Rationality problem for norm one tori for A_5 and $PSL_2(\mathbb{F}_8)$ extensions

Akinari Hoshi¹ Aiichi Yamasaki²

¹Niigata University

²Kyoto University

March 19, 2024

§1. Rationality problem for algebraic tori T (1/3)

- k: a base field which is NOT algebraically closed! (in this talk)
- ► T: algebraic k-torus, i.e. k-form of a split torus; an algebraic group over k (group k-scheme) with T×_k k̄ ≃ (𝔅_{m k̄})ⁿ.

Rationality problem for algebraic tori

Whether T is k-rational?, i.e. $T \approx \mathbb{P}^n$? (birationally k-equivalent)

Let $R_{K/k}^{(1)}(\mathbb{G}_m)$ be the norm one torus of K/k, i.e. the kernel of the norm map $N_{K/k}: R_{K/k}(\mathbb{G}_m) \to \mathbb{G}_m$ where $R_{K/k}$ is the Weil restriction: $1 \longrightarrow R_{K/k}^{(1)}(\mathbb{G}_m) \longrightarrow R_{K/k}(\mathbb{G}_m) \xrightarrow{N_{K/k}} \mathbb{G}_m \longrightarrow 1.$ dim n-1 n 1

▶ $\exists 2$ algebraic k-tori T with dim(T) = 1; the trivial torus \mathbb{G}_m and $R_{K/k}^{(1)}(\mathbb{G}_m)$ with [K:k] = 2, are k-rational.

Rationality problem for algebraic tori T (2/3)

► $\exists 13 \text{ algebraic } k \text{-tori } T \text{ with } \dim(T) = 2.$

Theorem (Voskresenskii 1967) 2-dim. algebraic tori T

T is k-rational.

▶ $\exists 73 \text{ algebraic } k \text{-tori } T \text{ with } \dim(T) = 3.$

Theorem (Kunyavskii 1990) 3-dim. algebraic tori T

(i) ∃58 algebraic k-tori T which are k-rational;
(ii) ∃15 algebraic k-tori T which are not retract k-rational.

▶ k-rational \Rightarrow stably k-rational \Rightarrow retract k-rational \Rightarrow k-univational.

 ▶ ∃710 Z-coujugacy subgroups G ≤ GL(4, Z) (∃710 4-dim. algebraic k-tori T).

Rationality problem for algebraic tori T (3/3)

Theorem (Hoshi and Yamasaki 2017) 4-dim. algebraic tori T

(i) T is stably k-rational $\iff \exists G: 487 \text{ groups};$ (ii) T is not stably but retract k-rational $\iff \exists G: 7 \text{ groups};$ (iii) T is not retract k-rational $\iff \exists G: 216 \text{ groups}.$

 ▶ ∃6079 Z-coujugacy subgroups G ≤ GL(5, Z) (∃6079 5-dim. algebraic k-tori T).

Theorem (Hoshi and Yamasaki 2017) 5-dim. algebraic tori T

- (i) T is stably k-rational $\iff \exists G: 3051 \text{ groups};$
- (ii) T is not stably but retract k-rational $\iff \exists G: 25$ groups;
- (iii) T is not retract k-rational $\iff \exists G: 3003 \text{ groups.}$
 - **BUT** we do not know the answer for dimension 6.
 - → ∃85308 Z-coujugacy subgroups G ≤ GL(6, Z)!
 (∃85308 6-dim. algebraic k-tori T!).

Algebraic k-tori T and G-lattices

- T: algebraic k-torus
 - $\Longrightarrow \exists$ finite Galois extension L/k such that $T \times_k L \simeq (\mathbb{G}_{m,L})^n$.
- $G = \operatorname{Gal}(L/k)$ where L is the minimal splitting field.

Category of algebraic k-tori which split/ $L \stackrel{\text{duality}}{\longleftrightarrow}$ Category of G-lattices (i.e. finitely generated \mathbb{Z} -free $\mathbb{Z}[G]$ -module)

- $T \mapsto$ the character group $\widehat{T} = Hom(T, \mathbb{G}_m)$: *G*-lattice.
- ▶ $T = \operatorname{Spec}(L[M]^G)$ which splits/L with $\widehat{T} \simeq M \leftrightarrow M$: G-lattice
- ► Tori of dimension $n \xleftarrow{1:1}$ elements of the set $H^1(\mathcal{G}, \operatorname{GL}(n, \mathbb{Z}))$ where $\mathcal{G} = \operatorname{Gal}(\overline{k}/k)$ since $\operatorname{Aut}(\mathbb{G}_m^n) = \operatorname{GL}(n, \mathbb{Z})$.
- ▶ k-torus T of dimension n is determined uniquely by the integral representation $h : \mathcal{G} \to \operatorname{GL}(n, \mathbb{Z})$ up to conjugacy, and the group $h(\mathcal{G})$ is a finite subgroup of $\operatorname{GL}(n, \mathbb{Z})$.
- The function field of $T \stackrel{\text{identified}}{\longleftrightarrow} L(M)^G$: invariant field.

Rationality problem for algebraic tori ${\cal T}$

- L/k: Galois extension with G = Gal(L/k).
- $M = \bigoplus_{1 \le j \le n} \mathbb{Z} \cdot u_j$: *G*-lattice with a \mathbb{Z} -basis $\{u_1, \ldots, u_n\}$. • *G* acts on $L(x_1, \ldots, x_n)$ by

$$\sigma(x_j) = \prod_{i=1}^n x_i^{a_{i,j}}, \quad 1 \le j \le n$$

for any
$$\sigma \in G$$
, when $\sigma(u_j) = \sum_{i=1}^n a_{i,j}u_i$, $a_{i,j} \in \mathbb{Z}$.
 $L(M) := L(x_1, \ldots, x_n)$ with this action of G .

The function field of algebraic k-torus $T \xrightarrow{\text{identified}} L(M)^G$

Rationality problem for algebraic tori T (2nd form)

Whether $L(M)^G$ is *k*-rational?

(= purely transcendental over k?; $L(M)^G = k(\exists t_1, \ldots, \exists t_n)$?)

Some definitions

• K/k: a finite generated field extension.

Definition (stably rational)

K is called stably k-rational if $K(y_1, \ldots, y_m)$ is k-rational.

Definition (retract rational)

K is retract k-rational if $\exists k$ -algebra (domain) $R \subset K$ such that (i) K is the quotient field of R; (ii) $\exists f \in k[x_1, \ldots, x_n] \exists k$ -algebra hom. $\varphi : R \to k[x_1, \ldots, x_n][1/f]$ and $\psi : k[x_1, \ldots, x_n][1/f] \to R$ satisfying $\psi \circ \varphi = 1_R$.

Definition (unirational)

K is k-unirational if $K \subset k(x_1, \ldots, x_n)$.

k-rational ⇒ stably k-rational ⇒ retract k-rational ⇒ k-unirational.
 L(M)^G (resp. T) is always k-unirational.

Flabby (Flasque) resolution

• M: G-lattice, i.e. f.g. \mathbb{Z} -free $\mathbb{Z}[G]$ -module.

Definition

(i) M is permutation $\stackrel{\text{def}}{\iff} M \simeq \bigoplus_{1 \le i \le m} \mathbb{Z}[G/H_i].$ (ii) M is stably permutation $\stackrel{\text{def}}{\iff} M \oplus \exists P \simeq P', P, P'$: permutation. (iii) M is invertible $\stackrel{\text{def}}{\iff} M \oplus \exists M' \simeq P$: permutation. (iv) M is coflabby $\stackrel{\text{def}}{\iff} H^1(H, M) = 0 \ (\forall H \le G).$ (v) M is flabby $\stackrel{\text{def}}{\iff} \widehat{H}^{-1}(H, M) = 0 \ (\forall H \le G).$ (\widehat{H} : Tate cohomology)

- "permutation"
 - \implies "stably permutation"
 - \implies "invertible"
 - \implies "flabby and coflabby".

Commutative monoid \mathcal{M}

 $M_1 \sim M_2 \iff M_1 \oplus P_1 \simeq M_2 \oplus P_2 (\exists P_1, \exists P_2: \text{ permutation}).$ $\implies \text{ commutative monoid } \mathcal{M}: [M_1] + [M_2] := [M_1 \oplus M_2], 0 = [P].$

Theorem (Endo-Miyata 1974, Colliot-Thélène-Sansuc 1977)

 $\exists P$: permutation, $\exists F$: flabby such that

 $0 \to M \to P \to F \to 0$: flabby resolution of M.

• $[M]^{fl} := [F]$; flabby class of M

Theorem (Endo-Miyata 1973, Voskresenskii 1974, Saltman 1984)

 $\begin{array}{l} ({\rm EM73}) \ [M]^{fl} = 0 \iff L(M)^G \text{ is stably k-rational.} \\ ({\rm Vos74}) \ [M]^{fl} = [M']^{fl} \iff L(M)^G(x_1,\ldots,x_m) \simeq L(M')^G(y_1,\ldots,y_n); \\ \text{ stably k-equivalent.} \\ ({\rm Sal84}) \ [M]^{fl} \text{ is invertible } \iff L(M)^G \text{ is retract k-rational.} \end{array}$

• $M = M_G \simeq \widehat{T} = \operatorname{Hom}(T, \mathbb{G}_m), \ k(T) \simeq L(M)^G, \ G = \operatorname{Gal}(L/k)$

Contributions of [HY17] (Hoshi and Yamasaki, 2017, Mem. Amer. Math. Soc., v+215 pp.)

- ▶ We give a procedure to compute a flabby resolution of M, in particular [M]^{fl} = [F], effectively (with smaller rank after base change) by computer software GAP.
- The function IsFlabby (resp. IsCoflabby) may determine whether M is flabby (resp. coflabby).
- ▶ The function IsInvertibleF may determine whether $[M]^{fl} = [F]$ is invertible (\leftrightarrow whether $L(M)^G$ (resp. T) is retract k-rational).
- ► We provide some functions for checking a possibility of isomorphism

$$\left(\bigoplus_{i=1}^{r} a_i \mathbb{Z}[G/H_i]\right) \oplus a_{r+1}F \simeq \bigoplus_{i=1}^{r} b'_i \mathbb{Z}[G/H_i]$$
(*)

by computing some invariants (e.g. trace, \widehat{Z}^0 , \widehat{H}^0) of both sides.

▶ [HY17, Example 10.7]. $G \simeq S_5 \leq \operatorname{GL}(5, \mathbb{Z})$ with number (5, 946, 4) $\implies \operatorname{rank}(F) = 17$ and $\operatorname{rank}(*) = 88$ holds $\implies [F] = 0 \implies L(M)^G$ (resp. T) is stably k-rational.

Special case: $T = R_{K/k}^{(1)}(\mathbb{G}_m)$; norm one tori (1/4)

Rationality problem for T = R⁽¹⁾_{K/k}(G_m) is investigated by S. Endo, Colliot-Thélène and Sansuc, W. Hürlimann, L. Le Bruyn, A. Cortella and B. Kunyavskii, N. Lemire and M. Lorenz, M. Florence, etc.

Theorem (Endo-Miyata 1974), (Saltman 1984)

Let K/k be a finite Galois field extension and $G = \operatorname{Gal}(K/k)$. (i) T is retract k-rational \iff all the Sylow subgroups of G are cyclic; (ii) T is stably k-rational \iff G is a cyclic group, or a direct product of a cyclic group of order m and a group $\langle \sigma, \tau | \sigma^n = \tau^{2^d} = 1, \tau \sigma \tau^{-1} = \sigma^{-1} \rangle$, where $d, m \ge 1, n \ge 3, m, n$: odd, and (m, n) = 1.

Theorem (Endo 2011)

Let K/k be a finite non-Galois, separable field extension and L/k be the Galois closure of K/k. Assume that the Galois group of L/k is nilpotent. Then the norm one torus $T = R_{K/k}^{(1)}(\mathbb{G}_m)$ is not retract k-rational.

Special case: $T = R_{K/k}^{(1)}(\mathbb{G}_m)$; norm one tori (2/4)

- K/k: a finite non-Galois, separable field extension
- L/k: the Galois closure of K/k.

•
$$G = \operatorname{Gal}(L/k), H = \operatorname{Gal}(L/K) \leq G.$$

Theorem (Endo 2011)

Assume that all the Sylow subgroups of G are cyclic. Then T is retract k-rational. $T = R_{K/k}^{(1)}(\mathbb{G}_m)$ is stably k-rational $\iff G = D_n$, $n \text{ odd } (n \ge 3)$ or $C_m \times D_n$, $m, n \text{ odd } (m, n \ge 3)$, (m, n) = 1, $H \le D_n$ with |H| = 2. Special case: $T = R_{K/k}^{(1)}(\mathbb{G}_m)$; norm one tori (3/4)

Theorem (Endo 2011) dim T = n - 1

Assume that $\operatorname{Gal}(L/k) = S_n$, $n \ge 3$, and $\operatorname{Gal}(L/K) = S_{n-1}$ is the stabilizer of one of the letters in S_n . (i) $R_{K/k}^{(1)}(\mathbb{G}_m)$ is retract k-rational $\iff n$ is a prime; (ii) $R_{K/k}^{(1)}(\mathbb{G}_m)$ is (stably) k-rational $\iff n = 3$.

Theorem (Endo 2011, Hoshi and Yamasaki 2017) dim T = n - 1

Assume that $\operatorname{Gal}(L/k) = A_n$, $n \ge 4$, and $\operatorname{Gal}(L/K) = A_{n-1}$ is the stabilizer of one of the letters in A_n . (i) $R_{K/k}^{(1)}(\mathbb{G}_m)$ is retract k-rational $\iff n$ is a prime; (ii) $R_{K/k}^{(1)}(\mathbb{G}_m)$ is stably k-rational $\iff n = 5$.

13/25

Special case: $T = R_{K/k}^{(1)}(\mathbb{G}_m)$; norm one tori (4/4)

Known results on stably/retract $k\mbox{-}rational$ classification for T

▶
$$G = nTm \leq S_n \ (n \leq 10)$$
 and $G \neq 9T27 \simeq PSL_2(\mathbb{F}_8)$
with $[G:H] = n$,
 $G = pTm \leq S_p$ and $G \neq PSL_2(\mathbb{F}_{2^e})$
 $(p = 2^e + 1 \geq 17$; Fermat prime) with $[G:H] = p$
(Hoshi-Yamasaki [HY21] Israel J. Math.).

▶ $G = nTm \le S_n$ (n = 12, 14, 15), $(n = 2^e)$ with [G : H] = n (Hasegawa-Hoshi-Yamasaki [HHY20] Math. Comp.).

 $\operatorname{III}(T)$ and Hasse norm principle over number fields k (see next slides)

- [K:k] = n ≤ 15 (Hoshi-Kanai-Yamasaki [HKY22], Math. Comp., [HKY23] J. Number Theory).
- ► T is retract k-rational (k: number field) $\Rightarrow III(T) = 0$ (Hasse norm principle holds for K/k).

$\operatorname{III}(T)$ and HNP for K/k: Ono's theorem (1963)

•
$$T$$
 : algebraic k-torus, i.e. $T \times_k \overline{k} \simeq (\mathbb{G}_{m,\overline{k}})^n$.

•
$$\operatorname{III}(T) := \operatorname{Ker}\{H^1(k,T) \xrightarrow{\operatorname{res}} \bigoplus_{v \in V_k} H^1(k_v,T)\}$$
 : Shafarevich-Tate gp.

▶ $T = R_{K/k}^{(1)}(\mathbb{G}_m)$ is biregularly isomorphic to the norm hyper surface $f(x_1, \ldots, x_n) = 1$ where $f \in k[x_1, \ldots, x_n]$ is the norm form of K/k.

Theorem (Ono 1963, Ann. of Math.)

Let K/k be a finite extension of number fields and $T = R_{K/k}^{(1)}(\mathbb{G}_m)$. Then

$$\mathrm{III}(T) \simeq (N_{K/k}(\mathbb{A}_K^{\times}) \cap k^{\times})/N_{K/k}(K^{\times})$$

where \mathbb{A}_{K}^{\times} is the idele group of K. In particular,

 $III(T) = 0 \iff$ Hasse norm principle holds for K/k.

Main theorems: Theorem 1 and Theorem 2 (1/3)

- K/k: a finite separable field extension.
- L/k: the Galois closure of K/k.

►
$$G = \operatorname{Gal}(L/k), H = \operatorname{Gal}(L/K) \lneq G.$$

- ▶ $T = R_{K/k}^{(1)}(\mathbb{G}_m)$; the norm one torus of K/k(with dim T = [K:k] - 1 = [G:H] - 1).
- Theorem 1 gives an answer to the rationality problem (up to stable k-equivalence) for some norm one tori R⁽¹⁾_{K/k}(G_m) of K/k (when K/k is Galois, i.e. H = 1, this theorem is due to Endo and Miyata (1975)).

Theorem 1 (Hoshi and Yamasaki, arXiv:2309.16187)

(1) When $G \simeq A_4 \simeq \mathrm{PSL}_2(\mathbb{F}_3)$, $A_5 \simeq \mathrm{PSL}_2(\mathbb{F}_5) \simeq \mathrm{PSL}_2(\mathbb{F}_4)$ $\simeq \mathrm{PGL}_2(\mathbb{F}_4) \simeq \mathrm{SL}_2(\mathbb{F}_4)$, $A_6 \simeq \mathrm{PSL}_2(\mathbb{F}_9)$, T is not retract k-rational except for the two cases $(G, H) \simeq (A_5, V_4)$, (A_5, A_4) with |G| = 60, [G: H] = 15, 5. For the two exceptional cases, T is stably k-rational;

Theorem 1 (Hoshi and Yamasaki, arXiv:2309.16187) (Continue)

(2) When $G \simeq S_3 \simeq \mathrm{PSL}_2(\mathbb{F}_2) \simeq \mathrm{PGL}_2(\mathbb{F}_2) \simeq \mathrm{SL}_2(\mathbb{F}_2) \simeq \mathrm{GL}_2(\mathbb{F}_2)$, $S_4 \simeq \mathrm{PGL}_2(\mathbb{F}_3), S_5 \simeq \mathrm{PGL}_2(\mathbb{F}_5), S_6, T \text{ is not retract } k\text{-rational except}$ for the six cases $(G, H) \simeq (S_3, \{1\}), (S_3, C_2), (S_5, V_4)$ satisfying $V_4 \leq D(S_5) \simeq A_5$, (S_5, D_4) , (S_5, A_4) , (S_5, S_4) with $|S_3| = 6$, $[S_3:H] = 6, 3, |S_5| = 120, [S_5:H] = 30, 15, 10, 5.$ For the two exceptional cases $(S_3, \{1\}), (S_3, C_2), T$ is stably k-rational. For the four exceptional cases (S_5, V_4) satisfying $V_4 \leq D(S_5) \simeq A_5$, (S_5, D_4) , (S_5, A_4) , (S_5, S_4) , T is not stably but retract k-rational; (3) When $G \simeq \operatorname{GL}_2(\mathbb{F}_3)$, $\operatorname{GL}_2(\mathbb{F}_4) \simeq A_5 \times C_3$, $\operatorname{GL}_2(\mathbb{F}_5)$, T is not retract *k*-rational except for the case $(G, H) \simeq (\operatorname{GL}_2(\mathbb{F}_4), A_4)$ satisfying $A_4 \leq D(G) \simeq A_5$ with |G| = 180, [G:H] = 15. For the exceptional case, T is stably k-rational; (4) When $G \simeq SL_2(\mathbb{F}_3)$, $SL_2(\mathbb{F}_5)$, $SL_2(\mathbb{F}_7)$, T is not retract k-rational; (5) When $G \simeq \mathrm{PSL}_2(\mathbb{F}_7) \simeq \mathrm{PSL}_3(\mathbb{F}_2)$, T is not retract k-rational except for the two cases $H \simeq D_4$, S_4 with |G| = 168, [G:H] = 21, 7. For the two exceptional cases, T is not stably but retract k-rational;

Theorem 1 (Hoshi and Yamasaki, arXiv:2309.16187) (Continue)

(6) When $G \simeq \mathrm{PSL}_2(\mathbb{F}_8) \simeq \mathrm{PGL}_2(\mathbb{F}_8) \simeq \mathrm{SL}_2(\mathbb{F}_8)$, T is not retract *k*-rational except for the two cases $H = \mathrm{Sy}_2(G) \simeq (C_2)^3$, $N_G(\mathrm{Sy}_2(G)) \simeq (C_2)^3 \rtimes C_7$ with |G| = 504, [G:H] = 63, 9. For the two exceptional cases, T is stably *k*-rational.

In particular, for the exceptional cases in (1)–(6), e.g. $(G, H) \simeq (\operatorname{PSL}_2(\mathbb{F}_7), D_4)$, $(\operatorname{PSL}_2(\mathbb{F}_8), (C_2)^3)$, $(\operatorname{PSL}_2(\mathbb{F}_8), (C_2)^3 \rtimes C_7)$ with [G:H] = 21, 63, 9, T is retract k-rational. Therefore, we get the vanishing $H^1(k, \operatorname{Pic} \overline{X}) \simeq H^1(G, \operatorname{Pic} X_L) \simeq$ $H^1(G, F) \simeq \coprod^2_{\omega}(G, J_{G/H}) \simeq \operatorname{Br}(X)/\operatorname{Br}(k) \simeq \operatorname{Br}_{\operatorname{nr}}(k(X)/k)/\operatorname{Br}(k) = 0$ where X is a smooth k-compactification of T. This implies that, when k is a global field, i.e. a finite extension of \mathbb{Q} or $\mathbb{F}_q(t)$, A(T) = 0 and $\operatorname{III}(T) = 0$, i.e. T has the weak approximation property, Hasse principle holds for all torsors E under T and Hasse norm principle holds for K/k.

Remark

(1) The case where $G \leq S_n$ is transitive and [G:H] = n $(n \leq 15, n = 2^e$ or n = p is prime) was solved by Hasegawa, Hoshi and Yamasaki (2020) Hoshi and Yamasaki (2021) except for the stable *k*-rationality of *T* with $G \simeq 9T27$ and $G \leq S_p$ for Fermat primes $p \geq 17$. Theorem 1 (6) gives an answer for $G \simeq 9T27$ as $(G, H) \simeq (PSL_2(\mathbb{F}_8), (C_2)^3 \rtimes C_7)$. (2) $H^1(k, \operatorname{Pic} \overline{X})$, A(T) and $\operatorname{III}(T)$ were investigated by Macedo and Newton (2022) when $G \simeq A_n$, S_n and by Hoshi, Kanai and Yamasaki (2022, 2023, arXiv:2210.09119) when $[G:H] \leq 15$ and $G \simeq M_{11}$, J_1 .

More precisely, for the stably k-rational cases $G \simeq S_3 \simeq \mathrm{PSL}_2(\mathbb{F}_2)$, $A_5 \simeq \mathrm{PSL}_2(\mathbb{F}_4)$, $\mathrm{PSL}_2(\mathbb{F}_8)$ as in Theorem 1 we prove the following result which implies that there exists a rational k-torus $T' = \bigoplus_i R_{k_i/k}(\mathbb{G}_m)$ (for some $k \subset k_i \subset L$) of dimension r such that $T \times T'$ is k-rational.

Main theorems: Theorem 1 and Theorem 2 (3/3)

Theorem 2 (Hoshi and Yamasaki, arXiv:2309.16187)

(1) When $(G, H) \simeq (S_3, \{1\}) \simeq (PSL_2(\mathbb{F}_2), \{1\})$ with [G: H] = 6, there exists the flabby class $F = [J_{G/H}]^{fl}$ with $\operatorname{rank}_{\mathbb{Z}} F = 7$ such that

$$\mathbb{Z}[S_3/C_2]^{\oplus 2} \oplus \mathbb{Z}[S_3/C_3] \simeq \mathbb{Z} \oplus F$$

holds with rank $r = 2 \cdot 3 + 2 = 1 + 7 = 8$.

March 19, 2024

Theorem 2 (Hoshi and Yamasaki, arXiv:2309.16187) (Continue) (2) When $(G, H) \simeq (S_3, C_2) \simeq (PSL_2(\mathbb{F}_2), C_2)$ with [G: H] = 3, there exists the flabby class $F = [J_{G/H}]^{fl}$ with $\operatorname{rank}_{\mathbb{Z}} F = 4$ such that

 $\mathbb{Z}[S_3/C_2] \oplus \mathbb{Z}[S_3/C_3] \simeq \mathbb{Z} \oplus F$

holds with rank r = 3 + 2 = 1 + 4 = 5. In particular, we get

 $\mathbb{Z}[S_3/C_2]^{\oplus 2} \oplus \mathbb{Z}[S_3/C_3] \simeq \mathbb{Z} \oplus (\mathbb{Z}[S_3/C_2] \oplus F)$

holds with rank $r' = 2 \cdot 3 + 2 = 1 + 7 = 8$. (3) When $(G, H) \simeq (A_5, V_4) \simeq (PSL_2(\mathbb{F}_4), V_4)$ with [G: H] = 15, there exists the flabby class $F = [J_{G/H}]^{fl}$ with $\operatorname{rank}_{\mathbb{Z}} F = 21$ such that

 $\mathbb{Z}[A_5/C_5] \oplus \mathbb{Z}[A_5/A_4]^{\oplus 2} \simeq \mathbb{Z} \oplus F$

holds with rank $r = 12 + 2 \cdot 5 = 1 + 21 = 22$.

Theorem 2 (Hoshi and Yamasaki, arXiv:2309.16187) (Continue)

(4) When $(G, H) \simeq (A_5, A_4) \simeq (PSL_2(\mathbb{F}_4), A_4)$ with [G: H] = 5, there exists the flabby class $F = [J_{G/H}]^{fl}$ with $\operatorname{rank}_{\mathbb{Z}} F = 16$ such that

$$\mathbb{Z}[A_5/C_5] \oplus \mathbb{Z}[A_5/S_3] \simeq \mathbb{Z}[A_5/D_5] \oplus F$$

holds with rank r = 12 + 10 = 6 + 16 = 22. (5) When $(G, H) \simeq (\text{PSL}_2(\mathbb{F}_8), (C_2)^3)$ with [G:H] = 63, there exists the flabby class $F = [J_{G/H}]^{fl}$ with $\text{rank}_{\mathbb{Z}} F = 73$ such that

 $\mathbb{Z}[G/S_3] \oplus \mathbb{Z}[G/C_9] \oplus \mathbb{Z}[G/((C_2)^3 \rtimes C_7)]^{\oplus 2} \simeq \mathbb{Z}[G/S_3] \oplus \mathbb{Z} \oplus F$

holds with rank $r = 84 + 56 + 2 \cdot 9 = 84 + 1 + 73 = 158$. (6) When $(G, H) \simeq (\text{PSL}_2(\mathbb{F}_8), (C_2)^3 \rtimes C_7)$ with [G: H] = 9, there exists the flabby class $F = [J_{G/H}]^{fl}$ with $\operatorname{rank}_{\mathbb{Z}} F = 64$ such that

 $\mathbb{Z}[G/C_3] \oplus \mathbb{Z}[G/C_9] \oplus \mathbb{Z}[G/D_7] \simeq \mathbb{Z}[G/C_3] \oplus \mathbb{Z}[G/D_9] \oplus F$

holds with rank r = 168 + 56 + 36 = 168 + 28 + 64 = 260.

Theorem 2 (Hoshi and Yamasaki, arXiv:2309.16187) (Continue)

In particular, for the cases (1)–(6), $F = [J_{G/H}]^{fl}$ is stably permutation and hence $T = R_{K/k}^{(1)}(\mathbb{G}_m)$ is stably k-rational. More precisely, there exists a rational k-torus T' of dimension r such that $\widehat{T'} = \operatorname{Hom}(T', \mathbb{G}_m)$ is isomorphic to the permutation G-lattice with rank r in the left-hand side of the isomorphism, i.e. r = 8, 5, 22, 22, 158, 260, and $T \times T'$ is k-rational.

▶ We conjecture that $T = R_{K/k}^{(1)}(\mathbb{G}_m)$ is stably *k*-rational for the cases $(G, H) \simeq (\operatorname{PSL}_2(\mathbb{F}_{2^d}), (C_2)^d) \ (d \ge 1),$ $(\operatorname{PSL}_2(\mathbb{F}_{2^d}), (C_2)^d \rtimes C_{2^d-1}) \ (d \ge 1)$ (see Theorem 2 for d = 1, 2, 3):

Conjecture

Conjecture (Hoshi and Yamasaki, arXiv:2309.16187)

When $G \simeq \mathrm{PSL}_2(\mathbb{F}_{2^d})$ $(d \ge 1)$, T is not retract k-rational except for the case $(G, H) \simeq (S_3, \{1\})$ (d = 1) and the two cases $H = \mathrm{Sy}_2(G) \simeq (C_2)^d$, $H = N_G(\mathrm{Sy}_2(G)) \simeq (C_2)^d \rtimes C_{d-1}$ with $|G| = (2^d + 1)2^d(2^d - 1)$, $[G:H] = 2^{2d} - 1 = (2^d + 1)(2^d - 1), 2^d + 1$ $(d \ge 1)$. For the exceptional cases, T is stably k-rational. Moreover, (1) for $H \simeq (C_2)^d$ $(d \ge 1)$, there exist the flabby class $F = [J_{G/H}]^{fl}$ with rank_{\mathbb{Z}} $F = 2^{2d} + 2^d + 1$ and a permutation G-lattice P such that

$$P \oplus \mathbb{Z}[G/C_{2^d+1}] \oplus \mathbb{Z}[G/((C_2)^d \rtimes C_{2^d-1})]^{\oplus 2} \simeq P \oplus \mathbb{Z} \oplus F$$

holds with

$$\operatorname{rank}_{\mathbb{Z}} P + 2^{d}(2^{d} - 1) + 2 \times (2^{d} + 1) = \operatorname{rank}_{\mathbb{Z}} P + 1 + (2^{2d} + 2^{d} + 1);$$

Conjecture (Hoshi and Yamasaki, arXiv:2309.16187) (Continue)

(2) for $H\simeq (C_2)^d\rtimes C_{2^d-1}$ $(d\ge 1),$ there exist the flabby class $F=[J_{G/H}]^{fl}$ with $\mathrm{rank}_{\mathbb{Z}}\,F=2^{2d}$ and a permutation G-lattice Q such that

$$Q \oplus \mathbb{Z}[G/C_{2^d+1}] \oplus \mathbb{Z}[G/D_{2^d-1}] \simeq Q \oplus \mathbb{Z}[G/D_{2^d+1}] \oplus F$$

holds with $\operatorname{rank}_{\mathbb{Z}} Q + 2^d (2^d - 1) + 2^{d-1} (2^d + 1) = \operatorname{rank}_{\mathbb{Z}} Q + 2^{d-1} (2^d - 1) + 2^{2d}$ where $D_1 = C_2 \ (d = 1)$.

Note that Theorem 2 claims that Conjecture (1) holds for d = 1, 2, 3 with $\operatorname{rank}_{\mathbb{Z}} P = 0, 0, 84$; Conjecture (2) holds for d = 1, 2, 3 with $\operatorname{rank}_{\mathbb{Z}} Q = 0, 0, 168$.