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§1. Rationality problem for algebraic tori T (1/3)

▶ k: a base field which is NOT algebraically closed! (in this talk)

▶ T : algebraic k-torus, i.e. k-form of a split torus;
an algebraic group over k (group k-scheme) with T ×k k ' (Gm,k)

n.

Rationality problem for algebraic tori

Whether T is k-rational?, i.e. T ≈ Pn? (birationally k-equivalent)

Let R
(1)
K/k(Gm) be the norm one torus of K/k, i.e. the kernel of the norm

map NK/k : RK/k(Gm)→ Gm where RK/k is the Weil restriction:

1 −→ R
(1)
K/k(Gm) −→ RK/k(Gm)

NK/k−→ Gm −→ 1.

dim n− 1 n 1

▶ ∃2 algebraic k-tori T with dim(T ) = 1;

the trivial torus Gm and R
(1)
K/k(Gm) with [K : k] = 2, are k-rational.
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Rationality problem for algebraic tori T (2/3)

▶ ∃13 algebraic k-tori T with dim(T ) = 2.

Theorem (Voskresenskii 1967) 2-dim. algebraic tori T

T is k-rational.

▶ ∃73 algebraic k-tori T with dim(T ) = 3.

Theorem (Kunyavskii 1990) 3-dim. algebraic tori T

(i) ∃58 algebraic k-tori T which are k-rational;
(ii) ∃15 algebraic k-tori T which are not retract k-rational.

▶ k-rational ⇒ stably k-rational ⇒ retract k-rational ⇒ k-unirational.

▶ ∃710 Z-coujugacy subgroups G ≤ GL(4,Z)
(∃710 4-dim. algebraic k-tori T ).

A. Hoshi, A. Yamasaki (Niigata, Kyoto) Norm one tori for dihedral extensions March 19, 2024 3 / 21



Rationality problem for algebraic tori T (3/3)

Theorem (Hoshi and Yamasaki 2017) 4-dim. algebraic tori T

(i) T is stably k-rational ⇐⇒ ∃G: 487 groups;
(ii) T is not stably but retract k-rational ⇐⇒ ∃G: 7 groups;
(iii) T is not retract k-rational ⇐⇒ ∃G: 216 groups.

▶ ∃6079 Z-coujugacy subgroups G ≤ GL(5,Z)
(∃6079 5-dim. algebraic k-tori T ).

Theorem (Hoshi and Yamasaki 2017) 5-dim. algebraic tori T

(i) T is stably k-rational ⇐⇒ ∃G: 3051 groups;
(ii) T is not stably but retract k-rational ⇐⇒ ∃G: 25 groups;
(iii) T is not retract k-rational ⇐⇒ ∃G: 3003 groups.

▶ BUT we do not know the answer for dimension 6.

▶ ∃85308 Z-coujugacy subgroups G ≤ GL(6,Z)!
(∃85308 6-dim. algebraic k-tori T !).
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Algebraic k-tori T and G-lattices

▶ T : algebraic k-torus
=⇒ ∃ finite Galois extension L/k such that T ×k L ' (Gm,L)

n.

▶ G = Gal(L/k) where L is the minimal splitting field.

Category of algebraic k-tori which split/L
duality←→ Category of G-lattices

(i.e. finitely generated Z-free Z[G]-module)

▶ T 7→ the character group T̂ = Hom(T,Gm): G-lattice.

▶ T = Spec(L[M ]G) which splits/L with T̂ 'M 7→M : G-lattice

▶ Tori of dimension n
1:1←→ elements of the set H1(G,GL(n,Z))

where G = Gal(k/k) since Aut(Gn
m) = GL(n,Z).

▶ k-torus T of dimension n is determined uniquely by the integral
representation h : G → GL(n,Z) up to conjugacy, and the group
h(G) is a finite subgroup of GL(n,Z).

▶ The function field of T
identified←→ L(M)G: invariant field.
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Rationality problem for algebraic tori T

▶ L/k: Galois extension with G = Gal(L/k).

▶ M =
⊕

1≤j≤nZ · uj : G-lattice with a Z-basis {u1, . . . , un}.
▶ G acts on L(x1, . . . , xn) by

σ(xj) =

n∏
i=1

x
ai,j
i , 1 ≤ j ≤ n

for any σ ∈ G, when σ(uj) =
∑n

i=1 ai,jui, ai,j ∈ Z.
▶ L(M) := L(x1, . . . , xn) with this action of G.

▶ The function field of algebraic k-torus T
identified←→ L(M)G

Rationality problem for algebraic tori T (2nd form)

Whether L(M)G is k-rational?
(= purely transcendental over k?; L(M)G = k(∃t1, . . . , ∃tn)?)
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Some definitions

▶ K/k: a finite generated field extension.

Definition (stably rational)

K is called stably k-rational if K(y1, . . . , ym) is k-rational.

Definition (retract rational)

K is retract k-rational if ∃k-algebra (domain) R ⊂ K such that
(i) K is the quotient field of R;
(ii) ∃f ∈ k[x1, . . . , xn] ∃k-algebra hom. φ : R→ k[x1, . . . , xn][1/f ] and
ψ : k[x1, . . . , xn][1/f ]→ R satisfying ψ ◦ φ = 1R.

Definition (unirational)

K is k-unirational if K ⊂ k(x1, . . . , xn).

▶ k-rational ⇒ stably k-rational ⇒ retract k-rational ⇒ k-unirational.

▶ L(M)G (resp. T ) is always k-unirational.
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Flabby (Flasque) resolution

▶ M : G-lattice, i.e. f.g. Z-free Z[G]-module.

Definition

(i) M is permutation
def⇐⇒ M ' ⊕1≤i≤mZ[G/Hi].

(ii) M is stably permutation
def⇐⇒ M ⊕ ∃P ' P ′, P, P ′: permutation.

(iii) M is invertible
def⇐⇒ M ⊕ ∃M ′ ' P : permutation.

(iv) M is coflabby
def⇐⇒ H1(H,M) = 0 (∀H ≤ G).

(v) M is flabby
def⇐⇒ Ĥ−1(H,M) = 0 (∀H ≤ G). (Ĥ: Tate cohomology)

▶ “permutation”
=⇒ “stably permutation”
=⇒ “invertible”
=⇒ “flabby and coflabby”.
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Commutative monoidM

M1 ∼M2
def⇐⇒ M1 ⊕ P1 'M2 ⊕ P2 (∃P1, ∃P2: permutation).

=⇒ commutative monoidM: [M1] + [M2] := [M1 ⊕M2], 0 = [P ].

Theorem (Endo-Miyata 1974, Colliot-Thélène-Sansuc 1977)

∃P : permutation, ∃F : flabby such that

0→M → P → F → 0: flabby resolution of M .

▶ [M ]fl := [F ]; flabby class of M

Theorem (Endo-Miyata 1973, Voskresenskii 1974, Saltman 1984)

(EM73) [M ]fl = 0 ⇐⇒ L(M)G is stably k-rational.
(Vos74) [M ]fl = [M ′]fl ⇐⇒ L(M)G(x1, . . . , xm) ' L(M ′)G(y1, . . . , yn);

stably k-equivalent.
(Sal84) [M ]fl is invertible ⇐⇒ L(M)G is retract k-rational.

▶ M =MG ' T̂ = Hom(T,Gm), k(T ) ' L(M)G, G = Gal(L/k)
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Contributions of [HY17] (Hoshi and Yamasaki, 2017,
Mem. Amer. Math. Soc., v+215 pp.)

▶ We give a procedure to compute a flabby resolution of M , in
particular [M ]fl = [F ], effectively (with smaller rank after base
change) by computer software GAP.

▶ The function IsFlabby (resp. IsCoflabby) may determine whether
M is flabby (resp. coflabby).

▶ The function IsInvertibleF may determine whether [M ]fl = [F ] is
invertible (↔ whether L(M)G (resp. T ) is retract k-rational).

▶ We provide some functions for checking a possibility of isomorphism(
r⊕

i=1

aiZ[G/Hi]

)
⊕ ar+1F '

r⊕
i=1

b′iZ[G/Hi] (*)

by computing some invariants (e.g. trace, Ẑ0, Ĥ0) of both sides.
▶ [HY17, Example 10.7]. G ' S5 ≤ GL(5,Z) with number (5, 946, 4)

=⇒ rank(F ) = 17 and rank(*) = 88 holds
=⇒ [F ] = 0 =⇒ L(M)G (resp. T ) is stably k-rational.
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Special case: T = R
(1)
K/k(Gm); norm one tori (1/2)

▶ Rationality problem for T = R
(1)
K/k(Gm) is investigated by S. Endo,

Colliot-Thélène and Sansuc, W. Hürlimann, L. Le Bruyn, A. Cortella
and B. Kunyavskii, N. Lemire and M. Lorenz, M. Florence, etc.

Theorem (Endo-Miyata 1974), (Saltman 1984)

Let K/k be a finite Galois field extension and G = Gal(K/k).
(i) T is retract k-rational ⇐⇒ all the Sylow subgroups of G are cyclic;
(ii) T is stably k-rational ⇐⇒ G is a cyclic group, or a direct product of

a cyclic group of order m and a group 〈σ, τ |σn = τ2
d
= 1, τστ−1 = σ−1〉,

where d,m ≥ 1, n ≥ 3,m, n: odd, and (m,n) = 1.

Theorem (Endo 2011)

Let K/k be a finite non-Galois, separable field extension and L/k be the
Galois closure of K/k. Assume that the Galois group of L/k is nilpotent.

Then the norm one torus T = R
(1)
K/k(Gm) is not retract k-rational.
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Special case: T = R
(1)
K/k(Gm); norm one tori (2/2)

▶ K/k: a finite non-Galois, separable field extension

▶ L/k: the Galois closure of K/k.

▶ G = Gal(L/k), H = Gal(L/K) ⪇ G.

Theorem (Endo 2011)

Assume that all the Sylow subgroups of G are cyclic.
Then T is retract k-rational. And we have:
T = R

(1)
K/k(Gm) is stably k-rational ⇐⇒ G = Dn, n odd (n ≥ 3) or

Cm ×Dn, m,n odd (m,n ≥ 3), (m,n) = 1, H ≤ Dn with |H| = 2.

▶ For G = Dn, we have:
K/k: Galois (|H| = 1)
⇒ T is stably k-rational (not retract k-rational) if n is odd (is even).
K/k: non-Galois (|H| = 2 with H 6= Z(Dn))
⇒ T is stably k-rational (not retract k-rational) if n is odd (n = 2r).
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Main theorem

Main theorem (Hoshi and Yamasaki 2024 J. Algebra)

Let Dn = 〈x, y | xn = y2 = 1, y−1xy = x−1〉 be the dihedral group of
order 2n (n ≥ 4 : even) and Z(Dn) = 〈x

n
2 〉 be the center of Dn.

Assume that G = Gal(L/k) ' Dn and H = Gal(L/K) ≤ G.
Then |H| = 2 with H 6= Z(Dn) and we have:

(i) if n ≡ 0 (mod 4), then R
(1)
K/k(Gm) is not retract k-rational;

(ii) if n ≡ 2 (mod 4), then R
(1)
K/k(Gm) is stably k-rational. More precisely,

R
(1)
K/k(Gm)×Rk1/k(Gm,k1)×Rk2/k(Gm,k2)×Rk3/k(Gm,k3) of dimension

(n− 1) + n
2 + n

2 + 2 = 2n+ 1 and Rk4/k(Gm,k4)×Rk5/k(Gm,k5)×Gm,k

of dimension n+ n+ 1 = 2n+ 1 are birationally k-equivalent
where Rki/k(Gm,ki) are k-rational with

k1 = L⟨x
n
2 ,x2y⟩, k2 = L⟨x

n
2 ,xy⟩, k3 = L⟨x⟩, k4 = L⟨x

n
2 ⟩, k5 = L⟨xy⟩,

〈x
n
2 , x2y〉 ' 〈x

n
2 , xy〉 ' C2 × C2, 〈x〉 ' Cn, 〈x

n
2 〉 ' 〈xy〉 ' C2 and

[k1 : k] = [k2 : k] =
n
2 , [k3 : k] = 2, [k4 : k] = [k5 : k] = n.
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Proof of Main theorem (1/7)

▶ G ' Dn = 〈x, y | xn = y2 = 1, y−1xy = x−1〉 and n = 2m (m ≥ 2).

▶ We may assume that H ' C2 = 〈xy〉,
x = (1 2 · · · n), y = (1 n)(2 n− 1) · · · (m m+ 1),
xy = (2 n)(3 n− 1) · · · (m m+ 2) with m = n/2.

(i) Case n ≡ 0 (mod 4). Write n = 2m (m ≥ 2 : even).
We consider [JG/H ]fl|G′ where G′ = 〈x2, y〉 ' Dm with H ′ = H ∩G′ = 1.

Then G′ ≤ Sn: transitive and [JG/H ]fl|G′ = [JG′ ]fl is not invertible.

⇒ [JG/H ]fl is not invertible.

⇒ R
(1)
K/k(Gm) is not retract k-rational.
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Proof of Main theorem (2/7)

(ii) Case n ≡ 2 (mod 4). Write n = 2m (m ≥ 3 : odd).
We take G = 〈x, y | xn = y2 = 1, y−1xy = x−1〉 ' Dn and
H = 〈xy〉 ' C2. We have the exact sequence

0→ IG/H → Z[G/H]
ε−→ Z→ 0

where ε is the augmentation map. We will construct an exact sequence of
G-lattices

0→ C → P → IG/H → 0

with P permutation and C stably permutation, i.e. [C] = 0. In particular,
C and the dual (C)◦ = HomZ(C,Z) are invertible. Then we get a flabby
resolution

0→ JG/H → (P )◦ → (C)◦ → 0

of JG/H . This implies that [JG/H ]fl = [(C)◦] = 0 and hence

R
(1)
K/k(Gm) is stably k-rational.
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Proof of Main theorem (3/7)

Let e1, . . . , en be the standard Z-basis of Z[G/H] via the left regular
representation of G/H:

x : e1 7→ · · · 7→ en 7→ e1,

y : ei ↔ en+1−i (1 ≤ i ≤ m).

Define fi := ei − ei+1 (1 ≤ i ≤ n− 1) and fn := en − e1. Then
f1, . . . , fn−1 becomes a Z-basis of IG/H with

∑n
i=1 fi = 0, i.e.

fn = −
∑n−1

i=1 fi:

x : f1 7→ · · · 7→ fn−1 7→ −
n−1∑
i=1

fi,

y : fi ↔ −fn−i (1 ≤ i ≤ m).
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Proof of Main theorem (4/7)

We consider a permutation G-lattice P ' Z[G/Z(G)]⊕ Z[G/H] '
Z[G/〈xm〉]⊕ Z[G/〈xy〉] ' Z[Dm]⊕ Z[Dn/C2] (n = 2m) where
H = Stab1(G) with Z-basis α1, . . . , αm, β1, . . . , βm, γ1, . . . , γn on which
G acts by

x : α1 7→ · · · 7→ αm 7→ α1, β1 7→ · · · 7→ βm 7→ β1, γ1 7→ · · · 7→ γn 7→ γ1,

y : αi ↔ βm−i (1 ≤ i ≤ m− 1), αm ↔ βm, γj ↔ γn+1−j (1 ≤ j ≤ n).

Note that rankZP = 2m+ n = 2n.
We define a G-homomorphism

φ : P → IG/H , αi 7→ fi + fm+i, βi 7→ −(fi + fm+i) (1 ≤ i ≤ m),

γj 7→ xj−1

(
m−1∑
l=1

fl + fm+1

)
(1 ≤ j ≤ n).

Our claim is that φ is surjective.
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Proof of Main theorem (5/7)

We get an exact sequence of G-lattices

0→ C → P
φ−→ IG/H → 0

where C = Ker(φ) with rankZC = n+ 1 = 2m+ 1. We find a Z-basis
ai = αi + βi, bi = xi−1(α1 + βm − γ1 − γm+1) (1 ≤ i ≤ m), c1 =

∑m
i=1 αi

of C and the action of G on C = 〈a1, . . . , am, b1, . . . , bm, c1〉Z is given by

x : a1 7→ · · · 7→ am 7→ a1, b1 7→ · · · 7→ bm 7→ b1, c1 7→ c1,

y : ai ↔ am−i, bi ↔ bm+1−i (1 ≤ i ≤ m−1
2 ),

am 7→ am, bm+1
2
7→ bm+1

2
, c1 7→

m∑
i=1

ai − c1.

Take an element c2 =
∑m

i=1 βi ∈ P . Then we have

x : c1 7→ c1, c2 7→ c2,

y : c1 7→ c2, c2 7→ c1.

A. Hoshi, A. Yamasaki (Niigata, Kyoto) Norm one tori for dihedral extensions March 19, 2024 18 / 21



Proof of Main theorem (6/7)

Then we consider the trivial G-lattice 〈z0〉Z ' Z and extend the map φ
from P to P ⊕ 〈z0〉Z by φ̃(z0) = 0:

0→ C ⊕ 〈z0〉Z → P ⊕ 〈z0〉Z
φ̃−→ IG/H → 0

where C ⊕ 〈z0〉Z = Ker(φ̃) with
rankZ(C ⊕ 〈z0〉Z) = (n+ 1) + 1 = 2m+ 2.
Because gcd{2,m} = 1, there exist u, v ∈ Z such that 2u+mv = 1.
Then we can get a Z-basis a′i := ai + vz0, bi (1 ≤ i ≤ m), c′l := cl − uz0
(1 ≤ l ≤ 2) of C ⊕ 〈z0〉Z ' Z[Dm/〈x2y〉]⊕ Z[Dm/〈xy〉]⊕ Z[Dm/〈x〉]
with Z-rank (2m+ 1) + 1 = m+m+ 2 on which Dm = G/〈xm〉 acts by

x : a′1 7→ · · · 7→ a′m 7→ a′1, b1 7→ · · · 7→ bm 7→ b1, c
′
1 7→ c′1, c

′
2 7→ c′2,

y : a′i ↔ a′m−i, bi ↔ bm+1−i (1 ≤ i ≤ m−1
2 ),

a′m 7→ a′m, bm+1
2
7→ bm+1

2
, c′1 ↔ c′2.
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Proof of Main theorem (7/7)

Indeed, we can confirm that
m︷ ︸︸ ︷ 2︷ ︸︸ ︷

det


1 0 v

. . .
...

...
1 0 v

0 · · · 0 1 −u
1 · · · 1 −1 −u

 = −2u−mv = −1.

Then we find that C ⊕ 〈z0〉Z ' Z[Dm/〈x2y〉]⊕Z[Dm/〈xy〉]⊕Z[Dm/〈x〉]
is a permutation G-lattice (Dm-lattice) and hence [C] = 0.
The last statement follows from the exact sequence

0→ JG/H → (P )◦ ⊕ Z→ (C)◦ ⊕ Z→ 0

with (P )◦ ⊕ Z ' Z[G/〈xm〉]⊕ Z[G/〈xy〉]⊕ Z,
(C◦)⊕ Z ' Z[Dm/〈x2y〉]⊕ Z[Dm/〈xy〉]⊕ Z[Dm/〈x〉].

This implies that L(JG/H ⊕ (C)◦ ⊕ Z)G ' L((P )◦ ⊕ Z)G.
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Corollary of Main theorem

As a consequence of Main theorem, we get:

Corollary of Main theorem

Let C = Ker(φ) be a Dm-lattice with rankZC = 2m+ 1 (m ≥ 3 : odd)
given as in (ii) Case n ≡ 2 (mod 4) in Main theorem. Then we have
Ĥ0(Dm, C) ' Z/2Z.
In particular, the Dm-lattice C is not permutation but stably permutation
which satisfies C ⊕ Z ' Z[Dm/〈x2y〉]⊕ Z[Dm/〈xy〉]⊕ Z[Dm/〈x〉] with
Z-rank (2m+ 1) + 1 = m+m+ 2.

▶ We can also give a refinement of the proof of Endo-Miyata (1974) and
Endo (2011) of the stably k-rational case using a similar technique:

▶ For G = Dn, we have:
K/k: Galois (|H| = 1)
⇒ T is stably k-rational (not retract k-rational) if n is odd (is even).
K/k: non-Galois (|H| = 2 with H 6= Z(Dn))
⇒ T is stably k-rational (not retract k-rational) if n is odd (n = 2r).
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