Rationality problem for norm one tori for dihedral extensions

Akinari Hoshi ${ }^{1} \quad$ Aiichi Yamasaki ${ }^{2}$
${ }^{1}$ Niigata University
${ }^{2}$ Kyoto University

March 19, 2024

§1. Rationality problem for algebraic tori $T(1 / 3)$

- k : a base field which is NOT algebraically closed! (in this talk)
- T : algebraic k-torus, i.e. k-form of a split torus; an algebraic group over k (group k-scheme) with $T \times_{k} \bar{k} \simeq\left(\mathbb{G}_{m, \bar{k}}\right)^{n}$.

Rationality problem for algebraic tori

Whether T is k-rational?, i.e. $T \approx \mathbb{P}^{n}$? (birationally k-equivalent)
Let $R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ be the norm one torus of K / k, i.e. the kernel of the norm $\operatorname{map} N_{K / k}: R_{K / k}\left(\mathbb{G}_{m}\right) \rightarrow \mathbb{G}_{m}$ where $R_{K / k}$ is the Weil restriction:

$$
\operatorname{dim}
$$

$$
\begin{array}{cc}
1 \longrightarrow R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right) \longrightarrow R_{K / k}\left(\mathbb{G}_{m}\right) \xrightarrow{N_{K / k}} \mathbb{G}_{m} \longrightarrow 1 \\
n-1 & n
\end{array}
$$

- $\exists 2$ algebraic k-tori T with $\operatorname{dim}(T)=1$; the trivial torus \mathbb{G}_{m} and $R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ with $[K: k]=2$, are k-rational.

Rationality problem for algebraic tori $T(2 / 3)$

- $\exists 13$ algebraic k-tori T with $\operatorname{dim}(T)=2$.

Theorem (Voskresenskii 1967) 2-dim. algebraic tori T

T is k-rational.

- $\exists 73$ algebraic k-tori T with $\operatorname{dim}(T)=3$.

Theorem (Kunyavskii 1990) 3-dim. algebraic tori T

(i) $\exists 58$ algebraic k-tori T which are k-rational; (ii) $\exists 15$ algebraic k-tori T which are not retract k-rational.

- k-rational \Rightarrow stably k-rational \Rightarrow retract k-rational $\Rightarrow k$-unirational.
- $\exists 710 \mathbb{Z}$-coujugacy subgroups $G \leq \mathrm{GL}(4, \mathbb{Z})$ ($\exists 710$ 4-dim. algebraic k-tori T).

Rationality problem for algebraic tori $T(3 / 3)$

Theorem (Hoshi and Yamasaki 2017) 4-dim. algebraic tori T

(i) T is stably k-rational $\Longleftrightarrow \exists G$: 487 groups;
(ii) T is not stably but retract k-rational $\Longleftrightarrow \exists G$: 7 groups;
(iii) T is not retract k-rational $\Longleftrightarrow \exists G$: 216 groups.

- $\exists 6079 \mathbb{Z}$-coujugacy subgroups $G \leq \mathrm{GL}(5, \mathbb{Z})$ ($\exists 60795$-dim. algebraic k-tori T).

Theorem (Hoshi and Yamasaki 2017) 5-dim. algebraic tori T

(i) T is stably k-rational $\Longleftrightarrow \exists G$: 3051 groups;
(ii) T is not stably but retract k-rational $\Longleftrightarrow \exists G$: 25 groups; (iii) T is not retract k-rational $\Longleftrightarrow \exists G$: 3003 groups.

- BUT we do not know the answer for dimension 6 .
- $\exists 85308 \mathbb{Z}$-coujugacy subgroups $G \leq \mathrm{GL}(6, \mathbb{Z})$! ($\exists 85308$ 6-dim. algebraic k-tori T !).

Algebraic k-tori T and G-lattices

- T: algebraic k-torus
$\Longrightarrow \exists$ finite Galois extension L / k such that $T \times_{k} L \simeq\left(\mathbb{G}_{m, L}\right)^{n}$.
- $G=\operatorname{Gal}(L / k)$ where L is the minimal splitting field.

Category of algebraic k-tori which split $/ L \stackrel{\text { duality }}{\longleftrightarrow}$ Category of G-lattices (i.e. finitely generated \mathbb{Z}-free $\mathbb{Z}[G]$-module)

- $T \mapsto$ the character group $\widehat{T}=\operatorname{Hom}\left(T, \mathbb{G}_{m}\right): G$-lattice.
- $T=\operatorname{Spec}\left(L[M]^{G}\right)$ which splits $/ L$ with $\widehat{T} \simeq M \hookleftarrow M: G$-lattice
- Tori of dimension $n \stackrel{1: 1}{\longleftrightarrow}$ elements of the set $H^{1}(\mathcal{G}, \mathrm{GL}(n, \mathbb{Z}))$ where $\mathcal{G}=\operatorname{Gal}(\bar{k} / k)$ since $\operatorname{Aut}\left(\mathbb{G}_{m}^{n}\right)=\operatorname{GL}(n, \mathbb{Z})$.
- k-torus T of dimension n is determined uniquely by the integral representation $h: \mathcal{G} \rightarrow \mathrm{GL}(n, \mathbb{Z})$ up to conjugacy, and the group $h(\mathcal{G})$ is a finite subgroup of $\operatorname{GL}(n, \mathbb{Z})$.
- The function field of $T \stackrel{\text { identified }}{\longleftrightarrow} L(M)^{G}$: invariant field.

Rationality problem for algebraic tori T

- L / k : Galois extension with $G=\operatorname{Gal}(L / k)$.
- $M=\bigoplus_{1 \leq j \leq n} \mathbb{Z} \cdot u_{j}: G$-lattice with a \mathbb{Z}-basis $\left\{u_{1}, \ldots, u_{n}\right\}$.
- G acts on $L\left(x_{1}, \ldots, x_{n}\right)$ by

$$
\sigma\left(x_{j}\right)=\prod_{i=1}^{n} x_{i}^{a_{i, j}}, \quad 1 \leq j \leq n
$$

for any $\sigma \in G$, when $\sigma\left(u_{j}\right)=\sum_{i=1}^{n} a_{i, j} u_{i}, a_{i, j} \in \mathbb{Z}$.

- $L(M):=L\left(x_{1}, \ldots, x_{n}\right)$ with this action of G.
- The function field of algebraic k-torus $T \stackrel{\text { identified }}{\longleftrightarrow} L(M)^{G}$

Rationality problem for algebraic tori T (2nd form)

Whether $L(M)^{G}$ is k-rational? $\left(=\right.$ purely transcendental over $k ? ; L(M)^{G}=k\left(\exists t_{1}, \ldots, \exists t_{n}\right)$?)

Some definitions

- K / k : a finite generated field extension.

Definition (stably rational)

K is called stably k-rational if $K\left(y_{1}, \ldots, y_{m}\right)$ is k-rational.

Definition (retract rational)

K is retract k-rational if $\exists k$-algebra (domain) $R \subset K$ such that
(i) K is the quotient field of R;
(ii) $\exists f \in k\left[x_{1}, \ldots, x_{n}\right] \exists k$-algebra hom. $\varphi: R \rightarrow k\left[x_{1}, \ldots, x_{n}\right][1 / f]$ and $\psi: k\left[x_{1}, \ldots, x_{n}\right][1 / f] \rightarrow R$ satisfying $\psi \circ \varphi=1_{R}$.

Definition (unirational)

K is k-unirational if $K \subset k\left(x_{1}, \ldots, x_{n}\right)$.

- k-rational \Rightarrow stably k-rational \Rightarrow retract k-rational $\Rightarrow k$-unirational.
- $L(M)^{G}$ (resp. T) is always k-unirational.

Flabby (Flasque) resolution

- M : G-lattice, i.e. f.g. \mathbb{Z}-free $\mathbb{Z}[G]$-module.

Definition

(i) M is permutation $\stackrel{\text { def }}{\Longleftrightarrow} M \simeq \oplus_{1 \leq i \leq m} \mathbb{Z}\left[G / H_{i}\right]$.
(ii) M is stably permutation $\stackrel{\text { def }}{\Longleftrightarrow} M \oplus \exists P \simeq P^{\prime}, P, P^{\prime}$: permutation.
(iii) M is invertible $\stackrel{\text { def }}{\Longleftrightarrow} M \oplus \exists M^{\prime} \simeq P$: permutation.
(iv) M is coflabby $\stackrel{\text { def }}{\Longleftrightarrow} H^{1}(H, M)=0(\forall H \leq G)$.
(v) M is flabby $\stackrel{\text { def }}{\Longleftrightarrow} \widehat{H}^{-1}(H, M)=0(\forall H \leq G) .(\widehat{H}$: Tate cohomology $)$

- "permutation"
\Longrightarrow "stably permutation"
\Longrightarrow "invertible"
\Longrightarrow "flabby and coflabby".

Commutative monoid \mathcal{M}

$M_{1} \sim M_{2} \stackrel{\text { def }}{\Longleftrightarrow} M_{1} \oplus P_{1} \simeq M_{2} \oplus P_{2}\left(\exists P_{1}, \exists P_{2}\right.$: permutation $)$. \Longrightarrow commutative monoid $\mathcal{M}:\left[M_{1}\right]+\left[M_{2}\right]:=\left[M_{1} \oplus M_{2}\right], 0=[P]$.

Theorem (Endo-Miyata 1974, Colliot-Thélène-Sansuc 1977)

$\exists P$: permutation, $\exists F$: flabby such that

$$
0 \rightarrow M \rightarrow P \rightarrow F \rightarrow 0: \text { flabby resolution of } M
$$

- $[M]^{f l}:=[F]$; flabby class of M

Theorem (Endo-Miyata 1973, Voskresenskii 1974, Saltman 1984)

(EM73) $[M]^{f l}=0 \Longleftrightarrow L(M)^{G}$ is stably k-rational.
$(\operatorname{Vos} 74)[M]^{f l}=\left[M^{\prime}\right]^{f l} \Longleftrightarrow L(M)^{G}\left(x_{1}, \ldots, x_{m}\right) \simeq L\left(M^{\prime}\right)^{G}\left(y_{1}, \ldots, y_{n}\right)$; stably k-equivalent.
(Sal84) $[M]^{f l}$ is invertible $\Longleftrightarrow L(M)^{G}$ is retract k-rational.

$$
M=M_{G} \simeq \widehat{T}=\operatorname{Hom}\left(T, \mathbb{G}_{m}\right), k(T) \simeq L(M)^{G}, G=\operatorname{Gal}(L / k)
$$

Contributions of [HY17] (Hoshi and Yamasaki, 2017,

 Mem. Amer. Math. Soc., v+215 pp.)- We give a procedure to compute a flabby resolution of M, in particular $[M]^{f l}=[F]$, effectively (with smaller rank after base change) by computer software GAP.
- The function IsFlabby (resp. IsCoflabby) may determine whether M is flabby (resp. coflabby).
- The function IsInvertibleF may determine whether $[M]^{f l}=[F]$ is invertible $\left(\leftrightarrow\right.$ whether $L(M)^{G}$ (resp. T) is retract k-rational).
- We provide some functions for checking a possibility of isomorphism

$$
\begin{equation*}
\left(\bigoplus_{i=1}^{r} a_{i} \mathbb{Z}\left[G / H_{i}\right]\right) \oplus a_{r+1} F \simeq \bigoplus_{i=1}^{r} b_{i}^{\prime} \mathbb{Z}\left[G / H_{i}\right] \tag{*}
\end{equation*}
$$

by computing some invariants (e.g. trace, $\widehat{Z}^{0}, \widehat{H}^{0}$) of both sides.

- [HY17, Example 10.7]. $G \simeq S_{5} \leq \mathrm{GL}(5, \mathbb{Z})$ with number $(5,946,4)$
$\Longrightarrow \operatorname{rank}(F)=17$ and $\operatorname{rank}(*)=88$ holds
$\Longrightarrow[F]=0 \Longrightarrow L(M)^{G}$ (resp. T) is stably k-rational.

Special case: $T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right) ;$ norm one tori $(1 / 2)$

- Rationality problem for $T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ is investigated by S . Endo, Colliot-Thélène and Sansuc, W. Hürlimann, L. Le Bruyn, A. Cortella and B. Kunyavskii, N. Lemire and M. Lorenz, M. Florence, etc.

Theorem (Endo-Miyata 1974), (Saltman 1984)

Let K / k be a finite Galois field extension and $G=\operatorname{Gal}(K / k)$.
(i) T is retract k-rational \Longleftrightarrow all the Sylow subgroups of G are cyclic;
(ii) T is stably k-rational $\Longleftrightarrow G$ is a cyclic group, or a direct product of a cyclic group of order m and a group $\left\langle\sigma, \tau \mid \sigma^{n}=\tau^{2^{d}}=1, \tau \sigma \tau^{-1}=\sigma^{-1}\right\rangle$, where $d, m \geq 1, n \geq 3, m, n$: odd, and $(m, n)=1$.

Theorem (Endo 2011)

Let K / k be a finite non-Galois, separable field extension and L / k be the Galois closure of K / k. Assume that the Galois group of L / k is nilpotent. Then the norm one torus $T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ is not retract k-rational.

Special case: $T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right) ;$ norm one tori $(2 / 2)$

- K / k : a finite non-Galois, separable field extension
- L / k : the Galois closure of K / k.
- $G=\operatorname{Gal}(L / k), H=\operatorname{Gal}(L / K) \lesseqgtr G$.

Theorem (Endo 2011)

Assume that all the Sylow subgroups of G are cyclic.
Then T is retract k-rational. And we have:
$T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ is stably k-rational $\Longleftrightarrow G=D_{n}, n$ odd $(n \geq 3)$ or $C_{m} \times D_{n}, m, n$ odd $(m, n \geq 3),(m, n)=1, H \leq D_{n}$ with $|H|=2$.

- For $G=D_{n}$, we have:
K / k : Galois $(|H|=1)$
$\Rightarrow T$ is stably k-rational (not retract k-rational) if n is odd (is even). K / k : non-Galois $\left(|H|=2\right.$ with $\left.H \neq Z\left(D_{n}\right)\right)$ $\Rightarrow T$ is stably k-rational (not retract k-rational) if n is odd $\left(n=2^{r}\right)$.

Main theorem

Main theorem (Hoshi and Yamasaki 2024 J. Algebra)

Let $D_{n}=\left\langle x, y \mid x^{n}=y^{2}=1, y^{-1} x y=x^{-1}\right\rangle$ be the dihedral group of order $2 n\left(n \geq 4\right.$: even) and $Z\left(D_{n}\right)=\left\langle x^{\frac{n}{2}}\right\rangle$ be the center of D_{n}.
Assume that $G=\operatorname{Gal}(L / k) \simeq D_{n}$ and $H=\operatorname{Gal}(L / K) \leq G$.
Then $|H|=2$ with $H \neq Z\left(D_{n}\right)$ and we have:
(i) if $n \equiv 0(\bmod 4)$, then $R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ is not retract k-rational;
(ii) if $n \equiv 2(\bmod 4)$, then $R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ is stably k-rational. More precisely, $R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right) \times R_{k_{1} / k}\left(\mathbb{G}_{m, k_{1}}\right) \times R_{k_{2} / k}\left(\mathbb{G}_{m, k_{2}}\right) \times R_{k_{3} / k}\left(\mathbb{G}_{m, k_{3}}\right)$ of dimension $(n-1)+\frac{n}{2}+\frac{n}{2}+2=2 n+1$ and $R_{k_{4} / k}\left(\mathbb{G}_{m, k_{4}}\right) \times R_{k_{5} / k}\left(\mathbb{G}_{m, k_{5}}\right) \times \mathbb{G}_{m, k}$ of dimension $n+n+1=2 n+1$ are birationally k-equivalent where $R_{k_{i} / k}\left(\mathbb{G}_{m, k_{i}}\right)$ are k-rational with

$$
\begin{aligned}
& k_{1}=L^{\left\langle x^{\frac{n}{2}}, x^{2} y\right\rangle}, k_{2}=L^{\left\langle x^{\frac{n}{2}}, x y\right\rangle}, k_{3}=L^{\langle x\rangle}, k_{4}=L^{\left\langle x^{\frac{n}{2}}\right\rangle}, k_{5}=L^{\langle x y\rangle}, \\
& \left\langle x^{\frac{n}{2}}, x^{2} y\right\rangle \simeq\left\langle x^{\frac{n}{2}}, x y\right\rangle \simeq C_{2} \times C_{2},\langle x\rangle \simeq C_{n},\left\langle x^{\frac{n}{2}}\right\rangle \simeq\langle x y\rangle \simeq C_{2} \text { and } \\
& {\left[k_{1}: k\right]=\left[k_{2}: k\right]=\frac{n}{2},\left[k_{3}: k\right]=2,\left[k_{4}: k\right]=\left[k_{5}: k\right]=n .}
\end{aligned}
$$

Proof of Main theorem $(1 / 7)$

- $G \simeq D_{n}=\left\langle x, y \mid x^{n}=y^{2}=1, y^{-1} x y=x^{-1}\right\rangle$ and $n=2 m(m \geq 2)$.
- We may assume that $H \simeq C_{2}=\langle x y\rangle$,

$$
\begin{aligned}
& x=(12 \cdots n), y=(1 n)(2 n-1) \cdots(m m+1), \\
& x y=(2 n)(3 n-1) \cdots(m m+2) \text { with } m=n / 2 .
\end{aligned}
$$

(i) Case $n \equiv 0(\bmod 4)$. Write $n=2 m(m \geq 2$: even).

We consider $\left.\left[J_{G / H}\right]{ }^{f l}\right|_{G^{\prime}}$ where $G^{\prime}=\left\langle x^{2}, y\right\rangle \simeq D_{m}$ with $H^{\prime}=H \cap G^{\prime}=1$.
Then $G^{\prime} \leq S_{n}$: transitive and $\left.\left[J_{G / H}\right]^{f l}\right|_{G^{\prime}}=\left[J_{G^{\prime}}\right]^{f l}$ is not invertible.
$\Rightarrow\left[J_{G / H}\right]^{f l}$ is not invertible.
$\Rightarrow R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ is not retract k-rational.

Proof of Main theorem $(2 / 7)$

(ii) Case $n \equiv 2(\bmod 4)$. Write $n=2 m(m \geq 3$: odd).

We take $G=\left\langle x, y \mid x^{n}=y^{2}=1, y^{-1} x y=x^{-1}\right\rangle \simeq D_{n}$ and $H=\langle x y\rangle \simeq C_{2}$. We have the exact sequence

$$
0 \rightarrow I_{G / H} \rightarrow \mathbb{Z}[G / H] \xrightarrow{\varepsilon} \mathbb{Z} \rightarrow 0
$$

where ε is the augmentation map. We will construct an exact sequence of G-lattices

$$
0 \rightarrow C \rightarrow P \rightarrow I_{G / H} \rightarrow 0
$$

with P permutation and C stably permutation, i.e. $[C]=0$. In particular, C and the dual $(C)^{\circ}=\operatorname{Hom}_{\mathbb{Z}}(C, \mathbb{Z})$ are invertible. Then we get a flabby resolution

$$
0 \rightarrow J_{G / H} \rightarrow(P)^{\circ} \rightarrow(C)^{\circ} \rightarrow 0
$$

of $J_{G / H}$. This implies that $\left[J_{G / H}\right]^{f l}=\left[(C)^{\circ}\right]=0$ and hence $R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ is stably k-rational.

Proof of Main theorem (3/7)

Let e_{1}, \ldots, e_{n} be the standard \mathbb{Z}-basis of $\mathbb{Z}[G / H]$ via the left regular representation of G / H :

$$
\begin{aligned}
& x: e_{1} \mapsto \cdots \mapsto e_{n} \mapsto e_{1} \\
& y: e_{i} \leftrightarrow e_{n+1-i}(1 \leq i \leq m)
\end{aligned}
$$

Define $f_{i}:=e_{i}-e_{i+1}(1 \leq i \leq n-1)$ and $f_{n}:=e_{n}-e_{1}$. Then f_{1}, \ldots, f_{n-1} becomes a \mathbb{Z}-basis of $I_{G / H}$ with $\sum_{i=1}^{n} f_{i}=0$, i.e. $f_{n}=-\sum_{i=1}^{n-1} f_{i}$:

$$
\begin{aligned}
& x: f_{1} \mapsto \cdots \mapsto f_{n-1} \mapsto-\sum_{i=1}^{n-1} f_{i}, \\
& y: f_{i} \leftrightarrow-f_{n-i}(1 \leq i \leq m) .
\end{aligned}
$$

Proof of Main theorem $(4 / 7)$

We consider a permutation G-lattice $P \simeq \mathbb{Z}[G / Z(G)] \oplus \mathbb{Z}[G / H] \simeq$ $\mathbb{Z}\left[G /\left\langle x^{m}\right\rangle\right] \oplus \mathbb{Z}[G /\langle x y\rangle] \simeq \mathbb{Z}\left[D_{m}\right] \oplus \mathbb{Z}\left[D_{n} / C_{2}\right](n=2 m)$ where $H=\operatorname{Stab}_{1}(G)$ with \mathbb{Z}-basis $\alpha_{1}, \ldots, \alpha_{m}, \beta_{1}, \ldots, \beta_{m}, \gamma_{1}, \ldots, \gamma_{n}$ on which G acts by

$$
\begin{aligned}
& x: \alpha_{1} \mapsto \cdots \mapsto \alpha_{m} \mapsto \alpha_{1}, \beta_{1} \mapsto \cdots \mapsto \beta_{m} \mapsto \beta_{1}, \gamma_{1} \mapsto \cdots \mapsto \gamma_{n} \mapsto \gamma_{1} \\
& y: \alpha_{i} \leftrightarrow \beta_{m-i}(1 \leq i \leq m-1), \alpha_{m} \leftrightarrow \beta_{m}, \gamma_{j} \leftrightarrow \gamma_{n+1-j}(1 \leq j \leq n) .
\end{aligned}
$$

Note that $\operatorname{rank}_{\mathbb{Z}} P=2 m+n=2 n$.
We define a G-homomorphism

$$
\begin{gathered}
\varphi: P \rightarrow I_{G / H}, \alpha_{i} \mapsto f_{i}+f_{m+i}, \beta_{i} \mapsto-\left(f_{i}+f_{m+i}\right)(1 \leq i \leq m) \\
\gamma_{j} \mapsto x^{j-1}\left(\sum_{l=1}^{m-1} f_{l}+f_{m+1}\right)(1 \leq j \leq n)
\end{gathered}
$$

Our claim is that φ is surjective.

Proof of Main theorem (5/7)

We get an exact sequence of G-lattices

$$
0 \rightarrow C \rightarrow P \xrightarrow{\varphi} I_{G / H} \rightarrow 0
$$

where $C=\operatorname{Ker}(\varphi)$ with $\operatorname{rank}_{\mathbb{Z}} C=n+1=2 m+1$. We find a \mathbb{Z}-basis $a_{i}=\alpha_{i}+\beta_{i}, b_{i}=x^{i-1}\left(\alpha_{1}+\beta_{m}-\gamma_{1}-\gamma_{m+1}\right)(1 \leq i \leq m), c_{1}=\sum_{i=1}^{m} \alpha_{i}$ of C and the action of G on $C=\left\langle a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{m}, c_{1}\right\rangle_{\mathbb{Z}}$ is given by

$$
\begin{aligned}
& x: a_{1} \mapsto \cdots \mapsto a_{m} \mapsto a_{1}, b_{1} \mapsto \cdots \mapsto b_{m} \mapsto b_{1}, c_{1} \mapsto c_{1}, \\
& y: a_{i} \leftrightarrow a_{m-i}, b_{i} \leftrightarrow b_{m+1-i}\left(1 \leq i \leq \frac{m-1}{2}\right), \\
& a_{m} \mapsto a_{m}, b_{\frac{m+1}{2}} \mapsto b_{\frac{m+1}{2}}, c_{1} \mapsto \sum_{i=1}^{m} a_{i}-c_{1} .
\end{aligned}
$$

Take an element $c_{2}=\sum_{i=1}^{m} \beta_{i} \in P$. Then we have

$$
\begin{aligned}
& x: c_{1} \mapsto c_{1}, c_{2} \mapsto c_{2} \\
& y: c_{1} \mapsto c_{2}, c_{2} \mapsto c_{1}
\end{aligned}
$$

Proof of Main theorem $(6 / 7)$

Then we consider the trivial G-lattice $\left\langle z_{0}\right\rangle_{\mathbb{Z}} \simeq \mathbb{Z}$ and extend the map φ from P to $P \oplus\left\langle z_{0}\right\rangle_{\mathbb{Z}}$ by $\widetilde{\varphi}\left(z_{0}\right)=0$:

$$
0 \rightarrow C \oplus\left\langle z_{0}\right\rangle_{\mathbb{Z}} \rightarrow P \oplus\left\langle z_{0}\right\rangle_{\mathbb{Z}} \xrightarrow{\widetilde{\varphi}} I_{G / H} \rightarrow 0
$$

where $C \oplus\left\langle z_{0}\right\rangle_{\mathbb{Z}}=\operatorname{Ker}(\widetilde{\varphi})$ with $\operatorname{rank}_{\mathbb{Z}}\left(C \oplus\left\langle z_{0}\right\rangle_{\mathbb{Z}}\right)=(n+1)+1=2 m+2$.
Because $\operatorname{gcd}\{2, m\}=1$, there exist $u, v \in \mathbb{Z}$ such that $2 u+m v=1$.
Then we can get a \mathbb{Z}-basis $a_{i}^{\prime}:=a_{i}+v z_{0}, b_{i}(1 \leq i \leq m), c_{l}^{\prime}:=c_{l}-u z_{0}$ $(1 \leq l \leq 2)$ of $C \oplus\left\langle z_{0}\right\rangle_{\mathbb{Z}} \simeq \mathbb{Z}\left[D_{m} /\left\langle x^{2} y\right\rangle\right] \oplus \mathbb{Z}\left[D_{m} /\langle x y\rangle\right] \oplus \mathbb{Z}\left[D_{m} /\langle x\rangle\right]$ with \mathbb{Z}-rank $(2 m+1)+1=m+m+2$ on which $D_{m}=G /\left\langle x^{m}\right\rangle$ acts by

$$
\begin{aligned}
& x: a_{1}^{\prime} \mapsto \cdots \mapsto a_{m}^{\prime} \mapsto a_{1}^{\prime}, b_{1} \mapsto \cdots \mapsto b_{m} \mapsto b_{1}, c_{1}^{\prime} \mapsto c_{1}^{\prime}, c_{2}^{\prime} \mapsto c_{2}^{\prime}, \\
& y: a_{i}^{\prime} \leftrightarrow a_{m-i}^{\prime}, b_{i} \leftrightarrow b_{m+1-i}\left(1 \leq i \leq \frac{m-1}{2}\right), \\
& \\
& \quad a_{m}^{\prime} \mapsto a_{m}^{\prime}, b_{\frac{m+1}{2}} \mapsto b_{\frac{m+1}{2}}, c_{1}^{\prime} \leftrightarrow c_{2}^{\prime} .
\end{aligned}
$$

Proof of Main theorem $(7 / 7)$

Indeed, we can confirm that

$$
\operatorname{det}\left(\begin{array}{ccc|cc}
1 & & & 0 & v \\
& \ddots & & \vdots & \vdots \\
& & 1 & 0 & v \\
\hline 0 & \cdots & 0 & 1 & -u \\
1 & \cdots & 1 & -1 & -u
\end{array}\right)=-2 u-m v=-1
$$

Then we find that $C \oplus\left\langle z_{0}\right\rangle_{\mathbb{Z}} \simeq \mathbb{Z}\left[D_{m} /\left\langle x^{2} y\right\rangle\right] \oplus \mathbb{Z}\left[D_{m} /\langle x y\rangle\right] \oplus \mathbb{Z}\left[D_{m} /\langle x\rangle\right]$ is a permutation G-lattice (D_{m}-lattice) and hence $[C]=0$.
The last statement follows from the exact sequence

$$
0 \rightarrow J_{G / H} \rightarrow(P)^{\circ} \oplus \mathbb{Z} \rightarrow(C)^{\circ} \oplus \mathbb{Z} \rightarrow 0
$$

with $(P)^{\circ} \oplus \mathbb{Z} \simeq \mathbb{Z}\left[G /\left\langle x^{m}\right\rangle\right] \oplus \mathbb{Z}[G /\langle x y\rangle] \oplus \mathbb{Z}$,

$$
\left(C^{\circ}\right) \oplus \mathbb{Z} \simeq \mathbb{Z}\left[D_{m} /\left\langle x^{2} y\right\rangle\right] \oplus \mathbb{Z}\left[D_{m} /\langle x y\rangle\right] \oplus \mathbb{Z}\left[D_{m} /\langle x\rangle\right]
$$

This implies that $L\left(J_{G / H} \oplus(C)^{\circ} \oplus \mathbb{Z}\right)^{G} \simeq L\left((P)^{\circ} \oplus \mathbb{Z}\right)^{G}$.

Corollary of Main theorem

As a consequence of Main theorem, we get:

Corollary of Main theorem

Let $C=\operatorname{Ker}(\varphi)$ be a D_{m}-lattice with $\operatorname{rank}_{\mathbb{Z}} C=2 m+1$ ($m \geq 3$: odd) given as in (ii) Case $n \equiv 2(\bmod 4)$ in Main theorem. Then we have $\widehat{H}^{0}\left(D_{m}, C\right) \simeq \mathbb{Z} / 2 \mathbb{Z}$.
In particular, the D_{m}-lattice C is not permutation but stably permutation which satisfies $C \oplus \mathbb{Z} \simeq \mathbb{Z}\left[D_{m} /\left\langle x^{2} y\right\rangle\right] \oplus \mathbb{Z}\left[D_{m} /\langle x y\rangle\right] \oplus \mathbb{Z}\left[D_{m} /\langle x\rangle\right]$ with \mathbb{Z}-rank $(2 m+1)+1=m+m+2$.

- We can also give a refinement of the proof of Endo-Miyata (1974) and Endo (2011) of the stably k-rational case using a similar technique:
- For $G=D_{n}$, we have:
K / k : Galois $(|H|=1)$
$\Rightarrow T$ is stably k-rational (not retract k-rational) if n is odd (is even).
K / k : non-Galois $\left(|H|=2\right.$ with $\left.H \neq Z\left(D_{n}\right)\right)$
$\Rightarrow T$ is stably k-rational (not retract k-rational) if n is odd $\left(n=2^{r}\right)$.

