以下のように新潟代数セミナーを行います。
2講演あります。皆様のご参加をお待ちしております。
-----------------------------------------------------
日時:2019年10月18日(金) 16:30〜18:00
場所:新潟大学理学部A棟523室(大セミナー室)
講演者: 星 明考(新潟大学)
タイトル:Norm one tori and Hasse norm principle (II)
アブストラクト:
金井和貴氏(新潟大学),山崎愛一氏(京都大学)との共著論文
https://arxiv.org/abs/1910.01469
の内容を解説します.以下,arXivのアブストラクトです:
Let k be a field and T be an algebraic k-torus.
In 1969, over a global field k, Voskresenskii proved that
there exists an exact sequence
$0\to A(T)\to H^1(k,{\rm Pic}\,\overline{X})^\vee\to Sha(T)\to 0$
where $A(T)$ is the kernel of the weak approximation of T,
$Sha(T)$ is the Shafarevich-Tate group of T, X is a smooth
compactification of T, $\overline{X}=X\times_k\overline{k}$,
${\rm Pic}\,\overline{X}$ is the Picard group of $\overline{X}$
and $\vee$ stands for the Pontryagin dual.
In 1984, Kunyavskii showed that, among 73 cases of 3-dimensional
k-tori T, there exist exactly 2 cases satisfy
$H^1(k,{\rm Pic}\,\overline{X})\neq 0$. On the other hand,
in 1963, Ono proved that $Sha(T)=0$ if and only if
the Hasse norm principle holds for K/k where
$T=R^{(1)}_{K/k}(G_m)$ is the norm one torus of K/k.
First, we show that, among 710 cases of 4-dimensional algebraic
k-tori T, there exist exactly 2 (resp. 20, 688) cases with
$H^1(k,{\rm Pic}\,\overline{X})\simeq(Z/2Z)^{\oplus 2}$
(resp. $H^1(k,{\rm Pic}\,\overline{X})\simeq Z/2Z$,
$H^1(k,{\rm Pic}\,\overline{X})=0$).
Among 6079 cases of 5-dimensional algebraic k-tori T,
there exist exactly 11 (resp. 263, 5805) cases
with $H^1(k,{\rm Pic}\, \overline{X})\simeq(Z/2Z)^{\oplus 2}$
(resp. $H^1(k,{\rm Pic}\,\overline{X})\simeq Z/2Z$,
$H^1(k,{\rm Pic}\,\overline{X})=0$).
Second, we determine $H^1(k,{\rm Pic}\,\overline{X})$ for
norm one tori $T=R^{(1)}_{K/k}(G_m)$ with $[K:k]=n\leq 15$ and
$n\neq 12$. We also show that $H^1(k,{\rm Pic}\,\overline{X})=0$
for the 5 Mathieu groups $M_n\leq S_n$.
Third, we give a necessary and sufficient condition for the
Hasse norm principle for K/k with $[K:k]=n\leq 15$ and $n\neq 12$.
As applications of the results, we get the group T(k)/R of
R-equivalence classes over a local field k and the
Tamagawa number $\tau(T)$ over a number field k.
-----------------------------------------------------
講演後、懇親会を行います。参加予定の方は
hoshi @ math.sc.niigata-u.ac.jp
(星)までお知らせ頂きますよう、お願いします。
東京方面からお越しの方は、
11:40東京発の上越新幹線に乗って頂ければ間に合います。
東京--(上越新幹線)--新潟--(JR越後線)--新潟大学前
新潟大学理学部は五十嵐キャンパスにあります。
五十嵐キャンパスへの交通アクセス・キャンパスマップは
以下をご覧ください(理学部棟は中央のN1の建物です):
http://www.niigata-u.ac.jp/university/map/ikarashi/
新潟代数セミナーのWeb page:
http://mathweb.sc.niigata-u.ac.jp/~hoshi/NiigataAlgebraSeminar-j.html
世話人:小島秀雄、高橋剛、星明考
戻る