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§1. Rationality problem for algebraic tori T (1/3)

▶ k: a base field which is NOT algebraically closed! (in this talk)

▶ T : algebraic k-torus, i.e. k-form of a split torus;
an algebraic group over k (group k-scheme) with T ×k k ' (Gm,k)

n.

Rationality problem for algebraic tori

Whether T is k-rational?, i.e. T ≈ Pn? (birationally k-equivalent)

Let R
(1)
K/k(Gm) be the norm one torus of K/k, i.e. the kernel of the norm

map NK/k : RK/k(Gm)→ Gm where RK/k is the Weil restriction:

1 −→ R
(1)
K/k(Gm) −→ RK/k(Gm)

NK/k−→ Gm −→ 1.

dim n− 1 n 1

▶ ∃2 algebraic k-tori T with dim(T ) = 1;

the trivial torus Gm and R
(1)
K/k(Gm) with [K : k] = 2, are k-rational.
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Rationality problem for algebraic tori T (2/3)

▶ ∃13 algebraic k-tori T with dim(T ) = 2.

Theorem (Voskresenskii 1967) 2-dim. algebraic tori T

T is k-rational.

▶ ∃73 algebraic k-tori T with dim(T ) = 3.

Theorem (Kunyavskii 1990) 3-dim. algebraic tori T

(i) ∃58 algebraic k-tori T which are k-rational;
(ii) ∃15 algebraic k-tori T which are not retract k-rational.

▶ k-rational ⇒ stably k-rational ⇒ retract k-rational ⇒ k-unirational.

▶ ∃710 Z-coujugacy subgroups G ≤ GL(4,Z)
(∃710 4-dim. algebraic k-tori T ).
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Rationality problem for algebraic tori T (3/3)

Theorem (Hoshi and Yamasaki 2017) 4-dim. algebraic tori T

(i) T is stably k-rational ⇐⇒ ∃G: 487 groups;
(ii) T is not stably but retract k-rational ⇐⇒ ∃G: 7 groups;
(iii) T is not retract k-rational ⇐⇒ ∃G: 216 groups.

▶ ∃6079 Z-coujugacy subgroups G ≤ GL(5,Z)
(∃6079 5-dim. algebraic k-tori T ).

Theorem (Hoshi and Yamasaki 2017) 5-dim. algebraic tori T

(i) T is stably k-rational ⇐⇒ ∃G: 3051 groups;
(ii) T is not stably but retract k-rational ⇐⇒ ∃G: 25 groups;
(iii) T is not retract k-rational ⇐⇒ ∃G: 3003 groups.

▶ BUT we do not know the answer for dimension 6.

▶ ∃85308 Z-coujugacy subgroups G ≤ GL(6,Z)!
(∃85308 6-dim. algebraic k-tori T !).
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Algebraic k-tori T and G-lattices

▶ T : algebraic k-torus
=⇒ ∃ finite Galois extension L/k such that T ×k L ' (Gm,L)

n.

▶ G = Gal(L/k) where L is the minimal splitting field.

Category of algebraic k-tori which split/L
duality←→ Category of G-lattices

(i.e. finitely generated Z-free Z[G]-module)

▶ T 7→ the character group T̂ = Hom(T,Gm): G-lattice.

▶ T = Spec(L[M ]G) which splits/L with T̂ 'M 7→M : G-lattice

▶ Tori of dimension n
1:1←→ elements of the set H1(G,GL(n,Z))

where G = Gal(k/k) since Aut(Gn
m) = GL(n,Z).

▶ k-torus T of dimension n is determined uniquely by the integral
representation h : G → GL(n,Z) up to conjugacy, and the group
h(G) is a finite subgroup of GL(n,Z).

▶ The function field of T
identified←→ L(M)G: invariant field.
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Rationality problem for algebraic tori T

▶ L/k: Galois extension with G = Gal(L/k).

▶ M =
⊕

1≤j≤nZ · uj : G-lattice with a Z-basis {u1, . . . , un}.
▶ G acts on L(x1, . . . , xn) by

σ(xj) =

n∏
i=1

x
ai,j
i , 1 ≤ j ≤ n

for any σ ∈ G, when σ(uj) =
∑n

i=1 ai,jui, ai,j ∈ Z.
▶ L(M) := L(x1, . . . , xn) with this action of G.

▶ The function field of algebraic k-torus T
identified←→ L(M)G

Rationality problem for algebraic tori T (2nd form)

Whether L(M)G is k-rational?
(= purely transcendental over k?; L(M)G = k(∃t1, . . . , ∃tn)?)

A. Hoshi, A. Yamasaki (Niigata, Kyoto) Norm one tori for A5 and PSL2(F8) ext. March 19, 2024 6 / 25



Some definitions

▶ K/k: a finite generated field extension.

Definition (stably rational)

K is called stably k-rational if K(y1, . . . , ym) is k-rational.

Definition (retract rational)

K is retract k-rational if ∃k-algebra (domain) R ⊂ K such that
(i) K is the quotient field of R;
(ii) ∃f ∈ k[x1, . . . , xn] ∃k-algebra hom. φ : R→ k[x1, . . . , xn][1/f ] and
ψ : k[x1, . . . , xn][1/f ]→ R satisfying ψ ◦ φ = 1R.

Definition (unirational)

K is k-unirational if K ⊂ k(x1, . . . , xn).

▶ k-rational ⇒ stably k-rational ⇒ retract k-rational ⇒ k-unirational.

▶ L(M)G (resp. T ) is always k-unirational.
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Flabby (Flasque) resolution

▶ M : G-lattice, i.e. f.g. Z-free Z[G]-module.

Definition

(i) M is permutation
def⇐⇒ M ' ⊕1≤i≤mZ[G/Hi].

(ii) M is stably permutation
def⇐⇒ M ⊕ ∃P ' P ′, P, P ′: permutation.

(iii) M is invertible
def⇐⇒ M ⊕ ∃M ′ ' P : permutation.

(iv) M is coflabby
def⇐⇒ H1(H,M) = 0 (∀H ≤ G).

(v) M is flabby
def⇐⇒ Ĥ−1(H,M) = 0 (∀H ≤ G). (Ĥ: Tate cohomology)

▶ “permutation”
=⇒ “stably permutation”
=⇒ “invertible”
=⇒ “flabby and coflabby”.
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Commutative monoidM

M1 ∼M2
def⇐⇒ M1 ⊕ P1 'M2 ⊕ P2 (∃P1, ∃P2: permutation).

=⇒ commutative monoidM: [M1] + [M2] := [M1 ⊕M2], 0 = [P ].

Theorem (Endo-Miyata 1974, Colliot-Thélène-Sansuc 1977)

∃P : permutation, ∃F : flabby such that

0→M → P → F → 0: flabby resolution of M .

▶ [M ]fl := [F ]; flabby class of M

Theorem (Endo-Miyata 1973, Voskresenskii 1974, Saltman 1984)

(EM73) [M ]fl = 0 ⇐⇒ L(M)G is stably k-rational.
(Vos74) [M ]fl = [M ′]fl ⇐⇒ L(M)G(x1, . . . , xm) ' L(M ′)G(y1, . . . , yn);

stably k-equivalent.
(Sal84) [M ]fl is invertible ⇐⇒ L(M)G is retract k-rational.

▶ M =MG ' T̂ = Hom(T,Gm), k(T ) ' L(M)G, G = Gal(L/k)
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Contributions of [HY17] (Hoshi and Yamasaki, 2017,
Mem. Amer. Math. Soc., v+215 pp.)

▶ We give a procedure to compute a flabby resolution of M , in
particular [M ]fl = [F ], effectively (with smaller rank after base
change) by computer software GAP.

▶ The function IsFlabby (resp. IsCoflabby) may determine whether
M is flabby (resp. coflabby).

▶ The function IsInvertibleF may determine whether [M ]fl = [F ] is
invertible (↔ whether L(M)G (resp. T ) is retract k-rational).

▶ We provide some functions for checking a possibility of isomorphism(
r⊕

i=1

aiZ[G/Hi]

)
⊕ ar+1F '

r⊕
i=1

b′iZ[G/Hi] (*)

by computing some invariants (e.g. trace, Ẑ0, Ĥ0) of both sides.
▶ [HY17, Example 10.7]. G ' S5 ≤ GL(5,Z) with number (5, 946, 4)

=⇒ rank(F ) = 17 and rank(*) = 88 holds
=⇒ [F ] = 0 =⇒ L(M)G (resp. T ) is stably k-rational.

A. Hoshi, A. Yamasaki (Niigata, Kyoto) Norm one tori for A5 and PSL2(F8) ext. March 19, 2024 10 / 25



Special case: T = R
(1)
K/k(Gm); norm one tori (1/4)

▶ Rationality problem for T = R
(1)
K/k(Gm) is investigated by S. Endo,

Colliot-Thélène and Sansuc, W. Hürlimann, L. Le Bruyn, A. Cortella
and B. Kunyavskii, N. Lemire and M. Lorenz, M. Florence, etc.

Theorem (Endo-Miyata 1974), (Saltman 1984)

Let K/k be a finite Galois field extension and G = Gal(K/k).
(i) T is retract k-rational ⇐⇒ all the Sylow subgroups of G are cyclic;
(ii) T is stably k-rational ⇐⇒ G is a cyclic group, or a direct product of

a cyclic group of order m and a group 〈σ, τ |σn = τ2
d
= 1, τστ−1 = σ−1〉,

where d,m ≥ 1, n ≥ 3,m, n: odd, and (m,n) = 1.

Theorem (Endo 2011)

Let K/k be a finite non-Galois, separable field extension and L/k be the
Galois closure of K/k. Assume that the Galois group of L/k is nilpotent.

Then the norm one torus T = R
(1)
K/k(Gm) is not retract k-rational.
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Special case: T = R
(1)
K/k(Gm); norm one tori (2/4)

▶ K/k: a finite non-Galois, separable field extension

▶ L/k: the Galois closure of K/k.

▶ G = Gal(L/k), H = Gal(L/K) ⪇ G.

Theorem (Endo 2011)

Assume that all the Sylow subgroups of G are cyclic.
Then T is retract k-rational.
T = R

(1)
K/k(Gm) is stably k-rational ⇐⇒ G = Dn, n odd (n ≥ 3) or

Cm ×Dn, m,n odd (m,n ≥ 3), (m,n) = 1, H ≤ Dn with |H| = 2.
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Special case: T = R
(1)
K/k(Gm); norm one tori (3/4)

Theorem (Endo 2011) dim T = n− 1

Assume that Gal(L/k) = Sn, n ≥ 3, and Gal(L/K) = Sn−1 is the
stabilizer of one of the letters in Sn.
(i) R

(1)
K/k(Gm) is retract k-rational ⇐⇒ n is a prime;

(ii) R
(1)
K/k(Gm) is (stably) k-rational ⇐⇒ n = 3.

Theorem (Endo 2011, Hoshi and Yamasaki 2017) dim T = n− 1

Assume that Gal(L/k) = An, n ≥ 4, and Gal(L/K) = An−1 is the
stabilizer of one of the letters in An.
(i) R

(1)
K/k(Gm) is retract k-rational ⇐⇒ n is a prime;

(ii) R
(1)
K/k(Gm) is stably k-rational ⇐⇒ n = 5.
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Special case: T = R
(1)
K/k(Gm); norm one tori (4/4)

Known results on stably/retract k-rational classification for T

▶ G = nTm ≤ Sn (n ≤ 10) and G 6= 9T27 ' PSL2(F8)
with [G : H] = n,
G = pTm ≤ Sp and G 6= PSL2(F2e)
(p = 2e + 1 ≥ 17; Fermat prime) with [G : H] = p
(Hoshi-Yamasaki [HY21] Israel J. Math.).

▶ G = nTm ≤ Sn (n = 12, 14, 15), (n = 2e) with [G : H] = n
(Hasegawa-Hoshi-Yamasaki [HHY20] Math. Comp.).

X(T ) and Hasse norm principle over number fields k (see next slides)

▶ [K : k] = n ≤ 15 (Hoshi-Kanai-Yamasaki [HKY22], Math. Comp.,
[HKY23] J. Number Theory).

▶ T is retract k-rational (k: number field)
⇒X(T ) = 0 (Hasse norm principle holds for K/k).
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X(T ) and HNP for K/k: Ono’s theorem (1963)

▶ T : algebraic k-torus, i.e. T ×k k ' (Gm,k)
n.

▶ X(T ) := Ker{H1(k, T )
res−−→

⊕
v∈Vk

H1(kv, T )} : Shafarevich-Tate gp.

▶ T = R
(1)
K/k(Gm) is biregularly isomorphic to the norm hyper surface

f(x1, . . . , xn) = 1 where f ∈ k[x1, . . . , xn] is the norm form of K/k.

Theorem (Ono 1963, Ann. of Math.)

Let K/k be a finite extension of number fields and T = R
(1)
K/k(Gm). Then

X(T ) ' (NK/k(A
×
K) ∩ k×)/NK/k(K

×)

where A×
K is the idele group of K. In particular,

X(T ) = 0 ⇐⇒ Hasse norm principle holds for K/k.
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Main theorems: Theorem 1 and Theorem 2 (1/3)

▶ K/k: a finite separable field extension.

▶ L/k: the Galois closure of K/k.

▶ G = Gal(L/k), H = Gal(L/K) ⪇ G.

▶ T = R
(1)
K/k(Gm); the norm one torus of K/k

(with dimT = [K : k]− 1 = [G : H]− 1).

▶ Theorem 1 gives an answer to the rationality problem (up to stable

k-equivalence) for some norm one tori R
(1)
K/k(Gm) of K/k (when K/k

is Galois, i.e. H = 1, this theorem is due to Endo and Miyata (1975)).

Theorem 1 (Hoshi and Yamasaki, arXiv:2309.16187)

(1) When G ' A4 ' PSL2(F3), A5 ' PSL2(F5)' PSL2(F4)
' PGL2(F4) ' SL2(F4), A6 ' PSL2(F9), T is not retract k-rational
except for the two cases (G,H) ' (A5, V4), (A5, A4) with |G| = 60,
[G : H] = 15, 5. For the two exceptional cases, T is stably k-rational;
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Theorem 1 (Hoshi and Yamasaki, arXiv:2309.16187) (Continue)

(2) When G ' S3 ' PSL2(F2) ' PGL2(F2) ' SL2(F2) ' GL2(F2),
S4 ' PGL2(F3), S5 ' PGL2(F5), S6, T is not retract k-rational except
for the six cases (G,H) ' (S3, {1}), (S3, C2), (S5, V4) satisfying
V4 ≤ D(S5) ' A5, (S5, D4), (S5, A4), (S5, S4) with |S3| = 6,
[S3 : H] = 6, 3, |S5| = 120, [S5 : H] = 30, 15, 10, 5.
For the two exceptional cases (S3, {1}), (S3, C2), T is stably k-rational.
For the four exceptional cases (S5, V4) satisfying V4 ≤ D(S5) ' A5,
(S5, D4), (S5, A4), (S5, S4), T is not stably but retract k-rational;
(3) When G ' GL2(F3), GL2(F4) ' A5 × C3, GL2(F5), T is not retract
k-rational except for the case (G,H) ' (GL2(F4), A4) satisfying
A4 ≤ D(G) ' A5 with |G| = 180, [G : H] = 15.
For the exceptional case, T is stably k-rational;
(4) When G ' SL2(F3), SL2(F5), SL2(F7), T is not retract k-rational;
(5) When G ' PSL2(F7) ' PSL3(F2), T is not retract k-rational except
for the two cases H ' D4, S4 with |G| = 168, [G : H] = 21, 7.
For the two exceptional cases, T is not stably but retract k-rational;
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Theorem 1 (Hoshi and Yamasaki, arXiv:2309.16187) (Continue)

(6) When G ' PSL2(F8) ' PGL2(F8) ' SL2(F8), T is not retract
k-rational except for the two cases H = Sy2(G) ' (C2)

3,
NG(Sy2(G)) ' (C2)

3 ⋊ C7 with |G| = 504, [G : H] = 63, 9.
For the two exceptional cases, T is stably k-rational.

In particular, for the exceptional cases in (1)–(6), e.g.
(G,H) ' (PSL2(F7), D4), (PSL2(F8), (C2)

3), (PSL2(F8), (C2)
3 ⋊ C7)

with [G : H] = 21, 63, 9, T is retract k-rational.
Therefore, we get the vanishing H1(k,PicX) ' H1(G,PicXL) '
H1(G,F ) 'X2

ω(G, JG/H) ' Br(X)/Br(k) ' Brnr(k(X)/k)/Br(k) = 0
where X is a smooth k-compactification of T . This implies that, when k
is a global field, i.e. a finite extension of Q or Fq(t), A(T ) = 0 and
X(T ) = 0, i.e. T has the weak approximation property, Hasse principle
holds for all torsors E under T and Hasse norm principle holds for K/k.
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Main theorems: Theorem 1 and Theorem 2 (2/3)

Remark

(1) The case where G ≤ Sn is transitive and [G : H] = n (n ≤ 15, n = 2e

or n = p is prime) was solved by Hasegawa, Hoshi and Yamasaki (2020)
Hoshi and Yamasaki (2021) except for the stable k-rationality of T with
G ' 9T27 and G ≤ Sp for Fermat primes p ≥ 17. Theorem 1 (6) gives an
answer for G ' 9T27 as (G,H) ' (PSL2(F8), (C2)

3 ⋊ C7).
(2) H1(k,PicX), A(T ) and X(T ) were investigated by Macedo and
Newton (2022) when G ' An, Sn and by Hoshi, Kanai and Yamasaki
(2022, 2023, arXiv:2210.09119) when [G : H] ≤ 15 and G 'M11, J1.

More precisely, for the stably k-rational cases G ' S3 ' PSL2(F2),
A5 ' PSL2(F4), PSL2(F8) as in Theorem 1 we prove the following result
which implies that there exists a rational k-torus T ′ =

⊕
iRki/k(Gm) (for

some k ⊂ ki ⊂ L) of dimension r such that T × T ′ is k-rational.
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Main theorems: Theorem 1 and Theorem 2 (3/3)

▶ G = Gal(L/k) and H = Gal(L/K) ⪇ G.

▶ JG/H = (IG/H)◦ = HomZ(IG/H ,Z) ' T̂ = Hom(T,Gm): Chevalley
module with 0→ Z→ Z[G/H]→ JG/H → 0 which is dual to

0→ IG/H → Z[G/H]
ε−→ Z→ 0 where ε is the augmentation map.

▶ T = R
(1)
K/k(Gm): the norm one torus of K/k

(with dimT = [K : k]− 1 = [G : H]− 1)
whose function field over k is k(T ) ' L(JG/H)G.

Theorem 2 (Hoshi and Yamasaki, arXiv:2309.16187)

(1) When (G,H) ' (S3, {1}) ' (PSL2(F2), {1}) with [G : H] = 6, there
exists the flabby class F = [JG/H ]fl with rankZ F = 7 such that

Z[S3/C2]
⊕2 ⊕ Z[S3/C3] ' Z⊕ F

holds with rank r = 2 · 3 + 2 = 1 + 7 = 8.
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Theorem 2 (Hoshi and Yamasaki, arXiv:2309.16187) (Continue)

(2) When (G,H) ' (S3, C2) ' (PSL2(F2), C2) with [G : H] = 3, there
exists the flabby class F = [JG/H ]fl with rankZ F = 4 such that

Z[S3/C2]⊕ Z[S3/C3] ' Z⊕ F

holds with rank r = 3 + 2 = 1 + 4 = 5. In particular, we get

Z[S3/C2]
⊕2 ⊕ Z[S3/C3] ' Z⊕ (Z[S3/C2]⊕ F )

holds with rank r′ = 2 · 3 + 2 = 1 + 7 = 8.
(3) When (G,H) ' (A5, V4) ' (PSL2(F4), V4) with [G : H] = 15, there
exists the flabby class F = [JG/H ]fl with rankZ F = 21 such that

Z[A5/C5]⊕ Z[A5/A4]
⊕2 ' Z⊕ F

holds with rank r = 12 + 2 · 5 = 1 + 21 = 22.
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Theorem 2 (Hoshi and Yamasaki, arXiv:2309.16187) (Continue)

(4) When (G,H) ' (A5, A4) ' (PSL2(F4), A4) with [G : H] = 5, there
exists the flabby class F = [JG/H ]fl with rankZ F = 16 such that

Z[A5/C5]⊕ Z[A5/S3] ' Z[A5/D5]⊕ F

holds with rank r = 12 + 10 = 6 + 16 = 22.
(5) When (G,H) ' (PSL2(F8), (C2)

3) with [G : H] = 63, there exists the
flabby class F = [JG/H ]fl with rankZ F = 73 such that

Z[G/S3]⊕ Z[G/C9]⊕ Z[G/((C2)
3 ⋊ C7)]

⊕2 ' Z[G/S3]⊕ Z⊕ F

holds with rank r = 84 + 56 + 2 · 9 = 84 + 1 + 73 = 158.
(6) When (G,H) ' (PSL2(F8), (C2)

3 ⋊ C7) with [G : H] = 9, there
exists the flabby class F = [JG/H ]fl with rankZ F = 64 such that

Z[G/C3]⊕ Z[G/C9]⊕ Z[G/D7] ' Z[G/C3]⊕ Z[G/D9]⊕ F

holds with rank r = 168 + 56 + 36 = 168 + 28 + 64 = 260.
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Theorem 2 (Hoshi and Yamasaki, arXiv:2309.16187) (Continue)

In particular, for the cases (1)–(6), F = [JG/H ]fl is stably permutation

and hence T = R
(1)
K/k(Gm) is stably k-rational. More precisely, there exists

a rational k-torus T ′ of dimension r such that T̂ ′ = Hom(T ′,Gm) is
isomorphic to the permutation G-lattice with rank r in the left-hand side of
the isomorphism, i.e. r = 8, 5, 22, 22, 158, 260, and T × T ′ is k-rational.

▶ We conjecture that T = R
(1)
K/k(Gm) is stably k-rational for the cases

(G,H) ' (PSL2(F2d), (C2)
d) (d ≥ 1),

(PSL2(F2d), (C2)
d ⋊ C2d−1) (d ≥ 1)

(see Theorem 2 for d = 1, 2, 3):
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Conjecture

Conjecture (Hoshi and Yamasaki, arXiv:2309.16187)

When G ' PSL2(F2d) (d ≥ 1), T is not retract k-rational except for the
case (G,H) ' (S3, {1}) (d = 1) and the two cases H = Sy2(G) ' (C2)

d,
H = NG(Sy2(G)) ' (C2)

d ⋊ Cd−1 with |G| = (2d + 1)2d(2d − 1),
[G : H] = 22d − 1 = (2d + 1)(2d − 1), 2d + 1 (d ≥ 1).
For the exceptional cases, T is stably k-rational. Moreover,
(1) for H ' (C2)

d (d ≥ 1), there exist the flabby class F = [JG/H ]fl with

rankZ F = 22d + 2d + 1 and a permutation G-lattice P such that

P ⊕ Z[G/C2d+1]⊕ Z[G/((C2)
d ⋊ C2d−1)]

⊕2 ' P ⊕ Z⊕ F

holds with
rankZ P + 2d(2d − 1) + 2× (2d + 1) = rankZ P + 1 + (22d + 2d + 1);
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Conjecture (Hoshi and Yamasaki, arXiv:2309.16187) (Continue)

(2) for H ' (C2)
d ⋊ C2d−1 (d ≥ 1), there exist the flabby class

F = [JG/H ]fl with rankZ F = 22d and a permutation G-lattice Q such
that

Q⊕ Z[G/C2d+1]⊕ Z[G/D2d−1] ' Q⊕ Z[G/D2d+1]⊕ F

holds with
rankZQ+ 2d(2d − 1) + 2d−1(2d + 1) = rankZQ+ 2d−1(2d − 1) + 22d

where D1 = C2 (d = 1).

Note that Theorem 2 claims that
Conjecture (1) holds for d = 1, 2, 3 with rankZ P = 0, 0, 84;
Conjecture (2) holds for d = 1, 2, 3 with rankZQ = 0, 0, 168.
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