Rationality problem for norm one tori for A_{5} and $\mathrm{PSL}_{2}\left(\mathbb{F}_{8}\right)$ extensions

Akinari Hoshi ${ }^{1} \quad$ Aiichi Yamasaki ${ }^{2}$

${ }^{1}$ Niigata University

${ }^{2}$ Kyoto University
March 19, 2024

§1. Rationality problem for algebraic tori $T(1 / 3)$

- k : a base field which is NOT algebraically closed! (in this talk)
- T : algebraic k-torus, i.e. k-form of a split torus; an algebraic group over k (group k-scheme) with $T \times_{k} \bar{k} \simeq\left(\mathbb{G}_{m, \bar{k}}\right)^{n}$.

Rationality problem for algebraic tori

Whether T is k-rational?, i.e. $T \approx \mathbb{P}^{n}$? (birationally k-equivalent)
Let $R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ be the norm one torus of K / k, i.e. the kernel of the norm $\operatorname{map} N_{K / k}: R_{K / k}\left(\mathbb{G}_{m}\right) \rightarrow \mathbb{G}_{m}$ where $R_{K / k}$ is the Weil restriction:

$$
\operatorname{dim} \begin{array}{ccc}
1 \longrightarrow R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right) \longrightarrow R_{K / k}\left(\mathbb{G}_{m}\right) \xrightarrow{N_{K / k}} \mathbb{G}_{m} \longrightarrow 1 . \\
n-1 & n & 1
\end{array}
$$

- $\exists 2$ algebraic k-tori T with $\operatorname{dim}(T)=1$; the trivial torus \mathbb{G}_{m} and $R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ with $[K: k]=2$, are k-rational.

Rationality problem for algebraic tori $T(2 / 3)$

- $\exists 13$ algebraic k-tori T with $\operatorname{dim}(T)=2$.

Theorem (Voskresenskii 1967) 2-dim. algebraic tori T

T is k-rational.

- $\exists 73$ algebraic k-tori T with $\operatorname{dim}(T)=3$.

Theorem (Kunyavskii 1990) 3-dim. algebraic tori T

(i) $\exists 58$ algebraic k-tori T which are k-rational; (ii) $\exists 15$ algebraic k-tori T which are not retract k-rational.

- k-rational \Rightarrow stably k-rational \Rightarrow retract k-rational $\Rightarrow k$-unirational.
- $\exists 710 \mathbb{Z}$-coujugacy subgroups $G \leq \mathrm{GL}(4, \mathbb{Z})$ ($\exists 710$ 4-dim. algebraic k-tori T).

Rationality problem for algebraic tori $T(3 / 3)$

Theorem (Hoshi and Yamasaki 2017) 4-dim. algebraic tori T

(i) T is stably k-rational $\Longleftrightarrow \exists G$: 487 groups;
(ii) T is not stably but retract k-rational $\Longleftrightarrow \exists G$: 7 groups;
(iii) T is not retract k-rational $\Longleftrightarrow \exists G$: 216 groups.

- $\exists 6079 \mathbb{Z}$-coujugacy subgroups $G \leq \mathrm{GL}(5, \mathbb{Z})$ ($\exists 60795$-dim. algebraic k-tori T).

Theorem (Hoshi and Yamasaki 2017) 5-dim. algebraic tori T

(i) T is stably k-rational $\Longleftrightarrow \exists G$: 3051 groups;
(ii) T is not stably but retract k-rational $\Longleftrightarrow \exists G$: 25 groups;
(iii) T is not retract k-rational $\Longleftrightarrow \exists G: 3003$ groups.

- BUT we do not know the answer for dimension 6 .
- $\exists 85308 \mathbb{Z}$-coujugacy subgroups $G \leq \mathrm{GL}(6, \mathbb{Z})$! ($\exists 85308$ 6-dim. algebraic k-tori T !).

Algebraic k-tori T and G-lattices

- T: algebraic k-torus
$\Longrightarrow \exists$ finite Galois extension L / k such that $T \times_{k} L \simeq\left(\mathbb{G}_{m, L}\right)^{n}$.
- $G=\operatorname{Gal}(L / k)$ where L is the minimal splitting field.

Category of algebraic k-tori which split $/ L \stackrel{\text { duality }}{\longleftrightarrow}$ Category of G-lattices (i.e. finitely generated \mathbb{Z}-free $\mathbb{Z}[G]$-module)

- $T \mapsto$ the character group $\widehat{T}=\operatorname{Hom}\left(T, \mathbb{G}_{m}\right): G$-lattice.
- $T=\operatorname{Spec}\left(L[M]^{G}\right)$ which splits $/ L$ with $\widehat{T} \simeq M \hookleftarrow M: G$-lattice
- Tori of dimension $n \stackrel{1: 1}{\longleftrightarrow}$ elements of the set $H^{1}(\mathcal{G}, \mathrm{GL}(n, \mathbb{Z}))$ where $\mathcal{G}=\operatorname{Gal}(\bar{k} / k)$ since $\operatorname{Aut}\left(\mathbb{G}_{m}^{n}\right)=\operatorname{GL}(n, \mathbb{Z})$.
- k-torus T of dimension n is determined uniquely by the integral representation $h: \mathcal{G} \rightarrow \mathrm{GL}(n, \mathbb{Z})$ up to conjugacy, and the group $h(\mathcal{G})$ is a finite subgroup of $\operatorname{GL}(n, \mathbb{Z})$.
- The function field of $T \stackrel{\text { identified }}{\longleftrightarrow} L(M)^{G}$: invariant field.

Rationality problem for algebraic tori T

- L / k : Galois extension with $G=\operatorname{Gal}(L / k)$.
- $M=\bigoplus_{1 \leq j \leq n} \mathbb{Z} \cdot u_{j}: G$-lattice with a \mathbb{Z}-basis $\left\{u_{1}, \ldots, u_{n}\right\}$.
- G acts on $L\left(x_{1}, \ldots, x_{n}\right)$ by

$$
\sigma\left(x_{j}\right)=\prod_{i=1}^{n} x_{i}^{a_{i, j}}, \quad 1 \leq j \leq n
$$

for any $\sigma \in G$, when $\sigma\left(u_{j}\right)=\sum_{i=1}^{n} a_{i, j} u_{i}, a_{i, j} \in \mathbb{Z}$.

- $L(M):=L\left(x_{1}, \ldots, x_{n}\right)$ with this action of G.
- The function field of algebraic k-torus $T \stackrel{\text { identified }}{\longleftrightarrow} L(M)^{G}$

Rationality problem for algebraic tori T (2nd form)

Whether $L(M)^{G}$ is k-rational?
$\left(=\right.$ purely transcendental over $k ? ; L(M)^{G}=k\left(\exists t_{1}, \ldots, \exists t_{n}\right)$?)

Some definitions

- K / k : a finite generated field extension.

Definition (stably rational)

K is called stably k-rational if $K\left(y_{1}, \ldots, y_{m}\right)$ is k-rational.

Definition (retract rational)

K is retract k-rational if $\exists k$-algebra (domain) $R \subset K$ such that (i) K is the quotient field of R;
(ii) $\exists f \in k\left[x_{1}, \ldots, x_{n}\right] \exists k$-algebra hom. $\varphi: R \rightarrow k\left[x_{1}, \ldots, x_{n}\right][1 / f]$ and $\psi: k\left[x_{1}, \ldots, x_{n}\right][1 / f] \rightarrow R$ satisfying $\psi \circ \varphi=1_{R}$.

Definition (unirational)

K is k-unirational if $K \subset k\left(x_{1}, \ldots, x_{n}\right)$.

- k-rational \Rightarrow stably k-rational \Rightarrow retract k-rational $\Rightarrow k$-unirational.
- $L(M)^{G}$ (resp. T) is always k-unirational.

Flabby (Flasque) resolution

- M : G-lattice, i.e. f.g. \mathbb{Z}-free $\mathbb{Z}[G]$-module.

Definition

(i) M is permutation $\stackrel{\text { def }}{\Longleftrightarrow} M \simeq \oplus_{1 \leq i \leq m} \mathbb{Z}\left[G / H_{i}\right]$.
(ii) M is stably permutation $\stackrel{\text { def }}{\Longleftrightarrow} M \oplus \exists P \simeq P^{\prime}, P, P^{\prime}$: permutation.
(iii) M is invertible $\stackrel{\text { def }}{\Longleftrightarrow} M \oplus \exists M^{\prime} \simeq P$: permutation.
(iv) M is coflabby $\stackrel{\text { def }}{\Longleftrightarrow} H^{1}(H, M)=0(\forall H \leq G)$.
(v) M is flabby $\stackrel{\text { def }}{\Longleftrightarrow} \widehat{H}^{-1}(H, M)=0(\forall H \leq G) .(\widehat{H}$: Tate cohomology $)$

- "permutation"
\Longrightarrow "stably permutation"
\Longrightarrow "invertible"
\Longrightarrow "flabby and coflabby".

Commutative monoid \mathcal{M}

$M_{1} \sim M_{2} \stackrel{\text { def }}{\Longleftrightarrow} M_{1} \oplus P_{1} \simeq M_{2} \oplus P_{2}\left(\exists P_{1}, \exists P_{2}\right.$: permutation $)$. \Longrightarrow commutative monoid $\mathcal{M}:\left[M_{1}\right]+\left[M_{2}\right]:=\left[M_{1} \oplus M_{2}\right], 0=[P]$.

Theorem (Endo-Miyata 1974, Colliot-Thélène-Sansuc 1977)

$\exists P$: permutation, $\exists F$: flabby such that

$$
0 \rightarrow M \rightarrow P \rightarrow F \rightarrow 0: \text { flabby resolution of } M
$$

- $[M]^{f l}:=[F]$; flabby class of M

Theorem (Endo-Miyata 1973, Voskresenskii 1974, Saltman 1984)

(EM73) $[M]^{f l}=0 \Longleftrightarrow L(M)^{G}$ is stably k-rational.
$(\operatorname{Vos} 74)[M]^{f l}=\left[M^{\prime}\right]^{f l} \Longleftrightarrow L(M)^{G}\left(x_{1}, \ldots, x_{m}\right) \simeq L\left(M^{\prime}\right)^{G}\left(y_{1}, \ldots, y_{n}\right)$; stably k-equivalent.
(Sal84) $[M]^{f l}$ is invertible $\Longleftrightarrow L(M)^{G}$ is retract k-rational.

$$
M=M_{G} \simeq \widehat{T}=\operatorname{Hom}\left(T, \mathbb{G}_{m}\right), k(T) \simeq L(M)^{G}, G=\operatorname{Gal}(L / k)
$$

Contributions of [HY17] (Hoshi and Yamasaki, 2017,

 Mem. Amer. Math. Soc., v+215 pp.)- We give a procedure to compute a flabby resolution of M, in particular $[M]^{f l}=[F]$, effectively (with smaller rank after base change) by computer software GAP.
- The function IsFlabby (resp. IsCoflabby) may determine whether M is flabby (resp. coflabby).
- The function IsInvertibleF may determine whether $[M]^{f l}=[F]$ is invertible (\leftrightarrow whether $L(M)^{G}$ (resp. T) is retract k-rational).
- We provide some functions for checking a possibility of isomorphism

$$
\begin{equation*}
\left(\bigoplus_{i=1}^{r} a_{i} \mathbb{Z}\left[G / H_{i}\right]\right) \oplus a_{r+1} F \simeq \bigoplus_{i=1}^{r} b_{i}^{\prime} \mathbb{Z}\left[G / H_{i}\right] \tag{*}
\end{equation*}
$$

by computing some invariants (e.g. trace, $\widehat{Z}^{0}, \widehat{H}^{0}$) of both sides.

- [HY17, Example 10.7]. $G \simeq S_{5} \leq \mathrm{GL}(5, \mathbb{Z})$ with number $(5,946,4)$
$\Longrightarrow \operatorname{rank}(F)=17$ and $\operatorname{rank}(*)=88$ holds
$\Longrightarrow[F]=0 \Longrightarrow L(M)^{G}$ (resp. T) is stably k-rational.

Special case: $T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$; norm one tori $(1 / 4)$

- Rationality problem for $T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ is investigated by S . Endo, Colliot-Thélène and Sansuc, W. Hürlimann, L. Le Bruyn, A. Cortella and B. Kunyavskii, N. Lemire and M. Lorenz, M. Florence, etc.

Theorem (Endo-Miyata 1974), (Saltman 1984)

Let K / k be a finite Galois field extension and $G=\operatorname{Gal}(K / k)$.
(i) T is retract k-rational \Longleftrightarrow all the Sylow subgroups of G are cyclic;
(ii) T is stably k-rational $\Longleftrightarrow G$ is a cyclic group, or a direct product of
a cyclic group of order m and a group $\left\langle\sigma, \tau \mid \sigma^{n}=\tau^{2^{d}}=1, \tau \sigma \tau^{-1}=\sigma^{-1}\right\rangle$, where $d, m \geq 1, n \geq 3, m, n$: odd, and $(m, n)=1$.

Theorem (Endo 2011)

Let K / k be a finite non-Galois, separable field extension and L / k be the Galois closure of K / k. Assume that the Galois group of L / k is nilpotent. Then the norm one torus $T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ is not retract k-rational.

Special case: $T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right) ;$ norm one tori $(2 / 4)$

- K / k : a finite non-Galois, separable field extension
- L / k : the Galois closure of K / k.
- $G=\operatorname{Gal}(L / k), H=\operatorname{Gal}(L / K) \lesseqgtr G$.

Theorem (Endo 2011)

Assume that all the Sylow subgroups of G are cyclic.
Then T is retract k-rational.
$T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ is stably k-rational $\Longleftrightarrow G=D_{n}, n$ odd $(n \geq 3)$ or $C_{m} \times D_{n}, m, n$ odd $(m, n \geq 3),(m, n)=1, H \leq D_{n}$ with $|H|=2$.

Special case: $T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right) ;$ norm one tori $(3 / 4)$

Theorem (Endo 2011) $\operatorname{dim} T=n-1$

Assume that $\operatorname{Gal}(L / k)=S_{n}, n \geq 3$, and $\operatorname{Gal}(L / K)=S_{n-1}$ is the stabilizer of one of the letters in S_{n}.
(i) $R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ is retract k-rational $\Longleftrightarrow n$ is a prime;
(ii) $R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ is (stably) k-rational $\Longleftrightarrow n=3$.

Theorem (Endo 2011, Hoshi and Yamasaki 2017) $\operatorname{dim} T=n-1$

Assume that $\operatorname{Gal}(L / k)=A_{n}, n \geq 4$, and $\operatorname{Gal}(L / K)=A_{n-1}$ is the stabilizer of one of the letters in A_{n}.
(i) $R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ is retract k-rational $\Longleftrightarrow n$ is a prime;
(ii) $R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ is stably k-rational $\Longleftrightarrow n=5$.

Special case: $T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right) ;$ norm one tori $(4 / 4)$
Known results on stably/retract k-rational classification for T

- $G=n T m \leq S_{n}(n \leq 10)$ and $G \neq 9 T 27 \simeq P S L_{2}\left(\mathbb{F}_{8}\right)$ with $[G: H]=n$, $G=p T m \leq S_{p}$ and $G \neq P S L_{2}\left(\mathbb{F}_{2^{e}}\right)$
($p=2^{e}+1 \geq 17$; Fermat prime) with $[G: H]=p$
(Hoshi-Yamasaki [HY21] Israel J. Math.).
- $G=n T m \leq S_{n}(n=12,14,15),\left(n=2^{e}\right)$ with $[G: H]=n$ (Hasegawa-Hoshi-Yamasaki [HHY20] Math. Comp.).
$Ш(T)$ and Hasse norm principle over number fields k (see next slides)
- $[K: k]=n \leq 15$ (Hoshi-Kanai-Yamasaki [HKY22], Math. Comp., [HKY23] J. Number Theory).
- T is retract k-rational (k : number field)
$\Rightarrow Ш(T)=0$ (Hasse norm principle holds for K / k).

$\amalg(T)$ and HNP for K / k : Ono's theorem (1963)

- T : algebraic k-torus, i.e. $T \times_{k} \bar{k} \simeq\left(\mathbb{G}_{m, \bar{k}}\right)^{n}$.
- $\amalg(T):=\operatorname{Ker}\left\{H^{1}(k, T) \xrightarrow{\text { res }} \bigoplus_{v \in V_{k}} H^{1}\left(k_{v}, T\right)\right\}:$ Shafarevich-Tate gp.
- $T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ is biregularly isomorphic to the norm hyper surface $f\left(x_{1}, \ldots, x_{n}\right)=1$ where $f \in k\left[x_{1}, \ldots, x_{n}\right]$ is the norm form of K / k.

Theorem (Ono 1963, Ann. of Math.)

Let K / k be a finite extension of number fields and $T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$. Then

$$
\amalg(T) \simeq\left(N_{K / k}\left(\mathbb{A}_{K}^{\times}\right) \cap k^{\times}\right) / N_{K / k}\left(K^{\times}\right)
$$

where \mathbb{A}_{K}^{\times}is the idele group of K. In particular,

$$
Ш(T)=0 \Longleftrightarrow \text { Hasse norm principle holds for } K / k .
$$

Main theorems: Theorem 1 and Theorem $2(1 / 3)$

- K / k : a finite separable field extension.
- L / k : the Galois closure of K / k.
- $G=\operatorname{Gal}(L / k), H=\operatorname{Gal}(L / K) \lesseqgtr G$.
- $T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$; the norm one torus of K / k
(with $\operatorname{dim} T=[K: k]-1=[G: H]-1$).
- Theorem 1 gives an answer to the rationality problem (up to stable k-equivalence) for some norm one tori $R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ of K / k (when K / k is Galois, i.e. $H=1$, this theorem is due to Endo and Miyata (1975)).

> Theorem 1 (Hoshi and Yamasaki, arXiv:2309.16187)
> (1) When $G \simeq A_{4} \simeq \mathrm{PSL}_{2}\left(\mathbb{F}_{3}\right), A_{5} \simeq \mathrm{PSL}_{2}\left(\mathbb{F}_{5}\right) \simeq \mathrm{PSL}_{2}\left(\mathbb{F}_{4}\right)$
> $\simeq \mathrm{PGL}_{2}\left(\mathbb{F}_{4}\right) \simeq \mathrm{SL}_{2}\left(\mathbb{F}_{4}\right), A_{6} \simeq \mathrm{PSL}_{2}\left(\mathbb{F}_{9}\right), T$ is not retract k-rational except for the two cases $(G, H) \simeq\left(A_{5}, V_{4}\right),\left(A_{5}, A_{4}\right)$ with $|G|=60$, $[G: H]=15,5$. For the two exceptional cases, T is stably k-rational;

Theorem 1 (Hoshi and Yamasaki, arXiv:2309.16187) (Continue)

(2) When $G \simeq S_{3} \simeq \mathrm{PSL}_{2}\left(\mathbb{F}_{2}\right) \simeq \mathrm{PGL}_{2}\left(\mathbb{F}_{2}\right) \simeq \mathrm{SL}_{2}\left(\mathbb{F}_{2}\right) \simeq \mathrm{GL}_{2}\left(\mathbb{F}_{2}\right)$, $S_{4} \simeq \mathrm{PGL}_{2}\left(\mathbb{F}_{3}\right), S_{5} \simeq \mathrm{PGL}_{2}\left(\mathbb{F}_{5}\right), S_{6}, T$ is not retract k-rational except for the six cases $(G, H) \simeq\left(S_{3},\{1\}\right),\left(S_{3}, C_{2}\right),\left(S_{5}, V_{4}\right)$ satisfying $V_{4} \leq D\left(S_{5}\right) \simeq A_{5},\left(S_{5}, D_{4}\right),\left(S_{5}, A_{4}\right),\left(S_{5}, S_{4}\right)$ with $\left|S_{3}\right|=6$, $\left[S_{3}: H\right]=6,3,\left|S_{5}\right|=120,\left[S_{5}: H\right]=30,15,10,5$.
For the two exceptional cases $\left(S_{3},\{1\}\right),\left(S_{3}, C_{2}\right), T$ is stably k-rational. For the four exceptional cases $\left(S_{5}, V_{4}\right)$ satisfying $V_{4} \leq D\left(S_{5}\right) \simeq A_{5}$, $\left(S_{5}, D_{4}\right),\left(S_{5}, A_{4}\right),\left(S_{5}, S_{4}\right), T$ is not stably but retract k-rational; (3) When $G \simeq \mathrm{GL}_{2}\left(\mathbb{F}_{3}\right), \mathrm{GL}_{2}\left(\mathbb{F}_{4}\right) \simeq A_{5} \times C_{3}, \mathrm{GL}_{2}\left(\mathbb{F}_{5}\right), T$ is not retract k-rational except for the case $(G, H) \simeq\left(\mathrm{GL}_{2}\left(\mathbb{F}_{4}\right), A_{4}\right)$ satisfying $A_{4} \leq D(G) \simeq A_{5}$ with $|G|=180,[G: H]=15$.
For the exceptional case, T is stably k-rational;
(4) When $G \simeq \mathrm{SL}_{2}\left(\mathbb{F}_{3}\right), \mathrm{SL}_{2}\left(\mathbb{F}_{5}\right), \mathrm{SL}_{2}\left(\mathbb{F}_{7}\right), T$ is not retract k-rational;
(5) When $G \simeq \operatorname{PSL}_{2}\left(\mathbb{F}_{7}\right) \simeq \operatorname{PSL}_{3}\left(\mathbb{F}_{2}\right), T$ is not retract k-rational except for the two cases $H \simeq D_{4}, S_{4}$ with $|G|=168,[G: H]=21,7$.
For the two exceptional cases, T is not stably but retract k-rational;

Theorem 1 (Hoshi and Yamasaki, arXiv:2309.16187) (Continue)

(6) When $G \simeq \mathrm{PSL}_{2}\left(\mathbb{F}_{8}\right) \simeq \mathrm{PGL}_{2}\left(\mathbb{F}_{8}\right) \simeq \mathrm{SL}_{2}\left(\mathbb{F}_{8}\right), T$ is not retract k-rational except for the two cases $H=\operatorname{Sy}_{2}(G) \simeq\left(C_{2}\right)^{3}$, $N_{G}\left(\mathrm{Sy}_{2}(G)\right) \simeq\left(C_{2}\right)^{3} \rtimes C_{7}$ with $|G|=504,[G: H]=63,9$.
For the two exceptional cases, T is stably k-rational.
In particular, for the exceptional cases in (1)-(6), e.g.
$(G, H) \simeq\left(\mathrm{PSL}_{2}\left(\mathbb{F}_{7}\right), D_{4}\right),\left(\mathrm{PSL}_{2}\left(\mathbb{F}_{8}\right),\left(C_{2}\right)^{3}\right),\left(\mathrm{PSL}_{2}\left(\mathbb{F}_{8}\right),\left(C_{2}\right)^{3} \rtimes C_{7}\right)$
with $[G: H]=21,63,9, T$ is retract k-rational.
Therefore, we get the vanishing $H^{1}(k, \operatorname{Pic} \bar{X}) \simeq H^{1}\left(G, \operatorname{Pic} X_{L}\right) \simeq$ $H^{1}(G, F) \simeq \amalg_{\omega}^{2}\left(G, J_{G / H}\right) \simeq \operatorname{Br}(X) / \operatorname{Br}(k) \simeq \operatorname{Br}_{\mathrm{nr}}(k(X) / k) / \operatorname{Br}(k)=0$ where X is a smooth k-compactification of T. This implies that, when k is a global field, i.e. a finite extension of \mathbb{Q} or $\mathbb{F}_{q}(t), A(T)=0$ and $\amalg(T)=0$, i.e. T has the weak approximation property, Hasse principle holds for all torsors E under T and Hasse norm principle holds for K / k.

Main theorems: Theorem 1 and Theorem $2(2 / 3)$

Remark

(1) The case where $G \leq S_{n}$ is transitive and $[G: H]=n\left(n \leq 15, n=2^{e}\right.$ or $n=p$ is prime) was solved by Hasegawa, Hoshi and Yamasaki (2020) Hoshi and Yamasaki (2021) except for the stable k-rationality of T with $G \simeq 9 T 27$ and $G \leq S_{p}$ for Fermat primes $p \geq 17$. Theorem 1 (6) gives an answer for $G \simeq 9 T 27$ as $(G, H) \simeq\left(\mathrm{PSL}_{2}\left(\mathbb{F}_{8}\right),\left(C_{2}\right)^{3} \rtimes C_{7}\right)$.
(2) $H^{1}(k, \operatorname{Pic} \bar{X}), A(T)$ and $\amalg(T)$ were investigated by Macedo and Newton (2022) when $G \simeq A_{n}, S_{n}$ and by Hoshi, Kanai and Yamasaki (2022, 2023, arXiv:2210.09119) when $[G: H] \leq 15$ and $G \simeq M_{11}, J_{1}$.

More precisely, for the stably k-rational cases $G \simeq S_{3} \simeq \mathrm{PSL}_{2}\left(\mathbb{F}_{2}\right)$, $A_{5} \simeq \mathrm{PSL}_{2}\left(\mathbb{F}_{4}\right), \mathrm{PSL}_{2}\left(\mathbb{F}_{8}\right)$ as in Theorem 1 we prove the following result which implies that there exists a rational k-torus $T^{\prime}=\bigoplus_{i} R_{k_{i} / k}\left(\mathbb{G}_{m}\right)$ (for some $k \subset k_{i} \subset L$) of dimension r such that $T \times T^{\prime}$ is k-rational.

Main theorems: Theorem 1 and Theorem $2(3 / 3)$

- $G=\operatorname{Gal}(L / k)$ and $H=\operatorname{Gal}(L / K) \lesseqgtr G$.
- $J_{G / H}=\left(I_{G / H}\right)^{\circ}=\operatorname{Hom}_{\mathbb{Z}}\left(I_{G / H}, \mathbb{Z}\right) \simeq \widehat{T}=\operatorname{Hom}\left(T, \mathbb{G}_{m}\right)$: Chevalley module with $0 \rightarrow \mathbb{Z} \rightarrow \mathbb{Z}[G / H] \rightarrow J_{G / H} \rightarrow 0$ which is dual to
$0 \rightarrow I_{G / H} \rightarrow \mathbb{Z}[G / H] \xrightarrow{\varepsilon} \mathbb{Z} \rightarrow 0$ where ε is the augmentation map.
- $T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right):$ the norm one torus of K / k
(with $\operatorname{dim} T=[K: k]-1=[G: H]-1$)
whose function field over k is $k(T) \simeq L\left(J_{G / H}\right)^{G}$.

Theorem 2 (Hoshi and Yamasaki, arXiv:2309.16187)

(1) When $(G, H) \simeq\left(S_{3},\{1\}\right) \simeq\left(\mathrm{PSL}_{2}\left(\mathbb{F}_{2}\right),\{1\}\right)$ with $[G: H]=6$, there exists the flabby class $F=\left[J_{G / H}\right]^{f l}$ with $\operatorname{rank}_{\mathbb{Z}} F=7$ such that

$$
\mathbb{Z}\left[S_{3} / C_{2}\right]^{\oplus 2} \oplus \mathbb{Z}\left[S_{3} / C_{3}\right] \simeq \mathbb{Z} \oplus F
$$

holds with rank $r=2 \cdot 3+2=1+7=8$.

Theorem 2 (Hoshi and Yamasaki, arXiv:2309.16187) (Continue)

(2) When $(G, H) \simeq\left(S_{3}, C_{2}\right) \simeq\left(\mathrm{PSL}_{2}\left(\mathbb{F}_{2}\right), C_{2}\right)$ with $[G: H]=3$, there exists the flabby class $F=\left[J_{G / H}\right]^{f l}$ with $\operatorname{rank}_{\mathbb{Z}} F=4$ such that

$$
\mathbb{Z}\left[S_{3} / C_{2}\right] \oplus \mathbb{Z}\left[S_{3} / C_{3}\right] \simeq \mathbb{Z} \oplus F
$$

holds with rank $r=3+2=1+4=5$. In particular, we get

$$
\mathbb{Z}\left[S_{3} / C_{2}\right]^{\oplus 2} \oplus \mathbb{Z}\left[S_{3} / C_{3}\right] \simeq \mathbb{Z} \oplus\left(\mathbb{Z}\left[S_{3} / C_{2}\right] \oplus F\right)
$$

holds with rank $r^{\prime}=2 \cdot 3+2=1+7=8$.
(3) When $(G, H) \simeq\left(A_{5}, V_{4}\right) \simeq\left(\mathrm{PSL}_{2}\left(\mathbb{F}_{4}\right), V_{4}\right)$ with $[G: H]=15$, there exists the flabby class $F=\left[J_{G / H}\right]^{f l}$ with $\mathrm{rank}_{\mathbb{Z}} F=21$ such that

$$
\mathbb{Z}\left[A_{5} / C_{5}\right] \oplus \mathbb{Z}\left[A_{5} / A_{4}\right]^{\oplus 2} \simeq \mathbb{Z} \oplus F
$$

holds with rank $r=12+2 \cdot 5=1+21=22$.

Theorem 2 (Hoshi and Yamasaki, arXiv:2309.16187) (Continue)

(4) When $(G, H) \simeq\left(A_{5}, A_{4}\right) \simeq\left(\mathrm{PSL}_{2}\left(\mathbb{F}_{4}\right), A_{4}\right)$ with $[G: H]=5$, there exists the flabby class $F=\left[J_{G / H}\right]^{f l}$ with $\operatorname{rank}_{\mathbb{Z}} F=16$ such that

$$
\mathbb{Z}\left[A_{5} / C_{5}\right] \oplus \mathbb{Z}\left[A_{5} / S_{3}\right] \simeq \mathbb{Z}\left[A_{5} / D_{5}\right] \oplus F
$$

holds with rank $r=12+10=6+16=22$.
(5) When $(G, H) \simeq\left(\mathrm{PSL}_{2}\left(\mathbb{F}_{8}\right),\left(C_{2}\right)^{3}\right)$ with $[G: H]=63$, there exists the flabby class $F=\left[J_{G / H}\right]^{f l}$ with $\operatorname{rank}_{\mathbb{Z}} F=73$ such that

$$
\mathbb{Z}\left[G / S_{3}\right] \oplus \mathbb{Z}\left[G / C_{9}\right] \oplus \mathbb{Z}\left[G /\left(\left(C_{2}\right)^{3} \rtimes C_{7}\right)\right]^{\oplus 2} \simeq \mathbb{Z}\left[G / S_{3}\right] \oplus \mathbb{Z} \oplus F
$$

holds with rank $r=84+56+2 \cdot 9=84+1+73=158$.
(6) When $(G, H) \simeq\left(\mathrm{PSL}_{2}\left(\mathbb{F}_{8}\right),\left(C_{2}\right)^{3} \rtimes C_{7}\right)$ with $[G: H]=9$, there exists the flabby class $F=\left[J_{G / H}\right]^{f l}$ with $\operatorname{rank}_{\mathbb{Z}} F=64$ such that

$$
\mathbb{Z}\left[G / C_{3}\right] \oplus \mathbb{Z}\left[G / C_{9}\right] \oplus \mathbb{Z}\left[G / D_{7}\right] \simeq \mathbb{Z}\left[G / C_{3}\right] \oplus \mathbb{Z}\left[G / D_{9}\right] \oplus F
$$

holds with rank $r=168+56+36=168+28+64=260$.

Theorem 2 (Hoshi and Yamasaki, arXiv:2309.16187) (Continue)

In particular, for the cases (1)-(6), $F=\left[J_{G / H}\right]^{f l}$ is stably permutation and hence $T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ is stably k-rational. More precisely, there exists a rational k-torus T^{\prime} of dimension r such that $\widehat{T^{\prime}}=\operatorname{Hom}\left(T^{\prime}, \mathbb{G}_{m}\right)$ is isomorphic to the permutation G-lattice with rank r in the left-hand side of the isomorphism, i.e. $r=8,5,22,22,158,260$, and $T \times T^{\prime}$ is k-rational.

- We conjecture that $T=R_{K / k}^{(1)}\left(\mathbb{G}_{m}\right)$ is stably k-rational for the cases $(G, H) \simeq\left(\operatorname{PSL}_{2}\left(\mathbb{F}_{2^{d}}\right),\left(C_{2}\right)^{d}\right)(d \geq 1)$, $\left(\mathrm{PSL}_{2}\left(\mathbb{F}_{2^{d}}\right),\left(C_{2}\right)^{d} \rtimes C_{2^{d}-1}\right)(d \geq 1)$
(see Theorem 2 for $d=1,2,3$):

Conjecture

Conjecture (Hoshi and Yamasaki, arXiv:2309.16187)

When $G \simeq \mathrm{PSL}_{2}\left(\mathbb{F}_{2^{d}}\right)(d \geq 1), T$ is not retract k-rational except for the case $(G, H) \simeq\left(S_{3},\{1\}\right)(d=1)$ and the two cases $H=\operatorname{Sy}_{2}(G) \simeq\left(C_{2}\right)^{d}$, $H=N_{G}\left(\operatorname{Sy}_{2}(G)\right) \simeq\left(C_{2}\right)^{d} \rtimes C_{d-1}$ with $|G|=\left(2^{d}+1\right) 2^{d}\left(2^{d}-1\right)$, $[G: H]=2^{2 d}-1=\left(2^{d}+1\right)\left(2^{d}-1\right), 2^{d}+1(d \geq 1)$.
For the exceptional cases, T is stably k-rational. Moreover, (1) for $H \simeq\left(C_{2}\right)^{d}(d \geq 1)$, there exist the flabby class $F=\left[J_{G / H}\right]^{f l}$ with $\operatorname{rank}_{\mathbb{Z}} F=2^{2 d}+2^{d}+1$ and a permutation G-lattice P such that

$$
P \oplus \mathbb{Z}\left[G / C_{2^{d}+1}\right] \oplus \mathbb{Z}\left[G /\left(\left(C_{2}\right)^{d} \rtimes C_{2^{d}-1}\right)\right]^{\oplus 2} \simeq P \oplus \mathbb{Z} \oplus F
$$

holds with
$\operatorname{rank}_{\mathbb{Z}} P+2^{d}\left(2^{d}-1\right)+2 \times\left(2^{d}+1\right)=\operatorname{rank}_{\mathbb{Z}} P+1+\left(2^{2 d}+2^{d}+1\right)$;

Conjecture (Hoshi and Yamasaki, arXiv:2309.16187) (Continue)

(2) for $H \simeq\left(C_{2}\right)^{d} \rtimes C_{2^{d}-1}(d \geq 1)$, there exist the flabby class $F=\left[J_{G / H}\right]^{f l}$ with $\operatorname{rank}_{\mathbb{Z}} F=2^{2 d}$ and a permutation G-lattice Q such that

$$
Q \oplus \mathbb{Z}\left[G / C_{2^{d}+1}\right] \oplus \mathbb{Z}\left[G / D_{2^{d}-1}\right] \simeq Q \oplus \mathbb{Z}\left[G / D_{2^{d}+1}\right] \oplus F
$$

holds with
$\operatorname{rank}_{\mathbb{Z}} Q+2^{d}\left(2^{d}-1\right)+2^{d-1}\left(2^{d}+1\right)=\operatorname{rank}_{\mathbb{Z}} Q+2^{d-1}\left(2^{d}-1\right)+2^{2 d}$ where $D_{1}=C_{2}(d=1)$.

Note that Theorem 2 claims that
Conjecture (1) holds for $d=1,2,3$ with $\operatorname{rank}_{\mathbb{Z}} P=0,0,84$;
Conjecture (2) holds for $d=1,2,3$ with $\operatorname{rank}_{\mathbb{Z}} Q=0,0,168$.

