtimes C_{6}$	$\mathbb{Z} / 3 \mathbb{Z}$
$9 T 14 \simeq\left(C_{3}\right)^{2} \rtimes Q_{8}$	$\mathbb{Z} / 3 \mathbb{Z}$
$9 T 23 \simeq\left(\left(C_{3}\right)^{2} \rtimes Q_{8}\right) \rtimes C_{3}$	$\mathbb{Z} / 3 \mathbb{Z}$
$10 T 7 \simeq A_{5}$	$\mathbb{Z} / 2 \mathbb{Z}$
$10 T 26 \simeq \operatorname{PSL}_{2}\left(\mathbb{F}_{9}\right) \simeq A_{6}$	$\mathbb{Z} / 2 \mathbb{Z}$
$10 T 32 \simeq S_{6}$	$\mathbb{Z} / 2 \mathbb{Z}$
$14 T 30 \simeq \mathrm{PSL}_{2}\left(\mathbb{F}_{13}\right)$	$\mathbb{Z} / 2 \mathbb{Z}$
$15 T 9 \simeq\left(C_{5}\right)^{2} \rtimes C_{3}$	$\mathbb{Z} / 5 \mathbb{Z}$
$15 T 14 \simeq\left(C_{5}\right)^{2} \rtimes S_{3}$	$\mathbb{Z} / 5 \mathbb{Z}$

Theorems 1,2,3,4 in [HKY22], [HKY23] (3/3)

- k : a number field, K / k : a separable field extension of $[K: k]=n$.
- $T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right), X$: a smooth k-compactification of T.

Theorem 3 ([HKY22, Theorem 1.18], [HKY23, Theorem 1.3])

Let $2 \leq n \leq 15$ be an integer. For the cases in [HKY22, Table 1] $(n \leq 15, n \neq 12)$ or [HKY23,Table 1] $(n=12)$,
$Ш(T)=0 \Longleftrightarrow G=n T m$ satisfies some conditions of G_{v} where G_{v} is the decomposition group of G at v.

- By Ono's theorem, $\amalg(T)=0 \Longleftrightarrow$ HNP holds for K / k, Theorem 3 gives a necessary and sufficient condition for HNP for K / k.

Theorem 4 ([HKY22, Theorem 1.17])

Assume that $G=M_{n} \leq S_{n}(n=11,12,22,23,24)$ is the Mathieu group of degree n. Then $H^{1}(k, \operatorname{Pic} \bar{X})=0$. In particular, $\amalg(T)=0$.

Examples of Theorem 3

> Example $\left(G=8 T 4 \simeq D_{4}, 8 T 13 \simeq A_{4} \times C_{2}, 8 T 14 \simeq S_{4}\right.$, $\left.8 T 37 \simeq \mathrm{PSL}_{2}\left(\mathbb{F}_{7}\right), 10 T 7 \simeq A_{5}, 14 T 30 \simeq \mathrm{PSL}_{2}\left(\mathbb{F}_{13}\right)\right)$
$\amalg(T)=0 \Longleftrightarrow{ }^{\exists} v \in V_{k}$ such that $V_{4} \leq G_{v}$.
Example $\left(G=10 T 26 \simeq \mathrm{PSL}_{2}\left(\mathbb{F}_{9}\right)\right)$
$Ш(T)=0 \Longleftrightarrow{ }^{\exists} v \in V_{k}$ such that $D_{4} \leq G_{v}$.
Example $\left(G=10 T 32 \simeq S_{6} \leq S_{10}\right)$
$Ш(T)=0 \Longleftrightarrow{ }^{\exists} v \in V_{k}$ such that
(i) $V_{4} \leq G_{v}$ where $N_{\widetilde{G}}\left(V_{4}\right) \simeq C_{8} \rtimes\left(C_{2} \times C_{2}\right)$ for the normalizer $N_{\widetilde{G}}\left(V_{4}\right)$ of V_{4} in \widetilde{G} with the normalizer $\widetilde{G}=N_{S_{10}}(G) \simeq \operatorname{Aut}(G)$ of G in S_{10} or (ii) $D_{4} \leq G_{v}$ where $D_{4} \leq[G, G] \simeq A_{6}$.

- 45/165 subgroups $V_{4} \leq G$ satisfy (i).
- $45 / 180$ subgroups $D_{4} \leq G$ satisfy (ii).

§2. Birational classification for algebraic tori

Problem 1: (Stably) birational classification for algebraic tori

For given two algebraic k-tori T and T^{\prime}, whether T and T^{\prime} are stably birationally k-equivalent?, i.e. $T \stackrel{\text { s.b. }}{\approx} T^{\prime}$?

Theorem (Colliot-Thélène and Sansuc 1977) $\operatorname{dim}(T)=\operatorname{dim}\left(T^{\prime}\right)=3$

Let L / k and L^{\prime} / k be Galois extensions with $\operatorname{Gal}(L / k) \simeq \operatorname{Gal}\left(L^{\prime} / k\right) \simeq V_{4}$. Let $T=R_{L / k}^{(1)}\left(\mathbb{G}_{m}\right)$ and $T^{\prime}=R_{L^{\prime} / k}^{(1)}\left(\mathbb{G}_{m}\right)$ be the corresponding norm one tori. Then $T \stackrel{\text { s.b. }}{\approx} T^{\prime}$ (stably birationally k-equivalent) if and only if $L=L^{\prime}$.

- In particular, if k is a number field, then there exist infinitely many stably birationally k-equivalent classes of (non-rational: 1 st $/ 15) k$-tori which correspond to U_{1} (cf. Main theorem 1, later).
- \bar{k} : a fixed separable closure of k and $\mathcal{G}=\operatorname{Gal}(\bar{k} / k)$
- X : a smooth k-compactification of T, i.e. smooth projective k-variety X containing T as a dense open subvariety
- $\bar{X}=X \times_{k} \bar{k}$

Theorem (Voskresenskii 1969, 1970)

There exists an exact sequence of \mathcal{G}-lattices

$$
0 \rightarrow \widehat{T} \rightarrow \widehat{Q} \rightarrow \operatorname{Pic} \bar{X} \rightarrow 0
$$

where \widehat{Q} is permutation and $\operatorname{Pic} \bar{X}$ is flabby.

- $M_{G} \simeq \widehat{T},[\widehat{T}]^{f l}=[\operatorname{Pic} \bar{X}]$ as \mathcal{G}-lattices

Theorem (Voskresenskii 1970, 1973)

(i) T is stably k-rational if and only if $[\operatorname{Pic} \bar{X}]=0$ as a \mathcal{G}-lattice.
(ii) $T \stackrel{\text { s.b. }}{\approx} T^{\prime}$ (stably birationally k-equivalent) if and only if $[\operatorname{Pic} \bar{X}]=\left[\operatorname{Pic} \overline{X^{\prime}}\right]$ as \mathcal{G}-lattices.

- From \mathcal{G}-lattice to G-lattice

Let L be the minimal splitting field of T with $G=\operatorname{Gal}(L / k) \simeq \mathcal{G} / \mathcal{H}$. We obtain a flabby resolution of \widehat{T} :

$$
0 \rightarrow \widehat{T} \rightarrow \widehat{Q} \rightarrow \operatorname{Pic} X_{L} \rightarrow 0
$$

with $[\widehat{T}]^{f l}=\left[\operatorname{Pic} X_{L}\right]$ as G-lattices.
By the inflation-restriction exact sequence $0 \rightarrow H^{1}\left(G, \operatorname{Pic} X_{L}\right) \xrightarrow{\text { inf }} H^{1}(k, \operatorname{Pic} \bar{X}) \xrightarrow{\text { res }} H^{1}(L, \operatorname{Pic} \bar{X})$, we get inf : $H^{1}\left(G, \operatorname{Pic} X_{L}\right) \xrightarrow{\sim} H^{1}(k, \operatorname{Pic} \bar{X})$ because $H^{1}(L, \operatorname{Pic} \bar{X})=0$. We get:

Theorem (Voskresenskii 1970, 1973)

(ii) ${ }^{\prime} T \stackrel{\text { s.b. }}{\approx} T^{\prime}$ (stably birationally k-equivalent) if and only if
$\left[\operatorname{Pic} X_{\widetilde{L}}\right]=\left[\operatorname{Pic} X_{\widetilde{L}}^{\prime}\right]$ as \widetilde{H}-lattices where $\widetilde{L}=L L^{\prime}$ and $\widetilde{H}=\operatorname{Gal}(\widetilde{L} / k)$.
The group \widetilde{H} becomes a subdirect product of $G=\operatorname{Gal}(L / k)$ and $G^{\prime}=\operatorname{Gal}\left(L^{\prime} / k\right)$, i.e. a subgroup \widetilde{H} of $G \times G^{\prime}$ with surjections $\varphi_{1}: \widetilde{H} \rightarrow G$ and $\varphi_{2}: \widetilde{H} \rightarrow G^{\prime}$.

- This observation yields a concept of "weak stably k-equivalence".

Definition

(i) $[M]^{f l}$ and $\left[M^{\prime}\right]^{f l}$ are weak stably k-equivalent, if there exists a subdirect product $\widetilde{H} \leq G \times G^{\prime}$ of G and G^{\prime} with surjections $\varphi_{1}: \widetilde{H} \rightarrow G$ and $\varphi_{2}: \widetilde{H} \rightarrow G^{\prime}$ such that $[M]^{f l}=\left[M^{\prime}\right]^{f l}$ as \widetilde{H}-lattices where \widetilde{H} acts on $M\left(\right.$ resp. $\left.M^{\prime}\right)$ through the surjection φ_{1} (resp. φ_{2}).
(ii) Algebraic k-tori T and T^{\prime} are weak stably birationally k-equivalent, denoted by $T \stackrel{\text { s.b. }}{\sim} T^{\prime}$, if $[\widehat{T}]^{f l}$ and $\left[\widehat{T}^{\prime}\right]^{f l}$ are weak stably k-equivalent.

Remark

(1) $T \stackrel{\text { s.b. }}{\approx} T^{\prime}$ (birational k-equiv.) $\Rightarrow T \stackrel{\text { s.b. }}{\sim} T^{\prime}$ (weak birational k-equiv.). (2) $\stackrel{\text { s.b. }}{\sim}$ becomes an equivalence relation and we call this equivalent class the weak stably k-equivalent class of $[\widehat{T}]^{f l}$ (or T) denoted by WSEC_{r} $(r \geq 0)$ with the stably k-rational class WSEC_{0}.

Rationality problem for 3 -dimensional algebraic k-tori T was solved by Kunyavskii (1990). Stably/retract rationality for algebraic k-tori T of dimensions 4 and 5 are given in Hoshi and Yamasaki [HY17, Chapter 1].

Definition

(1) The 15 groups $G=N_{3, i} \leq \operatorname{GL}(3, \mathbb{Z})(1 \leq i \leq 15)$ for which $k(T) \simeq L(M)^{G}$ is not retract k-rational are as in [HY, Table 6]. (2) The 64 groups $G=N_{31, i} \leq \operatorname{GL}(4, \mathbb{Z})(1 \leq i \leq 64)$ for which $k(T) \simeq L(M)^{G}$ is not retract k-rational where $M \simeq M_{1} \oplus M_{2}$ with rank $M=3+1$ are as in [HY, Table 7].
(3) The 152 groups $G=N_{4, i} \leq \operatorname{GL}(4, \mathbb{Z})(1 \leq i \leq 152)$ for which $k(T) \simeq L(M)^{G}$ is not retract k-rational with rank $M=4$ are as in [HY, Table 8].
(4) The 7 groups $G=I_{4, i} \leq \operatorname{GL}(4, \mathbb{Z})(1 \leq i \leq 7)$ for which $k(T) \simeq L(M)^{G}$ is not stably but retract k-rational with rank $M=4$ are as in [HY, Table 9].

Main Theorems 1, 2, 3, 4, 5, 6, 7

- Main theorem $1 \operatorname{dim}(T)=3$: up to $\stackrel{\text { s.b. }}{\sim}$
- Main theorem $2 \operatorname{dim}(T)=3$: up to $\stackrel{\text { s.b. }}{\approx}$
- Main theorem $3 \operatorname{dim}(T)=4$: up to $\stackrel{\text { s.b. }}{\sim}$
- Main theorem $4 \operatorname{dim}(T)=4\left(N_{4, i}\right)$: up to $\stackrel{\text { s.b. }}{\approx}$
- Main theorem $5 \operatorname{dim}(T)=4\left(I_{4, i}\right)$: up to $\stackrel{\text { s.b. }}{\approx}$
- Main theorem $6 \operatorname{dim}(T)=4$: seven $I_{4, i}$ cases
- Main theorem 7 higher dimensional cases: $\operatorname{dim}(T) \geq 3$

Definition

The G-lattice M_{G} of rank n is defined to be the G-lattice with a \mathbb{Z}-basis $\left\{u_{1}, \ldots, u_{n}\right\}$ on which G acts by $\sigma\left(u_{i}\right)=\sum_{j=1}^{n} a_{i, j} u_{j}$ for any $\sigma=\left[a_{i, j}\right] \in G \leq \operatorname{GL}(n, \mathbb{Z})$.

Main theorem 1 ([HY, Theorem 1.22]) $\operatorname{dim}(T)=3$: up to $\stackrel{\text { s.b. }}{\sim}$

There exist exactly 14 weak stably birationally k-equivalent classes of algebraic k-tori T of dimension 3 which consist of the stably rational class WSEC_{0} and 13 classes $\mathrm{WSEC}_{r}(1 \leq r \leq 13)$ for $[\widehat{T}]^{f l}$ with $\widehat{T}=M_{G}$ and $G=N_{3, i}(1 \leq i \leq 15)$ as in the following: (red \leftrightarrow norm one tori)

r	$G=N_{3, i}:[\widehat{T}]^{f l}=\left[M_{G}\right]^{f l} \in \mathrm{WSEC}_{r}$	G
1	$N_{3,1}=U_{1}([\mathrm{CTS} \mathrm{1977])}$	V_{4}
2	$N_{3,2}=U_{2}$	C_{2}^{3}
3	$N_{3,3}=W_{2}$	C_{2}^{3}
4	$N_{3,4}=W_{1}$	$C_{4} \times C_{2}$
5	$N_{3,5}=U_{3}, N_{3,6}=U_{4}$	D_{4}
6	$N_{3,7}=U_{6}$	$D_{4} \times C_{2}$
7	$N_{3,8}=U_{5}$	A_{4}
8	$N_{3,9}=U_{7}$	$A_{4} \times C_{2}$
9	$N_{3,10}=W_{3}$	$A_{4} \times C_{2}$
10	$N_{3,11}=U_{9}, N_{3,13}=U_{10}$	S_{4}
11	$N_{3,12}=U_{8}$	S_{4}
12	$N_{3,14}=U_{12}$	$S_{4} \times C_{2}$
13	$N_{3,15}=U_{11}$	$S_{4} \times C_{2}$

Main theorem $2([\mathrm{HY}$, Theorem 1.23]) $\operatorname{dim}(T)=3$: up to $\stackrel{\text { s.b. }}{\approx}$

Let T_{i} and $T_{j}^{\prime}(1 \leq i, j \leq 15)$ be algebraic k-tori of dimension 3 with the minimal splitting fields L_{i} and L_{j}^{\prime}, and $\widehat{T}_{i}=M_{G}$ and $\widehat{T}_{j}^{\prime}=M_{G^{\prime}}$ which satisfy that G and G^{\prime} are $\mathrm{GL}(3, \mathbb{Z})$-conjugate to $N_{3, i}$ and $N_{3, j}$ respectively. For $1 \leq i, j \leq 15$, the following conditions are equivalent:
(1) $T_{i} \stackrel{\text { s.b. }}{\approx} T_{j}^{\prime}$ (stably birationally k-equivalent);
(2) $L_{i}=L_{j}^{\prime}, T_{i} \times_{k} K$ and $T_{j}^{\prime} \times_{k} K$ are weak stably birationally K-equivalent for any $k \subset K \subset L_{i}$;
(3) $L_{i}=L_{j}^{\prime}, T_{i} \times_{k} K$ and $T_{j}^{\prime} \times_{k} K$ are weak stably birationally K-equivalent for any $k \subset K \subset L_{i}$ corresponding to $\mathrm{WSEC}_{r}(r \geq 1)$; (4) $L_{i}=L_{j}^{\prime}, T_{i} \times_{k} K$ and $T_{j}^{\prime} \times_{k} K$ are weak stably birationally K-equivalent for any $k \subset K \subset L_{i}$ corresponding to $\operatorname{WSEC}_{r}(r \geq 1)$ with $[K: k]=d$ where

$$
d= \begin{cases}1 & (i=1,3,4,8,9,10,11,12,13,14) \\ 1,2 & (i=2,5,6,7,15)\end{cases}
$$

- $\exists G=N_{31, i} \leq \mathrm{GL}(4, \mathbb{Z})(1 \leq i \leq 64)$ for which $k(T) \simeq L(M)^{G}$ is not retract k-rational where $M \simeq M_{1} \oplus M_{2}$ with rank $M=3+1$.
- $G=N_{4, i} \leq \mathrm{GL}(4, \mathbb{Z})(1 \leq i \leq 152)$ for which $k(T) \simeq L(M)^{G}$ is not retract k-rational with rank $M=4$.
- $\exists G=I_{4, i} \leq \mathrm{GL}(4, \mathbb{Z})(1 \leq i \leq 7)$ for which $k(T) \simeq L(M)^{G}$ is not stably but retract k-rational with rank $M=4$.

Main theorem 3 ([HY, Theorem 1.24]) $\operatorname{dim}(T)=4$: up to $\stackrel{\text { s.b. }}{\sim}$

There exist exactly 129 weak stably birationally k-equivalent classes of algebraic k-tori T of dimension 4 which consist of the stably rational class $\mathrm{WSEC}_{0}, 121$ classes $\mathrm{WSEC}_{r}(1 \leq r \leq 121)$ for $[\widehat{T}]^{f l}$ with $\widehat{T}=M_{G}$ and $G=N_{31, i}(1 \leq i \leq 64)$ as in [HY, Table 3] and for $[\widehat{T}]^{f l}$ with $\widehat{T}=M_{G}$ and $G=N_{4, i}(1 \leq i \leq 152)$ as in [HY, Table 4], and 7 classes WSEC_{r} $(122 \leq r \leq 128)$ for $[\widehat{T}]^{f l}$ with $\widehat{T}=M_{G}$ and $G=I_{4, i}(1 \leq i \leq 7)$ as in [HY, Table 5].

Main theorem $4\left([H Y\right.$, Theorem 1.26] $) \operatorname{dim}(T)=4\left(N_{4, i}\right):$ up to s.b.

Let T_{i} and $T_{j}^{\prime}(1 \leq i, j \leq 152)$ be algebraic k-tori of dimension 4 with the minimal splitting fields L_{i} and L_{j}^{\prime} and the character modules $\widehat{T}_{i}=M_{G}$ and $\widehat{T}_{j}^{\prime}=M_{G^{\prime}}$ which satisfy that G and G^{\prime} are $\mathrm{GL}(4, \mathbb{Z})$-conjugate to $N_{4, i}$ and $N_{4, j}$ respectively. For $1 \leq i, j \leq 152$ except for the cases $i=j=137,139,145,147$, the following conditions are equivalent:
(1) $T_{i} \stackrel{\text { s.b. }}{\approx} T_{j}^{\prime}$ (stably birationally k-equivalent);
(2) $L_{i}=L_{j}^{\prime}, T_{i} \times_{k} K$ and $T_{j}^{\prime} \times_{k} K$ are weak stably birationally K-equivalent for any $k \subset K \subset L_{i}$;
(3) $L_{i}=L_{j}^{\prime}, T_{i} \times_{k} K$ and $T_{j}^{\prime} \times_{k} K$ are weak stably birationally K-equivalent for any $k \subset K \subset L_{i}$ corresponding to $\operatorname{WSEC}_{r}(r \geq 1)$;
(4) $L_{i}=L_{j}^{\prime}, T_{i} \times_{k} K$ and $T_{j}^{\prime} \times_{k} K$ are weak stably birationally K-equivalent for any $k \subset K \subset L_{i}$ corresponding to $\operatorname{WSEC}_{r}(r \geq 1)$ with $[K: k]=d$ where d is given as in [HY, Theorem 1.26].
For the exceptional cases $i=j=137,139,145,147$
$\left(G \simeq Q_{8} \times C_{3},\left(Q_{8} \times C_{3}\right) \rtimes C_{2}, \mathrm{SL}\left(2, \mathbb{F}_{3}\right) \rtimes C_{4}\right.$,
$\left.\left(\mathrm{GL}\left(2, \mathbb{F}_{3}\right) \rtimes C_{2}\right) \rtimes C_{2} \simeq\left(\mathrm{SL}\left(2, \mathbb{F}_{3}\right) \rtimes C_{4}\right) \rtimes C_{2}\right)$, we have the

Main theorem $4\left([H Y\right.$, Theorem 1.26] $) \operatorname{dim}(T)=4\left(N_{4, i}\right):$ up to s.b.

For the exceptional cases $i=j=137,139,145,147$ $\left(G \simeq Q_{8} \times C_{3},\left(Q_{8} \times C_{3}\right) \rtimes C_{2}, \mathrm{SL}\left(2, \mathbb{F}_{3}\right) \rtimes C_{4}\right.$, $\left.\left(\mathrm{GL}\left(2, \mathbb{F}_{3}\right) \rtimes C_{2}\right) \rtimes C_{2} \simeq\left(\mathrm{SL}\left(2, \mathbb{F}_{3}\right) \rtimes C_{4}\right) \rtimes C_{2}\right)$, we have the implications $(1) \Rightarrow(2) \Leftrightarrow(3) \Leftrightarrow(4)$, there exists $\tau \in \operatorname{Aut}(G)$ such that $G^{\prime}=G^{\tau}$ and $X=Y \triangleleft Z$ with $Z / Y \simeq C_{2}, C_{2}^{2}, C_{2}, C_{2}$ respectively where

$$
\operatorname{Inn}(G) \leq X \leq Y \leq Z \leq \operatorname{Aut}(G)
$$

$X=\operatorname{Aut}_{\mathrm{GL}(4, \mathbb{Z})}(G)=\left\{\sigma \in \operatorname{Aut}(G) \mid G\right.$ and G^{σ} are conjugate in $\left.\mathrm{GL}(4, \mathbb{Z})\right\}$, $Y=\left\{\sigma \in \operatorname{Aut}(G) \mid\left[M_{G}\right]^{f l}=\left[M_{G^{\sigma}}\right]^{f l}\right.$ as \widetilde{H}-lattices where $\left.\widetilde{H}=\left\{\left(g, g^{\sigma}\right) \mid g \in G\right\} \simeq G\right\}$, $Z=\left\{\sigma \in \operatorname{Aut}(G) \mid\left[M_{H}\right]^{f l} \sim\left[M_{H^{\sigma}}\right]^{f l}\right.$ for any $\left.H \leq G\right\}$.

Moreover, we have (1) $\Leftrightarrow M_{G} \simeq M_{G^{\tau}}$ as \widetilde{H}-lattices
$\Leftrightarrow M_{G} \otimes_{\mathbb{Z}} \mathbb{F}_{p} \simeq M_{G^{\tau}} \otimes_{\mathbb{Z}} \mathbb{F}_{p}$ as $\mathbb{F}_{p}[\widetilde{H}]$-lattices for $p=2(i=j=137)$, for $p=2$ and $3(i=j=139)$, for $p=3(i=j=145,147)$.

Main theorem $5\left(\left[\mathrm{HY}\right.\right.$, Theorem 1.29]) $\operatorname{dim}(T)=4\left(I_{4, i}\right)$: up to $\stackrel{\text { s.b }}{\approx}$

Let T_{i} and $T_{j}^{\prime}(1 \leq i, j \leq 7)$ be algebraic k-tori of dimension 4 with the minimal splitting fields L_{i} and L_{j}^{\prime} and the character modules $\widehat{T}_{i}=M_{G}$ and $\widehat{T}_{j}^{\prime}=M_{G^{\prime}}$ which satisfy that G and G^{\prime} are $\mathrm{GL}(4, \mathbb{Z})$-conjugate to $I_{4, i}$ and $I_{4, j}$ respectively. For $1 \leq i, j \leq 7$ except for the case $i=j=7$, the following conditions are equivalent:
(1) $T_{i} \stackrel{\text { s.b. }}{\approx} T_{j}^{\prime}$ (stably birationally k-equivalent);
(2) $L_{i}=L_{j}^{\prime}, T_{i} \times_{k} K$ and $T_{j}^{\prime} \times_{k} K$ are weak stably birationally K-equivalent for any $k \subset K \subset L_{i}$;
(3) $L_{i}=L_{j}^{\prime}, T_{i} \times_{k} K$ and $T_{j}^{\prime} \times_{k} K$ are weak stably birationally K-equivalent for any $k \subset K \subset L_{i}$ corresponding to $\operatorname{WSEC}_{r}(r \geq 1)$; (4) $L_{i}=L_{j}^{\prime}, T_{i} \times_{k} K$ and $T_{j}^{\prime} \times_{k} K$ are weak stably birationally K-equivalent for any $k \subset K \subset L_{i}$ corresponding to $\operatorname{WSEC}_{r}(r \geq 1)$ with $[K: k]=d$ where $d=1(i=1,2,4,5,7), d=1,2(i=3,6)$.
For the exceptional case $i=j=7\left(G \simeq C_{3} \rtimes C_{8}\right)$, we have the implications $(1) \Rightarrow(2) \Leftrightarrow(3) \Leftrightarrow(4)$, there exists $\tau \in \operatorname{Aut}(G)$ such that $G^{\prime}=G^{\tau}$ and $X=Y \triangleleft Z$ with $Z / Y \simeq C_{2}$ where

Main theorem 5 ([HY, Theorem 1.29]) $\operatorname{dim}(T)=4\left(I_{4, i}\right)$: up to $\stackrel{\text { s.b. }}{\approx}$

For the exceptional case $i=j=7\left(G \simeq C_{3} \rtimes C_{8}\right)$, we have the implications $(1) \Rightarrow(2) \Leftrightarrow(3) \Leftrightarrow(4)$, there exists $\tau \in \operatorname{Aut}(G)$ such that $G^{\prime}=G^{\tau}$ and $X=Y \triangleleft Z$ with $Z / Y \simeq C_{2}$ where

$$
\begin{gathered}
\operatorname{Inn}(G) \simeq S_{3} \leq X \leq Y \leq Z \leq \operatorname{Aut}(G) \simeq S_{3} \times C_{2}^{2} \\
X=\operatorname{Aut}_{G L(4, \mathbb{Z})}(G)=\left\{\sigma \in \operatorname{Aut}(G) \mid G \text { and } G^{\sigma} \text { are conjugate in } \mathrm{GL}(4, \mathbb{Z})\right\} \simeq D_{6}, \\
Y=\left\{\sigma \in \operatorname{Aut}(G) \mid\left[M_{G}\right]^{f l}=\left[M_{G^{\sigma}}\right]^{f l} \text { as } \widetilde{H} \text {-lattices where } \widetilde{H}=\left\{\left(g, g^{\sigma}\right) \mid g \in G\right\} \simeq G\right\}, \\
Z=\left\{\sigma \in \operatorname{Aut}(G) \mid\left[M_{H}\right]^{f l} \sim\left[M_{H^{\sigma}}\right]^{f l} \text { for any } H \leq G\right\} \simeq S_{3} \times C_{2}^{2} .
\end{gathered}
$$

Moreover, we have (1) $\Leftrightarrow M_{G} \simeq M_{G^{\tau}}$ as \widetilde{H}-lattices $\Leftrightarrow M_{G} \otimes_{\mathbb{Z}} \mathbb{F}_{3} \simeq M_{G^{\tau}} \otimes_{\mathbb{Z}} \mathbb{F}_{3}$ as $\mathbb{F}_{3}[H]$-lattices.

Main theorem 6 ([HY, Theorem 1.31]) $\operatorname{dim}(T)=4$: seven $I_{4, i}$ cases

Let $T_{i}(1 \leq i, j \leq 7)$ be an algebraic k-torus of dimension 4 with the character module $\widehat{T}_{i}=M_{G}$ which satisfies that G is $\mathrm{GL}(4, \mathbb{Z})$-conjugate to $I_{4, i}$. Let T_{i}^{σ} be the algebraic k-torus with $\widehat{T}_{i}^{\sigma}=M_{G^{\sigma}}(\sigma \in \operatorname{Aut}(G))$. Then T_{i} and T_{i}^{σ} are not stably k-rational but we have:
(1) $T_{1} \times{ }_{k} T_{2}$ is stably k-rational;
(2) $T_{3} \times_{k} T_{3}^{\sigma}$ stably k-rational for $\sigma \in \operatorname{Aut}(G)$ with
$1 \neq \bar{\sigma} \in \operatorname{Aut}(G) / \operatorname{Inn}(G) \simeq C_{2}$;
(3) $T_{4} \times{ }_{k} T_{5}$ is stably k-rational;
(4) $T_{6} \times{ }_{k} T_{6}^{\sigma}$ is stably k-rational for $\sigma \in \operatorname{Aut}(G)$ with $1 \neq \bar{\sigma} \in \operatorname{Aut}(G) / \operatorname{Inn}(G) \simeq C_{2}$;
(5) $T_{7} \times{ }_{k} T_{7}^{\sigma}$ is stably k-rational for $\sigma \in \operatorname{Aut}(G)$ with $1 \neq \bar{\sigma} \in \operatorname{Aut}(G) / X \simeq C_{2}$ where

$$
X=\operatorname{Aut}_{\mathrm{GL}(4, \mathbb{Z})}(G)=\left\{\sigma \in \operatorname{Aut}(G) \mid G \text { and } G^{\sigma} \text { are conjugate in } \operatorname{GL}(4, \mathbb{Z})\right\} \simeq D_{6}
$$

Higher dimensional cases: $\operatorname{dim}(T) \geq 3$

The following theorem can answer Problem 1 for algebraic k-tori T and T^{\prime} of dimensions $m \geq 3$ and $n \geq 3$ respectively with $[\widehat{T}]^{f l},\left[\widehat{T}^{\prime}\right]^{f l} \in \mathrm{WSEC}_{r}$ $(1 \leq r \leq 128)$ via Main theorem 2, Main theorem 4, and Main theorem 5.

Main theorem 7 ([HY, Theorem 1.32]) higher dimensional cases

Let T be an algebraic k-torus of dimension $m \geq 3$ with the minimal splitting field $L, \widehat{T}=M_{G}, G \leq \operatorname{GL}(m, \mathbb{Z})$ and $[\widehat{T}]^{f l} \in \mathrm{WSEC}_{r}$ $(1 \leq r \leq 128)$. Then there exists an algebraic k-torus $T^{\prime \prime}$ of dimension 3 or 4 with the minimal splitting field $L^{\prime \prime}, \widehat{T}^{\prime \prime}=M_{G^{\prime \prime}}$, and $G^{\prime \prime}=N_{3, i}$ $(1 \leq i \leq 15), G^{\prime \prime}=N_{4, i}(1 \leq i \leq 152)$ or $G^{\prime \prime}=I_{4, i}(1 \leq i \leq 7)$ such that $T^{\prime \prime}$ and T are stably birationally k-equivalent and $L^{\prime \prime} \subset L$, i.e. $\left[M_{G^{\prime \prime}}\right]^{f l}=\left[M_{G}\right]^{f l}$ as G-lattices and G acts on $\left[M_{G^{\prime \prime}}\right]^{f l}$ through $G^{\prime \prime} \simeq G / N$ for the corresponding normal subgroup $N \triangleleft G$.

