Rationality problem for fields of invariants

Akinari Hoshi

Niigata University

July 21, 2016

Table of contents

- **0** Introduction: rationality problem for quasi-monomial actions
- **1** Monomial action & Noether's problem
- **2** Noether's problem over \mathbb{C}
 - Unramified Brauer/cohomology group
 - Birational classification of fields of invariants for groups of order 128
- 3 Quasi-monomial action
- 4 Rationality problem for algebraic tori
 - Flabby resolution
 - Voskresenskii's conjecture
 - Krull-Schmidt Theorem

$\S 0.$ Introduction

Inverse Galois problem (IGP)

Does every finite group occur as a quotient group of the absolute Galois group ${\rm Gal}(\overline{\mathbb Q}/\mathbb Q)$?

Related to rationality problem

A finite group $G \curvearrowright k(x_g \mid g \in G)$: rational function field over k by permutation

 $k(x_g \mid g \in G)^G$ is rational over k, i.e. $k(x_g \mid g \in G)^G \simeq k(t_1, \ldots, t_n)$ (Noether's problem has an affirmative answer)

 $\implies k(x_g \mid g \in G)^G$ is retract rational over k (weaker concept)

 $\iff \exists$ generic extension (polynomial) for (G, k) (Saltman's sense)

 $\stackrel{k: \mathsf{Hilbertian}}{\Longrightarrow} \mathsf{IGP} \text{ for } (k, G) \text{ has an affirmative answer}$

Rationality problem for quasi-monomial actions

Definition (quasi-monomial action)

Let K/k be a finite field extension and $G \leq \operatorname{Aut}_k(K(x_1, \ldots, x_n))$; finite where $K(x_1, \ldots, x_n)$ is the rational function field of n variables over K. The action of G on $K(x_1, \ldots, x_n)$ is called quasi-monomial if (i) $\sigma(K) \subset K$ for any $\sigma \in G$; (ii) $K^G = k$; (iii) for any $\sigma \in G$, $\sigma(x_j) = c_j(\sigma) \prod_{i=1}^n x_i^{a_{ij}}$ where $c_j(\sigma) \in K^{\times}$, $1 \leq j \leq n$, $[a_{i,j}]_{1 \leq i, j \leq n} \in GL_n(\mathbb{Z})$.

Rationality problem

Under what situation the fixed field $K(x_1, \ldots, x_n)^G$ is rational over k, i.e. $K(x_1, \ldots, x_n)^G \simeq k(t_1, \ldots, t_n)$ (=purely transcendental over k), if G acts on $K(x_1, \ldots, x_n)$ by quasi-monomial k-automorphisms.

Rationality problem for quasi-monomial actions

Definition (quasi-monomial action)

Let K/k be a finite field extension and $G \leq \operatorname{Aut}_k(K(x_1, \ldots, x_n))$; finite where $K(x_1, \ldots, x_n)$ is the rational function field of n variables over K. The action of G on $K(x_1, \ldots, x_n)$ is called quasi-monomial if (i) $\sigma(K) \subset K$ for any $\sigma \in G$; (ii) $K^G = k$; (iii) for any $\sigma \in G$, $\sigma(x_j) = c_j(\sigma) \prod_{i=1}^n x_i^{a_{ij}}$ where $c_j(\sigma) \in K^{\times}$, $1 \leq j \leq n$, $[a_{i,j}]_{1 \leq i,j \leq n} \in GL_n(\mathbb{Z})$.

- When $G \curvearrowright K$; trivial (i.e. K = k), called (just) monomial action.
- When $G \curvearrowright K$; trivial and permutation \leftrightarrow Noether's problem.
- ▶ When $c_j(\sigma) = 1$ ($\forall \sigma \in G, \forall j$), called purely (quasi-)monomial.
- $G = \operatorname{Gal}(K/k)$ and purely \leftrightarrow Rationality problem for algebraic tori.

Exercises (1/2): Noether's problem

►
$$S_n \curvearrowright \mathbb{Q}(x_1, \dots, x_n)$$
; permutation
 $\boxed{\mathbb{Q}}$. Is $\mathbb{Q}(x_1, \dots, x_n)^{S_n}$ rational over \mathbb{Q} ? Ans. Yes!
 $\mathbb{Q}(x_1, \dots, x_n)^{S_n} = \mathbb{Q}(s_1, \dots, s_n)$; s_i , ith elementary symmetric
 \implies IGP for (\mathbb{Q}, S_n) has affirmative solution.

•
$$A_n \curvearrowright \mathbb{Q}(x_1, \dots, x_n)$$
; permutation
Q. Is $\mathbb{Q}(x_1, \dots, x_n)^{A_n}$ rational over \mathbb{Q} ? Ans. Yes? ?? ??
 $\mathbb{Q}(x_1, \dots, x_n)^{A_n} = \mathbb{Q}(s_1, \dots, s_n, \Delta)$; but ...

Open problem Is $\mathbb{Q}(x_1, \ldots, x_n)^{A_n}$ rational over \mathbb{Q} ? $(n \ge 6)$

• $\mathbb{Q}(x_1,\ldots,x_5)^{A_5}$ is rational over \mathbb{Q} (Maeda, 1989).

Exercises (2/2): Noether's problem

•
$$\mathbb{Q}(x_1, x_2, x_3)^{A_3} = \mathbb{Q}(x_1, x_2, x_3)^{C_3} = \mathbb{Q}(t_1, t_2, t_3), \mathbb{Q}.$$
 t_1, t_2, t_3 ?
 $(C_3 : x_1 \mapsto x_2 \mapsto x_3 \mapsto x_1)$
• Ans. $\mathbb{Q}(x_1, x_2, x_3)^{C_3} = \mathbb{Q}(t_1, t_2, t_3)$ where
 $t_1 = x_1 + x_2 + x_3,$
 $t_2 = \frac{x_1 x_2^2 + x_2 x_3^2 + x_3 x_1^2 - 3x_1 x_2 x_3}{x_1^2 + x_2^2 + x_3^2 - x_1 x_2 - x_2 x_3 - x_3 x_1},$
 $t_3 = \frac{x_1^2 x_2 + x_2^2 x_3 + x_3^2 x_1 - 3x_1 x_2 x_3}{x_1^2 + x_2^2 + x_3^2 - x_1 x_2 - x_2 x_3 - x_3 x_1}.$
• $\mathbb{Q}(x_1, x_2, \dots, x_8)^{C_8} = \mathbb{Q}(t_1, t_2, \dots, t_8), \mathbb{Q}.$ t_1, t_2, \dots, t_8 ?
 $(C_8 : x_1 \mapsto x_2 \mapsto x_3 \mapsto \dots \mapsto x_8 \mapsto x_1)$
• Ans. None: $\mathbb{Q}(x_1, x_2, \dots, x_8)^{C_8}$ is not rational over \mathbb{Q} !

Today's talk (1/2)

Definition (quasi-monomial action)

Let K/k be a finite field extension and $G \leq \operatorname{Aut}_k(K(x_1, \ldots, x_n))$; finite where $K(x_1, \ldots, x_n)$ is the rational function field of n variables over K. The action of G on $K(x_1, \ldots, x_n)$ is called quasi-monomial if (i) $\sigma(K) \subset K$ for any $\sigma \in G$; (ii) $K^G = k$; (iii) for any $\sigma \in G$, $\sigma(x_j) = c_j(\sigma) \prod_{i=1}^n x_i^{a_{ij}}$ where $c_j(\sigma) \in K^{\times}$, $1 \leq j \leq n$, $[a_{i,j}]_{1 \leq i,j \leq n} \in GL_n(\mathbb{Z})$.

§1. $G \curvearrowright K$; trivial: monomial action & Noether's problem §2. $G \curvearrowright K$; trivial and permutation: Noether's problem over \mathbb{C} §3. (general) quasi-monomial actions (1-dim. and 2-dim. cases) §4. G = Gal(K/k) and purely: rationality problem for algebraic tori

Today's talk (2/2)

§1. $G \curvearrowright K$; trivial: monomial action & Noether's problem A. Hoshi, H. Kitayama, A. Yamasaki, Rationality problem of three-dimensional monomial group actions, J. Algebra **341** (2011) 45–108.

§2. $G \curvearrowright K$; trivial and permutation: Noether's problem over $\mathbb C$

A. Hoshi, M. Kang, B.E. Kunyavskii, Noether's problem and unramified Brauer groups, Asian J. Math. **17** (2013) 689–714.

A. Hoshi, Birational classification of fields of invariants for groups of order 128, J. Algebra **445** (2016) 394–432.

§3. (general) quasi-monomial actions (1-dim. and 2-dim. cases)

A. Hoshi, M. Kang, H. Kitayama, Quasi-monomial actions and some 4-dimensional rationality problems, J. Algebra **403** (2014) 363–400.

 $\S4. \ G = \operatorname{Gal}(K/k)$ and purely: rationality problem for algebraic tori

A. Hoshi, A. Yamasaki, Rationality problem for algebraic tori, to appear in Mem. Amer. Math. Soc., arXiv:1210.4525, 146 pages.

Various rationalities: definitions

 $k \subset L$; f.g. field extension, L is rational over $k \iff L \simeq k(x_1, \ldots, x_n)$.

Definition (stably rational)

L is called stably rational over $k \iff L(y_1, \ldots, y_m)$ is rational over k.

Definition (retract rational)

L is retract rational over $k \iff \exists k$ -algebra $R \subset L$ such that (i) *L* is the quotient field of *R*; (ii) $\exists f \in k[x_1, \dots, x_n] \exists k$ -algebra hom. $\varphi : R \to k[x_1, \dots, x_n][1/f]$ and $\psi : k[x_1, \dots, x_n][1/f] \to R$ satisfying $\psi \circ \varphi = 1_R$.

Definition (unirational)

$$L$$
 is unirational over $k \stackrel{\mathrm{def}}{\Longleftrightarrow} L \subset k(t_1, \dots, t_n)$.

- ► Assume L₁(x₁,...,x_n) ≃ L₂(y₁,...,y_m); stably isomorphic. If L₁ is retract rational over k, then so is L₂ over k.
- ▶ "rational" \implies "stably rational" \implies "retract rational " \implies "unirational"

"rational" \implies "stably rational" \implies "retract rational" \implies "unirational"

- The direction of the implication cannot be reversed.
- (Lüroth's problem) "unirational" \implies "rational" ? YES if trdeg= 1
- ► (Castelnuovo, 1894) L is unirational over \mathbb{C} and $\operatorname{trdeg}_{\mathbb{C}}L = 2 \Longrightarrow L$ is rational over \mathbb{C} .
- (Zariski, 1958) Let k be an alg. closed field and $k \subset L \subset k(x, y)$. If k(x, y) is separable algebraic over L, then L is rational over k.
- (Zariski cancellation problem) V₁ × Pⁿ ≈ V₂ × Pⁿ ⇒ V₁ ≈ V₂?
 In particular, "stably rational" ⇒ "rational"?
- ▶ (Beauville, Colliot-Thélène, Sansuc, Swinnerton-Dyer, 1985, Ann. Math.) L = Q(x, y, t) with x² + 3y² = t³ - 2 (Châtelet surface) ⇒ L is not rational but stably rational over Q. Indeed, L(y₁, y₂, y₃) is rational over Q.
- $L(y_1, y_2)$ is rational over \mathbb{Q} (Shepherd-Barron, 2002, Fano Conf.).
- $\mathbb{Q}(x_1,\ldots,x_{47})^{C_{47}}$ is not stably but retract rational over \mathbb{Q} .
- $\mathbb{Q}(x_1,\ldots,x_8)^{C_8}$ is not retract but unirational over \mathbb{Q} .

Châtelet surface as an invariant field

- ▶ (Beauville, Colliot-Thélène, Sansuc, Swinnerton-Dyer, 1985, Ann. Math.) $L = \mathbb{Q}(x, y, t)$ with $x^2 + 3y^2 = t^3 - 2$ (Châtelet surface) $\implies L$ is not rational but stably rational over \mathbb{Q} .
- $\blacktriangleright \ L = \mathbb{Q}(x,y,t) = \mathbb{Q}(\sqrt{-3})(X,Y)^{\langle \sigma \rangle}$ where

$$\sigma: \sqrt{-3} \mapsto -\sqrt{-3}, X \mapsto X, Y \mapsto \frac{X^3 - 2}{Y}$$

Indeed, we have

$$x = \frac{1}{2} \left(Y + \frac{X^3 - 2}{Y} \right),$$
$$y = \frac{1}{2\sqrt{-3}} \left(Y - \frac{X^3 - 2}{Y} \right),$$
$$t = X.$$

Retract rationality and generic extension

Theorem (Saltman, 1982, DeMeyer)

Let k be an infinite field and G be a finite group. The following are equivalent: (i) $k(x_g | g \in G)^G$ is retract rational over k. (ii) There is a generic G-Galois extension over k; (iii) There exists a generic G-polynomial over k.

▶ related to Inverse Galois Problem (IGP). (i) \implies IGP(G/k): true

Definition (generic polynomial)

A polynomial $f(t_1, \ldots, t_n; X) \in k(t_1, \ldots, t_n)[X]$ is generic for G over k if (1) $\operatorname{Gal}(f/k(t_1, \ldots, t_n)) \simeq G$; (2) $\forall L/M \supset k$ with $\operatorname{Gal}(L/M) \simeq G$, $\exists a_1, \ldots, a_n \in M$ such that $L = \operatorname{Spl}(f(a_1, \ldots, a_n; X)/M)$.

▶ By Hilbert's irreducibility theorem, $\exists L/\mathbb{Q}$ such that $Gal(L/\mathbb{Q}) \simeq G$.

$\S1$. Monomial action & Noether's problem

Definition (monomial action) $G \curvearrowright K$; trivial, $k = K^G = K$

An action of G on $k(x_1, \ldots, x_n)$ is monomial $\stackrel{\text{def}}{\iff}$

$$\sigma(x_j) = c_j(\sigma) \prod_{i=1}^n x_i^{a_{i,j}}, \ 1 \le j \le n, \forall \sigma \in G$$

where $[a_{i,j}]_{1 \le i,j \le n} \in \operatorname{GL}_n(\mathbb{Z})$, $c_j(\sigma) \in k^{\times} := k \setminus \{0\}$.

If $c_j(\sigma) = 1$ for any $1 \le j \le n$ then σ is called purely monomial.

Application to Noether's problem (permutation action)

Noether's problem (1/3) [G = A; abelian case]

- ▶ *k*; field, *G*; finite group
- $G \curvearrowright k$; trivial, $G \curvearrowright k(x_g \mid g \in G)$; permutation.
- $k(G) := k(x_g \mid g \in G)^G$; invariant field

Noether's problem (Emmy Noether, 1913)

Is k(G) rational over k?, i.e. $k(G) \simeq k(t_1, \ldots, t_n)$?

- ▶ Is the quotient variety \mathbb{A}^n/G rational over k?
- Assume G = A; abelian group.
- (Fisher, 1915) $\mathbb{C}(A)$ is rational over \mathbb{C} .
- (Masuda, 1955, 1968) $\mathbb{Q}(C_p)$ is rational over \mathbb{Q} for $p \leq 11$.
- ► (Swan, 1969, Invent. Math.) $\mathbb{Q}(C_{47}), \mathbb{Q}(C_{113}), \mathbb{Q}(C_{233})$ are not rational over \mathbb{Q} .
- ► S. Endo and T. Miyata (1973), V.E. Voskresenskii (1973), ... e.g. Q(C₈) is not rational over Q.
- (Lenstra, 1974, Invent. Math.)

k(A) is rational over $k \iff$ some condition ;

Noether's problem (2/3) [G = A; abelian case]

- ► (Endo-Miyata, 1973) $\mathbb{Q}(C_{p^r})$ is rational over \mathbb{Q} $\iff \exists \alpha \in \mathbb{Z}[\zeta_{\varphi(p^r)}]$ such that $N_{\mathbb{Q}(\zeta_{\varphi(p^r)})/\mathbb{Q}}(\alpha) = \pm p$ ► $h(\mathbb{Q}(\zeta_m)) = 1$ if m < 23 $\implies \mathbb{Q}(C_p)$ is rational over \mathbb{Q} for $p \leq 43$ and p = 61, 67, 71.
- (Endo-Miyata, 1973) For $p = 47, 79, 113, 137, 167, ..., \mathbb{Q}(C_p)$ is not rational over \mathbb{Q} .
- ▶ However, for $p = 59, 83, 89, 97, 107, 163, \ldots$, unknown. Under the GRH, $\mathbb{Q}(C_p)$ is not rational for the above primes. But it is unknown for $p = 251, 347, 587, 2459, \ldots$
- For p ≤ 20000, see speaker's paper: Proc. Japan Acad. Ser. A 91 (2015) 39-44.

Theorem (Plans, arXiv:1605.09228)

 $\mathbb{Q}(C_p) \text{ is rational over } \mathbb{Q} \iff p \leq 43 \text{ or } p = 61, 67, 71.$

• Using lower bound of height, $\mathbb{Q}(C_p)$ is rational $\Rightarrow p < 173$.

Noether's problem (3/3) [G; non-abelian case]

Noether's problem (Emmy Noether, 1913)

Is k(G) rational over k?, i.e. $k(G) \simeq k(t_1, \ldots, t_n)$?

- Assume *G*; non-abelian group.
- (Maeda, 1989) $k(A_5)$ is rational over k;
- ▶ (Rikuna, 2003; Plans, 2007) k(GL₂(𝔽₃)) and k(SL₂(𝔽₃)) is rational over k;

(Serre, 2003) if 2-Sylow subgroup of G ≃ C_{8m}, then Q(G) is not rational over Q; if 2-Sylow subgroup of G ≃ Q₁₆, then Q(G) is not rational over Q; e.g. G = Q₁₆, SL₂(F₇), SL₂(F₉), SL₂(F_q) with q ≡ 7 or 9 (mod 16).

From Noether's problem to monomial actions (1/2)

• $k(G) := k(x_g \mid g \in G)^G$; invariant field

Noether's problem (Emmy Noether, 1913)

Is k(G) rational over k?, i.e. $k(G) \simeq k(t_1, \ldots, t_n)$?

By Hilbert 90, we have:

No-name lemma (e.g. Miyata, 1971, Remark 3)

Let G act faithfully on k-vector space V, W be a faithful k[G]-submodule of V. Then $K(V)^G = K(W)^G(t_1, \ldots, t_m)$.

Rationality problem: linear action

Let G act on finite-dimensional k-vector space V and ρ : $G \to GL(V)$ be a representation. Whether $k(V)^G$ is rational over k?

▶ the quotient variety *V*/*G* is rational over *k*?

From Noether's problem to monomial actions (2/2)

▶ For $\rho: G \to GL(V)$; monomial representation, i.e. matrix rep. has exactly one non-zero entry in each row and each column, G acts on $k(\mathbb{P}(V)) = k(\frac{w_1}{w_n}, \dots, \frac{w_{n-1}}{w_n})$ by monomial action.

By Hilbert 90, we have:

Lemma (e.g. Miyata, 1971, Lemma)

 $k(V)^G = k(\mathbb{P}(V))^G(t).$

- $V/G \approx \mathbb{P}(V)/G \times \mathbb{P}^1$ (birational)
- k(ℙ(V))^G (monomial action) is rational over k
 ⇒ k(V)^G (linear action) is rational over k
 ⇒ k(G) (permutation action) is rational over k
 (Noether's problem has an affirmative answer)

Example: Noether's problem for $GL_2(\mathbb{F}_3)$ and $SL_2(\mathbb{F}_3)$

• $G = GL_2(\mathbb{F}_3) = \langle A, B, C, D \rangle \subset GL_4(\mathbb{Q}), \ \#G = 48,$ \blacktriangleright $H = SL_2(\mathbb{F}_3) = \langle A, B, C \rangle \subset GL_4(\mathbb{Q}), \ \#H = 24, \ \text{where}$ $A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}, C = \begin{bmatrix} 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, D = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$ • G and H act on $k(V) = k(w_1, w_2, w_3, w_4)$ by $A: w_1 \mapsto -w_2 \mapsto -w_1 \mapsto w_2 \mapsto w_1, w_3 \mapsto -w_4 \mapsto -w_3 \mapsto w_4 \mapsto w_3,$ $B: w_1 \mapsto -w_3 \mapsto -w_1 \mapsto w_3 \mapsto w_1, w_2 \mapsto w_4 \mapsto -w_2 \mapsto -w_4 \mapsto w_2,$ $C: w_1 \mapsto -w_2 \mapsto w_3 \mapsto w_1, w_4 \mapsto w_4, \quad D: w_1 \mapsto w_1, w_2 \mapsto -w_2, w_3 \leftrightarrow w_4.$ ▶ $k(\mathbb{P}(V)) = k(x, y, z), x = w_1/w_4, y = w_2/w_4, z = w_3/w_4.$ • G and H act on k(x, y, z) as $G/Z(G) \simeq S_4$ and $H/Z(H) \simeq A_4$: $A: x \mapsto \frac{y}{z}, \ y \mapsto \frac{-x}{z}, \ z \mapsto \frac{-1}{z}, \ B: x \mapsto \frac{-z}{y}, \ y \mapsto \frac{-1}{y}, \ z \mapsto \frac{x}{y},$ $C: x \mapsto y \mapsto z \mapsto x, \ D: x \mapsto \frac{x}{x}, \ y \mapsto \frac{-y}{x}, \ z \mapsto \frac{1}{x}.$ ▶ $k(\mathbb{P}(V))^G$: rational $\implies k(V)^G$: rational $\implies k(G)$: rational.

Monomial action (1/3) [3-dim. case]

Theorem (Hajja, 1987) 2-dim. monomial action

 $k(x_1, x_2)^G$ is rational over k.

Theorem (Hajja-Kang 1994, H-Rikuna 2008) 3-dim. purely monomial $k(x_1, x_2, x_3)^G$ is rational over k.

Theorem (Prokhorov, 2010) 3-dim. monomial action over $k = \mathbb{C}$ $\mathbb{C}(x_1, x_2, x_3)^G$ is rational over \mathbb{C} .

However, $\mathbb{Q}(x_1, x_2, x_3)^{\langle \sigma \rangle}$, $\sigma : x_1 \mapsto x_2 \mapsto x_3 \mapsto \frac{-1}{x_1 x_2 x_3}$ is not rational over \mathbb{Q} (Hajja,1983).

Monomial action (2/3) [3-dim. case]

Theorem (Saltman, 2000) char $k \neq 2$

If $[k(\sqrt{a_1},\sqrt{a_2},\sqrt{a_3}):k]=8$, then $k(x_1,x_2,x_3)^{\langle\sigma
angle}$,

$$\sigma: x_1 \mapsto \frac{a_1}{x_1}, x_2 \mapsto \frac{a_2}{x_2}, x_3 \mapsto \frac{a_3}{x_3}$$

is not retract rational over k (hence not rational over k).

Theorem (Kang, 2004)

 $k(x_1, x_2, x_3)^{\langle \sigma \rangle}$, σ : $x_1 \mapsto x_2 \mapsto x_3 \mapsto \frac{c}{x_1 x_2 x_3} \mapsto x_1$, is rational over k \iff at least one of the following conditions is satisfied: (i) char k = 2; (ii) $c \in k^2$; (iii) $-4c \in k^4$; (iv) $-1 \in k^2$. If $k(x, y, z)^{\langle \sigma \rangle}$ is not rational over k, then it is not retract rational over k.

Recall that

▶ "rational" \implies "stably rational" \implies "retract rational " \implies "unirational"

Monomial action (3/3) [3-dim. case]

Theorem (Yamasaki, 2012) 3-dim. monomial, char $k \neq 2$

 $\exists 8 \text{ cases } G \leq GL_3(\mathbb{Z}) \text{ s.t } k(x_1, x_2, x_3)^G \text{ is not retract rational over } k.$ Moreover, the necessary and sufficient conditions are given.

- ► Two of 8 cases are Saltman's and Kang's cases.
- ▶ $\exists G \leq GL_3(\mathbb{Z})$; 73 finite subgroups (up to conjugacy)

Theorem (H-Kitayama-Yamasaki, 2011) 3-dim. monomial, char $k \neq 2$

 $k(x_1, x_2, x_3)^G$ is rational over k except for the 8 cases and $G = A_4$. For $G = A_4$, if $[k(\sqrt{a}, \sqrt{-1}) : k] \le 2$, then it is rational over k.

Corollary

 $\exists L = k(\sqrt{a})$ such that $L(x_1, x_2, x_3)^G$ is rational over L.

▶ However, $\exists 4\text{-dim}$. $\mathbb{C}(x_1, x_2, x_3, x_4)^{C_2 \times C_2}$ is not retract rational.

$\S2$. Noether's problem over \mathbb{C} (1/3)

Let G be a p-group. $\mathbb{C}(G) := \mathbb{C}(x_g \mid g \in G)^G$.

- (Fisher, 1915) $\mathbb{C}(A)$ is rational over \mathbb{C} if A; finite abelian group.
- (Saltman, 1984, Invent. Math.)
 For ∀p; prime, ∃ meta-abelian p-group G of order p⁹
 such that C(G) is not retract rational over C.
- (Bogomolov, 1988)
 For ∀p; prime, ∃ p-group G of order p⁶
 such that C(G) is not retract rational over C.

Indeed they showed $\operatorname{Br}_{\operatorname{nr}}(\mathbb{C}(G)/\mathbb{C}) \neq 0$; unramified Brauer group

▶ rational \implies stably rational \implies retract rational \implies $\operatorname{Br}_{\operatorname{nr}}(\mathbb{C}(G)) = 0$. not rational \Leftarrow not stably rational \Leftarrow not retract rational \Leftarrow $\operatorname{Br}_{\operatorname{nr}}(\mathbb{C}(G)) \neq 0$.

▶ k(G); retract rational \implies IGP for (k,G) has an affirmative answer.

Definition (Unramified Brauer group) Saltman (1984)

Let $k \subset K$ be an extension of fields. $\operatorname{Br}_{\operatorname{nr}}(K/k) = \bigcap_R \operatorname{Image} \{\operatorname{Br}(R) \to \operatorname{Br}(K)\}$ where $\operatorname{Br}(R) \to \operatorname{Br}(K)$ is the natural map of Brauer groups and R runs over all the discrete valuation rings R such that $k \subset R \subset K$ and K is the quotient field of R.

- If K is retract rational over k, then Br(k) → Br_{nr}(K/k). In particular, if K is retract rational over C, then Br_{nr}(K/C) = 0.
- ► For a smooth projective variety X over \mathbb{C} with function field K, $\operatorname{Br}_{\operatorname{nr}}(K/\mathbb{C}) \simeq H^3(X, \mathbb{Z})_{\operatorname{tors}}$ which is given by Artin-Mumford (1972).

Theorem (Bogomolov 1988, Saltman 1990) $\operatorname{Br}_{\operatorname{nr}}(\mathbb{C}(G)/\mathbb{C}) \simeq B_0(G)$

Let G be a finite group. Then $\operatorname{Br}_{\operatorname{nr}}(\operatorname{\mathbb{C}}(G)/\operatorname{\mathbb{C}})$ is isomorphic to

$$B_0(G) = \bigcap_A \operatorname{Ker} \{ \operatorname{res} : H^2(G, \mathbb{Q}/\mathbb{Z}) \to H^2(A, \mathbb{Q}/\mathbb{Z}) \}$$

where A runs over all the bicyclic subgroups of G(bicyclic = cyclic or direct product of two cyclic groups).

- $\mathbb{C}(G)$: "retract rational" $\Longrightarrow B_0(G) = 0$. $B_0(G) \neq 0 \Longrightarrow \mathbb{C}(G)$: not (retract) rational over k.
- ► $B_0(G) \le H^2(G,\mu) \simeq H_2(G,\mathbb{Z})$; Schur multiplier.
- $B_0(G)$ is called Bogomolov multiplier.

Noether's problem over \mathbb{C} (2/3)

• (Chu-Kang, 2001) G is p-group $(\#G \le p^4) \Longrightarrow \mathbb{C}(G)$ is rational.

Theorem (Moravec, 2012, Amer. J. Math.)

Assume $\#G = 3^5 = 243$. $B_0(G) \neq 0 \iff G = G(243, i), 28 \le i \le 30$. In particular, $\exists 3$ groups G such that $\mathbb{C}(G)$ is not retract rational over \mathbb{C} .

▶ $\exists G: 67 \text{ groups such that } \#G = 243.$

Theorem (H-Kang-Kunyavskii, 2013, Asian J. Math.)

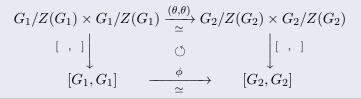
Assume $\#G = p^5$ where p is odd prime. $B_0(G) \neq 0 \iff G$ belongs to the isoclinism family Φ_{10} . In particular, $\exists \gcd(4, p-1) + \gcd(3, p-1) + 1$ (resp. $\exists 3$) groups G of order p^5 ($p \ge 5$) (resp. p = 3) s.t. $\mathbb{C}(G)$ is not retract rational over \mathbb{C} .

▶
$$\exists 2p + 61 + \gcd(4, p - 1) + 2 \gcd(3, p - 1)$$
 groups such that $\#G = p^5(p \ge 5)$. $(\exists \Phi_1, \dots, \Phi_{10})$

From the proof (1/3)

Definition (isoclinic)

p-groups G_1 and G_2 are isoclinic $\stackrel{\text{def}}{\iff}$ isom. $\theta: G_1/Z(G_1) \xrightarrow{\sim} G_2/Z(G_2)$, $\phi: [G_1, G_1] \xrightarrow{\sim} [G_2, G_2]$ such that



Invariants

- Iower central series
- # of conj. classes with precisely p^i members
- # of irr. complex rep. of G of degree p^i

From the proof (2/3)

- ▶ $#G = p^4(p > 2)$. ∃15 groups (Φ_1, Φ_2, Φ_3)
- $\#G = 2^4 = 16$. $\exists 14 \text{ groups } (\Phi_1, \Phi_2, \Phi_3)$
- ▶ $#G = p^5(p > 3)$. $\exists 2p + 61 + (4, p 1) + 2 \times (3, p 1)$ groups $(\Phi_1, \dots, \Phi_{10})$

	Φ_1	Φ_2	Φ_3	Φ_4	Φ_5	Φ_6	Φ_7	Φ_8
#	7	15	13	p+8	2	p+7	5	1
$\begin{array}{c} \#\\ (p=3) \end{array}$						7		
	Φ_9			Φ_{10}				
#	2 + (3, p - 1)			$\frac{1 + (4, p - 1) + (3, p - 1)}{3}$				
(p=3)				3				

[HKK, Question 1.11] (2013) (arXiv:1202.5812)

Let G_1 and G_2 be isoclinic *p*-groups. Is it true that the fields $k(G_1)$ and $k(G_2)$ are stably isomorphic, or, at least, that $B_0(G_1)$ is isomorphic to $B_0(G_2)$?

Theorem (Moravec, 2013) (arXiv:1203.2422)

 G_1 and G_2 are isoclinic $\Longrightarrow B_0(G_1) \simeq B_0(G_2)$.

Theorem (Bogomolov-Böhning, 2013) (arXiv: 1204.4747)

 G_1 and G_2 are isoclinic $\Longrightarrow \mathbb{C}(G_1)$ and $\mathbb{C}(G_2)$ are stably isomorphic.

Proof (Φ_{10}) : $B_0(G) \neq 0$

Lemma 1. $N \lhd G$.

(i) tr: H¹(N, Q/Z)^G → H²(G/N, Q/Z) is not surjective where tr is the transgression map.
(ii) AN/N ≤ G/N is cyclic (∀A ≤ G; bicyclic). ⇒ B₀(G) ≠ 0.

Proof. Consider the Hochschild-Serre 5-term exact sequence

 $0 \to H^1(G/N, \mathbb{Q}/\mathbb{Z}) \to H^1(G, \mathbb{Q}/\mathbb{Z}) \to H^1(N, \mathbb{Q}/\mathbb{Z})^G$ $\xrightarrow{\mathrm{tr}} H^2(G/N, \mathbb{Q}/\mathbb{Z}) \xrightarrow{\psi} H^2(G, \mathbb{Q}/\mathbb{Z})$

where ψ is an inflation map.

(i) $\implies \psi$ is not zero-map \implies Image $(\psi) \neq 0$. We will show that Image $(\psi) \subset B_0(G)$ by (ii).

It suffices to show that $H^2(G/N, \mathbb{Q}/\mathbb{Z}) \xrightarrow{\psi} H^2(G, \mathbb{Q}/\mathbb{Z}) \xrightarrow{\text{res}} H^2(A, \mathbb{Q}/\mathbb{Z})$ is zero-map ($\forall A \leq G$: bicyclic). Consider the following commutative diagram:

where ψ_0 is the restriction map, ψ_1 is the inflation map, $\widetilde{\psi}$ is the natural isomorphism.

(ii)
$$\Longrightarrow AN/N \simeq C_m \Longrightarrow H^2(C_m, \mathbb{Q}/\mathbb{Z}) = 0.$$

 $\Longrightarrow \psi_0 \text{ is zero-map.}$
 $\Longrightarrow \operatorname{res} \circ \psi \colon H^2(G/N, \mathbb{Q}/\mathbb{Z}) \to H^2(A, \mathbb{Q}/\mathbb{Z}) \text{ is zero-map.}$
 $\therefore \operatorname{Image}(\psi) \subset B_0(G)$
 $\operatorname{Image}(\psi) \subset B_0(G) \text{ and } \operatorname{Image}(\psi) \neq 0 \text{ (by (i))} \Longrightarrow B_0(G) \neq 0.$

Proof (Φ_6) : $B_0(G) = 0$

•
$$G = \Phi_6(211)a = \langle f_1, f_2, f_0, h_1, f_2 \rangle, f_1^p = h_1, f_2^p = h_2,$$

 $Z(G) = \langle h_1, h_2 \rangle, f_0^p = h_1^p = h_2^p = 1$
 $[f_1, f_2] = f_0, [f_0, f_1] = h_1, [f_0, f_2] = h_2$

Hochschild-Serre 5-term exact sequence:

 $0 \to H^1(G/N, \mathbb{Q}/\mathbb{Z}) \to H^1(G, \mathbb{Q}/\mathbb{Z}) \to H^1(N, \mathbb{Q}/\mathbb{Z})^G \xrightarrow{\mathrm{tr}} H^2(G/N, \mathbb{Q}/\mathbb{Z}) \xrightarrow{\psi} H^2(G, \mathbb{Q}/\mathbb{Z})$

Proof (Φ_6) : $B_0(G) = 0$

н

•
$$G = \Phi_6(211)a = \langle f_1, f_2, f_0, h_1, f_2 \rangle, f_1^p = h_1, f_2^p = h_2,$$

 $Z(G) = \langle h_1, h_2 \rangle, f_0^p = h_1^p = h_2^p = 1$
 $[f_1, f_2] = f_0, [f_0, f_1] = h_1, [f_0, f_2] = h_2$
lochschild-Serre 5-term exact sequence:

• Explicit formula for λ is given by Dekimpe-Hartl-Wauters (2012)

$$N := \langle f_1, f_0, h_1, h_2 \rangle \Longrightarrow G/N \simeq C_p \Longrightarrow H^2(G/N, \mathbb{Q}/\mathbb{Z}) = 0$$

- $\blacktriangleright B_0(G) \subset H^2(G, \mathbb{Q}/\mathbb{Z})_1$
- We should show $H^2(G, \mathbb{Q}/\mathbb{Z})_1 = 0$ ($\iff \lambda$: injective)

Noether's problem over \mathbb{C} (2/3)

Theorem (H-Kang-Kunyavskii, 2013, Asian J. Math.)

Assume $\#G = p^5$ where p is odd prime. $B_0(G) \neq 0 \iff G$ belongs to the isoclinism family Φ_{10} .

Theorem (Chu-H-Hu-Kang, 2015, J. Algebra) $\#G = 3^5 = 243$

If $B_0(G) = 0$, then $\mathbb{C}(G)$ is rational over \mathbb{C} except for Φ_7 .

- Rationality of Φ_7 is unknown.
- Φ_5 and Φ_7 are very similar: $C = 1 \ (\Phi_5)$, $C = \omega \ (\Phi_7)$.

 $\mathbb{C}(G)$ is stably isomorphic to $\mathbb{C}(z_1,z_2,z_3,z_4,z_5,z_6,z_7,z_8,z_9)^{\langle f_1,f_2\rangle}$

$$\begin{split} f_1 : z_1 &\mapsto z_2, z_2 \mapsto \frac{1}{z_1 z_2}, z_3 \mapsto z_4, z_4 \mapsto \frac{1}{z_3 z_4}, \\ z_5 &\mapsto \frac{z_5}{z_1^2 z_3}, z_6 \mapsto \frac{z_1 z_6}{z_3}, z_7 \mapsto z_8, z_8 \mapsto \frac{1}{z_7 z_8}, z_9 \mapsto \frac{z_4 z_9}{z_1}, \\ f_2 : z_1 \mapsto z_3, z_2 \mapsto z_4, z_3 \mapsto \frac{1}{z_1 z_3}, z_4 \mapsto \frac{1}{z_2 z_4}, \\ z_5 \mapsto z_6, z_6 \mapsto \frac{1}{z_5 z_6}, z_7 \mapsto C \frac{z_4 z_7}{z_3}, z_8 \mapsto C \frac{z_8}{z_3 z_4^2}, z_9 \mapsto \frac{z_4 z_9}{z_1}. \end{split}$$

Akinari Hoshi (Niigata University)

Rationality problem for fields of invariants

Unramified cohomology (1/3)

Colliot-Thélène and Ojanguren (1989) generalized the notion of the unramified Brauer group $\operatorname{Br}_{\operatorname{nr}}(K/\mathbb{C})$ to the unramified cohomology $H^i_{\operatorname{nr}}(K/\mathbb{C},\mu_n^{\otimes j})$ of degree $i \geq 1$:

Definition (Colliot-Thélène and Ojanguren, 1989, Invent. Math.)

Let K/\mathbb{C} be a function field, that is finitely generated as a field over \mathbb{C} . The unramified cohomology group $H^i_{\mathrm{nr}}(K/\mathbb{C},\mu_n^{\otimes j})$ of K over \mathbb{C} of degree $i \geq 1$ is defined to be

$$H^{i}_{\mathrm{nr}}(K/\mathbb{C},\mu_{n}^{\otimes j}) = \bigcap_{R} \operatorname{Image} \{ H^{i}_{\mathrm{\acute{e}t}}(R,\mu_{n}^{\otimes j}) \to H^{i}_{\mathrm{\acute{e}t}}(K,\mu_{n}^{\otimes j}) \}$$

where R runs over all the discrete valuation rings R of rank one such that $\mathbb{C} \subset R \subset K$ and K is the quotient field of R.

• Note that ${}_{n}\mathrm{Br}_{\mathrm{nr}}(K/\mathbb{C}) \simeq H^{2}_{\mathrm{nr}}(K/\mathbb{C},\mu_{n}).$

Proposition (Colliot-Thélène and Ojanguren, 1989)

If K and L are stably \mathbb{C} -isomorphic, then $H^i_{\mathrm{nr}}(K/\mathbb{C}, \mu_n^{\otimes j}) \xrightarrow{\sim} H^i_{\mathrm{nr}}(L/\mathbb{C}, \mu_n^{\otimes j}).$ In particular, K is stably \mathbb{C} -rational, then $H^i_{\mathrm{nr}}(K/\mathbb{C}, \mu_n^{\otimes j}) = 0.$

- Moreover, if K is retract \mathbb{C} -rational, then $H^i_{\mathrm{nr}}(K/\mathbb{C}, \mu_n^{\otimes j}) = 0$.
- ▶ CTO (1989) \exists \mathbb{C} -unirational field K s.t. $H^3_{nr}(K/\mathbb{C}, \mu_2^{\otimes 3}) \neq 0$.
- Peyre (1993) gave a sufficient condition for $H^i_{nr}(K/\mathbb{C}, \mu_p^{\otimes i}) \neq 0$:
- ▶ $\exists K \text{ s.t. } H^3_{\mathrm{nr}}(K/\mathbb{C},\mu_p^{\otimes 3}) \neq 0 \text{ and } \mathrm{Br}_{\mathrm{nr}}(K/\mathbb{C}) = 0;$
- ► $\exists K \text{ s.t. } H^4_{\mathrm{nr}}(K/\mathbb{C}, \mu_2^{\otimes 4}) \neq 0 \text{ and } \mathrm{Br}_{\mathrm{nr}}(K/\mathbb{C}) = 0.$

Unramified cohomology (2/3)

Take the direct limit with respect to n:

$$H^{i}(K/\mathbb{C}, \mathbb{Q}/\mathbb{Z}(j)) = \lim_{\overrightarrow{n}} H^{i}(K/\mathbb{C}, \mu_{n}^{\otimes j})$$

and we also define the unramified cohomology group

$$H^{i}_{\mathrm{nr}}(K/\mathbb{C}, \mathbb{Q}/\mathbb{Z}(j)) = \bigcap_{R} \mathrm{Image}\{H^{i}_{\mathrm{\acute{e}t}}(R, \mathbb{Q}/\mathbb{Z}(j)) \to H^{i}_{\mathrm{\acute{e}t}}(K, \mathbb{Q}/\mathbb{Z}(j))\}.$$

Then we have $\operatorname{Br}_{\operatorname{nr}}(K/\mathbb{C}) \simeq H^2_{\operatorname{nr}}(K/\mathbb{C}, \mathbb{Q}/\mathbb{Z}(1)).$

• The case
$$K = \mathbb{C}(G)$$
:

Theorem (Peyre, 2008, Invent. Math.)

Let p be odd prime.

 $\exists p$ -group G of order p^{12} such that $B_0(G) = 0$ and $H^3_{nr}(\mathbb{C}(G), \mathbb{Q}/\mathbb{Z}) \neq 0$. In particular, $\mathbb{C}(G)$ is not (retract, stably) \mathbb{C} -rational. Asok (2013) generalized Peyre's argument (1993):

Theorem (Asok, 2013, Compos. Math.)

(1) For any n > 0, \exists a smooth projective complex variety X that is \mathbb{C} -unirational, for which $H_{\mathrm{nr}}^i(\mathbb{C}(X), \mu_2^{\otimes i}) = 0$ for each i < n, yet $H_{\mathrm{nr}}^n(\mathbb{C}(X), \mu_2^{\otimes n}) \neq 0$, and so X is not \mathbb{A}^1 -connected, nor (retract, stably) \mathbb{C} -rational; (2) For any prime l and any $n \ge 2$, \exists a smooth projective rationally connected complex variety Y such that $H_{\mathrm{nr}}^n(\mathbb{C}(Y), \mu_l^{\otimes n}) \neq 0$. In particular, Y is not \mathbb{A}^1 -connected, nor (retract, stably) \mathbb{C} -rational.

- Namely, the triviality of the unramified Brauer group or the unramified cohomology of higher degree is just a necessary condition of C-rationality of fields.
- It is interesting to consider an analog of above Theorem for quotient varieties V/G, e.g. C(V_{reg}/G) = C(G).

Theorem (Peyre, 2008, Invent. Math.)

Let p be odd prime. $\exists p$ -group G of order p^{12} such that $B_0(G) = 0$ and $H^3_{nr}(\mathbb{C}(G), \mathbb{Q}/\mathbb{Z}) \neq 0$. In particular, $\mathbb{C}(G)$ is not (retract, stably) \mathbb{C} -rational.

Using Peyre's method, we improve this result:

Theorem (H-Kang-Yamasaki, 2016, J. Algebra)

Let p be odd prime. $\exists p$ -group G of order p^9 such that $B_0(G) = 0$ and $H^3_{nr}(\mathbb{C}(G), \mathbb{Q}/\mathbb{Z}) \neq 0$. In particular, $\mathbb{C}(G)$ is not (retract, stably) \mathbb{C} -rational.

Noether's problem over ${\mathbb C}$ for $2\mbox{-}{\rm groups}$

- ▶ (Chu-Kang, 2001) G is p-group $(\#G \le p^4) \Longrightarrow \mathbb{C}(G)$ is rational.
- ► (Chu-Hu-Kang-Prokhorov, 2008) $\#G = 32 = 2^5 \implies \mathbb{C}(G)$ is rational.
- ► $\exists 267 \text{ groups } G \text{ of order } 64 = 2^6 \text{ which are classified into } 27 \text{ isoclinism families } \Phi_1, \ldots, \Phi_{27}.$

Theorem (Chu-Hu-Kang-Kunyavskii, 2010) $\#G = 64 = 2^6$

(1) $B_0(G) \neq 0 \iff G$ belongs to Φ_{16} . ($\exists 9 \text{ such } G$'s) Moreover, if $B_0(G) \neq 0$, then $B_0(G) \simeq C_2$. (2) If $B_0(G) = 0$, then $\mathbb{C}(G)$ is rational except for Φ_{13} . ($\exists 5 \text{ such } G$'s)

- ► ([CHKK10], [HY14]) $(B_0(G) = 0$, but rationality unknown) If G belongs to Φ_{13} , then $\mathbb{C}(G)$ is stably \mathbb{C} -isomorphic to $L^{(0)}_{\mathbb{C}}$.
- ([CHKK10], [HKK14]) ($B_0(G) \simeq C_2$, not retract rational) If G belongs to Φ_{16} , then $\mathbb{C}(G)$ is stably \mathbb{C} -isomorphic to $L_{\mathbb{C}}^{(1)}$.

- ► ([CHKK10], [HY14]) $(B_0(G) = 0$, but rationality unknown) If G belongs to Φ_{13} , then $\mathbb{C}(G)$ is stably \mathbb{C} -isomorphic to $L_{\mathbb{C}}^{(0)}$.
- ► ([CHKK10], [HKK14]) ($B_0(G) \simeq C_2$, not retract rational) If G belongs to Φ_{16} , then $\mathbb{C}(G)$ is stably \mathbb{C} -isomorphic to $L_{\mathbb{C}}^{(1)}$.

Definition (The fields $L_{\mathbb{C}}^{(0)}$ and $L_{\mathbb{C}}^{(1)}$)

(i) The field $L^{(0)}_{\mathbb{C}}$ is defined to be $\mathbb{C}(X_1, X_2, X_3, X_4, X_5, X_6)^H$ where $H = \langle \sigma_1, \sigma_2 \rangle \simeq C_2 \times C_2$ act on $\mathbb{C}(X_1, X_2, X_3, X_4, X_5, X_6)$ by

$$\sigma_1: X_1 \mapsto X_3, \ X_2 \mapsto \frac{1}{X_1 X_2 X_3}, \ X_3 \mapsto X_1, \ X_4 \mapsto X_6, \ X_5 \mapsto \frac{1}{X_4 X_5 X_6}, \ X_6 \mapsto X_4,$$

$$\sigma_2: X_1 \mapsto X_2, \ X_2 \mapsto X_1, \ X_3 \mapsto \frac{1}{X_1 X_2 X_3}, \ X_4 \mapsto X_5, \ X_5 \mapsto X_4, \ X_6 \mapsto \frac{1}{X_4 X_5 X_6}.$$

(ii) The field $L_{\mathbb{C}}^{(1)}$ is defined to be $\mathbb{C}(X_1, X_2, X_3, X_4)^{\langle \tau \rangle}$ where $\langle \tau \rangle \simeq C_2$ acts on $\mathbb{C}(X_1, X_2, X_3, X_4)$ by

$$\tau: X_1 \mapsto -X_1, \ X_2 \mapsto \frac{X_4}{X_2}, \ X_3 \mapsto \frac{(X_4 - 1)(X_4 - X_1^2)}{X_3}, \ X_4 \mapsto X_4.$$

- ► ([CHKK10], [HY14]) $(B_0(G) = 0$, but rationality unknown) If G belongs to Φ_{13} , then $\mathbb{C}(G)$ is stably \mathbb{C} -isomorphic to $L_{\mathbb{C}}^{(0)}$.
- ► ([CHKK10], [HKK14]) $(B_0(G) \simeq C_2$, not retract rational) If G belongs to Φ_{16} , then $\mathbb{C}(G)$ is stably \mathbb{C} -isomorphic to $L_{\mathbb{C}}^{(1)}$.

$$\begin{array}{l} \mathbf{L}^{(0)}_{\mathbb{C}} = \mathbb{C}(z_1, z_2, z_3, z_4, u_4, u_5, u_6) \text{ where} \\ (z_1^2 - a)(z_4^2 - d) = (z_2^2 - b)(z_3^2 - c), \\ a = u_4(u_4 - 1), b = u_4 - 1, c = u_4(u_4 - u_6^2), d = u_5^2(u_4 - u_6^2). \\ \end{array} \\ \begin{array}{l} \mathbf{L}^{(0)}_{\mathbb{C}} = \mathbb{C}(u, v, t, w_3, w_4, w_5, w_6) \text{ where} \\ u^2 - tv^2 = -\left(w_4^2(w_5^2 - 1)t^2 + (w_3^2 - w_3^2w_5^2 + 1)t - w_5^2\right) \\ & \cdot \left(w_4^2w_6^2t^2 - (w_4^2 + w_3^2w_6^2)t + w_3^2 - w_6^2 + 1\right). \\ \end{array} \\ \begin{array}{l} \mathbf{L}^{(0)}_{\mathbb{C}} = \mathbb{C}(m_0, \dots, m_6) \text{ where} \\ m_0^2 = (4m_3 + m_3m_4^2 + m_4^2)(m_3 - m_5^2 + 1) \\ & \cdot (m_1^2m_3 + m_6^2 - 1)(4m_3 + m_1^2m_2^2m_3 + m_2^2m_6^2). \\ \end{array} \\ \begin{array}{l} \mathbf{L}^{(1)}_{\mathbb{C}} = \mathbb{C}(u, v, t, w_3, w_4) \text{ where} \\ u^2 - tv^2 = (tw_4^2 - w_3^2 + 1)(t + tw_4^2 - w_3^2). \end{array} \end{array}$$

► ∃2328 groups G of order 128 = 2⁷ which are classified into 115 isoclinism families Φ₁,..., Φ₁₁₅.

Theorem (Moravec, 2012, Amer. J. Math.) $\#G = 128 = 2^7$

 $B_0(G) \neq 0$ if and only if G belongs to the isoclinism family Φ_{16} , Φ_{30} , Φ_{31} , Φ_{37} , Φ_{39} , Φ_{43} , Φ_{58} , Φ_{60} , Φ_{80} , Φ_{106} or Φ_{114} . If $B_0(G) \neq 0$, then

$$B_0(G) \simeq \begin{cases} C_2 & (\Phi_{16}, \Phi_{31}, \Phi_{37}, \Phi_{39}, \Phi_{43}, \Phi_{58}, \Phi_{60}, \Phi_{80}, \Phi_{106}, \Phi_{114}) \\ C_2 \times C_2 & (\Phi_{30}). \end{cases}$$

In particular, $\mathbb{C}(G)$ is not (retract, stably) \mathbb{C} -rational.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	Total
Family	Φ_{16}	Φ_{31}	Φ_{37}	Φ_{39}	Φ_{43}	Φ_{58}	Φ_{60}	Φ_{80}	Φ_{106}	Φ_{114}	Φ_{30}	
$B_0(G)$					C_2						$C_2 \times C_2$	
# G's	48	55	18	6	26	20	10	9	2	2	34	220

Q. Birational classification of $\mathbb{C}(G)$? In particular, what happens when $B_0(G) \neq 0$? How many $\mathbb{C}(G)$'s exist up to stably \mathbb{C} -isomorphism?

Theorem (H, 2016, J. Algebra) $\#G = 128 = 2^7$

Assume that $B_0(G) \neq 0$. Then $\mathbb{C}(G)$ and $L_{\mathbb{C}}^{(m)}$ are stably \mathbb{C} -isomorphic where

$$m = \begin{cases} 1 & \text{if } G \text{ belongs to } \Phi_{16}, \Phi_{31}, \Phi_{37}, \Phi_{39}, \Phi_{43}, \Phi_{58}, \Phi_{60} \text{ or } \Phi_{80}, \\ 2 & \text{if } G \text{ belongs to } \Phi_{106} \text{ or } \Phi_{114}, \\ 3 & \text{if } G \text{ belongs to } \Phi_{30}. \end{cases}$$

In particular, $\operatorname{Br}_{\operatorname{nr}}(L_{\mathbb{C}}^{(1)}) \simeq \operatorname{Br}_{\operatorname{nr}}(L_{\mathbb{C}}^{(2)}) \simeq C_2$ and $\operatorname{Br}_{\operatorname{nr}}(L_{\mathbb{C}}^{(3)}) \simeq C_2 \times C_2$ and hence the fields $L_{\mathbb{C}}^{(1)}$, $L_{\mathbb{C}}^{(2)}$ and $L_{\mathbb{C}}^{(3)}$ are not (retract, stably) \mathbb{C} -rational.

- L⁽¹⁾_ℂ ≈ L⁽³⁾_ℂ, L⁽²⁾_ℂ ≈ L⁽³⁾_ℂ (not stably ℂ-isomorphic) because their unramified Brauer groups are not isomorphic.
- However, we do not know whether $L_{\mathbb{C}}^{(1)} \sim L_{\mathbb{C}}^{(2)}$.
- ▶ If not, evaluate the higher unramified cohomologies $H^i_{nr}(i \ge 3)$?
- ▶ BUT, a useful formula like Bogomolov's formula for B₀(G) is unknown for higher unramified cohomologies.

Definition (The fields $L_{\mathbb{C}}^{(2)}$ and $L_{\mathbb{C}}^{(3)}$)

(i) The field $L_{\mathbb{C}}^{(2)}$ is defined to be $\mathbb{C}(X_1, X_2, X_3, X_4, X_5, X_6)^{\langle \rho \rangle}$ where $\langle \rho \rangle \simeq C_4$ acts on $\mathbb{C}(X_1, X_2, X_3, X_4, X_5, X_6)$ by

$$\rho: X_1 \mapsto X_2, X_2 \mapsto -X_1, X_3 \mapsto X_4, X_4 \mapsto X_3,$$
$$X_5 \mapsto X_6, X_6 \mapsto \frac{(X_1^2 X_2^2 - 1)(X_1^2 X_3^2 + X_2^2 - X_3^2 - 1)}{X_5}$$

(ii) The field $L_{\mathbb{C}}^{(3)}$ is defined to be $\mathbb{C}(X_1, X_2, X_3, X_4, X_5, X_6, X_7)^{\langle \lambda_1, \lambda_2 \rangle}$ where $\langle \lambda_1, \lambda_2 \rangle \simeq C_2 \times C_2$ acts on $\mathbb{C}(X_1, X_2, X_3, X_4, X_5, X_6, X_7)$ by

$$\begin{split} \lambda_1 &: X_1 \mapsto X_1, X_2 \mapsto \frac{X_1}{X_2}, X_3 \mapsto \frac{1}{X_1 X_3}, X_4 \mapsto \frac{X_2 X_4}{X_1 X_3}, \\ &X_5 \mapsto -\frac{X_1 X_6^2 - 1}{X_5}, X_6 \mapsto -X_6, X_7 \mapsto X_7, \\ \lambda_2 &: X_1 \mapsto \frac{1}{X_1}, X_2 \mapsto X_3, X_3 \mapsto X_2, X_4 \mapsto \frac{(X_1 X_6^2 - 1)(X_1 X_7^2 - 1)}{X_4}, \\ &X_5 \mapsto -X_5, X_6 \mapsto -X_1 X_6, X_7 \mapsto -X_1 X_7. \end{split}$$

Notion of "quasi-monomial" action is defined in [HKK] J. Algebra (2014).

Theorem (H-Kang-Kitayama) 1-dim. quasi-monomial action

(1) purely quasi-monomial action $\implies K(x)^G$ is rational over k. (2) $K(x)^G$ is rational over k except for the case: $\exists N \leq G$ such that (i) $G/N = \langle \sigma \rangle \simeq C_2$; (ii) $K(x)^N = k(\alpha)(y), \alpha^2 = a \in K^{\times}, \sigma(\alpha) = -\alpha$ (if char $k \neq 2$), $\alpha^2 + \alpha = a \in K, \sigma(\alpha) = \alpha + 1$ (if char k = 2); (iii) $\sigma \cdot y = b/y$ for some $b \in k^{\times}$. For the exceptional case, $K(x)^G = k(\alpha)(y)^{G/N}$ is rational over $k \iff$ Hilbert symbol $(a, b)_k = 0$ (if char $k \neq 2$), $[a, b)_k = 0$ (if char k = 2). Moreover, $K(x)^G$ is not rational over $k \implies$ not unirational over k. Theorem (H-Kang-Kitayama) 2-dim. purely quasi-monomial action

 $N = \{ \sigma \in G \mid \sigma(x) = x, \ \sigma(y) = y \}, \ H = \{ \sigma \in G \mid \sigma(\alpha) = \alpha (\forall \alpha \in K) \}.$ $K(x,y)^G$ is rational over k except for: (1) char $k \neq 2$ and (2) (i) $(G/N, HN/N) \simeq (C_4, C_2)$ or (ii) (D_4, C_2) . For the exceptional case, we have k(x, y) = k(u, v): (i) $(G/N, HN/N) \simeq (C_4, C_2),$ $K^N = k(\sqrt{a}), \ G/N = \langle \sigma \rangle \simeq C_4, \ \sigma : \sqrt{a} \mapsto -\sqrt{a}, \ u \mapsto \frac{1}{u}, \ v \mapsto -\frac{1}{v};$ (ii) $(G/N, HN/N) \simeq (D_4, C_2);$ $K^N = k(\sqrt{a}, \sqrt{b}), \ G/N = \langle \sigma, \tau \rangle \simeq D_4, \ \sigma : \sqrt{a} \mapsto -\sqrt{a}, \ \sqrt{b} \mapsto \sqrt{b},$ $u \mapsto \frac{1}{u}, v \mapsto -\frac{1}{v}, \tau : \sqrt{a} \mapsto \sqrt{a}, \sqrt{b} \mapsto -\sqrt{b}, u \mapsto u, v \mapsto -v.$ Case (i), $K(x,y)^G$ is rational over $k \iff$ Hilbert symbol $(a,-1)_k = 0$. Case (ii), $K(x,y)^G$ is rational over $k \iff$ Hilbert symbol $(a, -b)_k = 0$. Moreover, $K(x, y)^G$ is not rational over $k \Longrightarrow$ $Br(k) \neq 0$ and $K(x, y)^G$ is not unirational over k.

Galois-theoretic interpretation:

(i) rational over $k \iff k(\sqrt{a})$ may be embedded into C_4 -ext. of k. (ii) rational over $k \iff k(\sqrt{a},\sqrt{b})$ may be embedded into D_4 -ext. of k.

Theorem (H-Kang-Kitayama), 4-dim. purely monomial

Let M be a G-lattice with $\operatorname{rank}_{\mathbb{Z}} M = 4$ and G act on k(M) by purely monomial k-automorphisms. If M is decomposable, i.e. $M = M_1 \oplus M_2$ as $\mathbb{Z}[G]$ -modules where $1 \leq \operatorname{rank}_{\mathbb{Z}} M_1 \leq 3$, then $k(M)^G$ is rational over k.

- ▶ When rank_ℤM₁ = 1, rank_ℤM₂ = 3, it is easy to see k(M)^G is rational.
- ▶ When $\operatorname{rank}_{\mathbb{Z}} M_1 = \operatorname{rank}_{\mathbb{Z}} M_2 = 2$, we may apply Theorem of 2-dim. to $k(M) = k(x_1, x_2, y_1, y_2) = k(x_1, x_2)(y_1, y_2) = K(y_1, y_2)$.

Theorem (H-Kang-Kitayama) char $k \neq 2$

Let $C_2 = \langle \tau \rangle$ act on the rational function field $k(x_1, x_2, x_3, x_4)$ by *k*-automorphisms defined as

$$\tau: x_1 \mapsto -x_1, \ x_2 \mapsto \frac{x_4}{x_2}, \ x_3 \mapsto \frac{(x_4-1)(x_4-x_1^2)}{x_3}, \ x_4 \mapsto x_4.$$

Then $k(x_1, x_2, x_3, x_4)^{C_2}$ is not retract rational over k. In particular, it is not rational over k.

Theorem A (H-Kang-Kitayama) char $k \neq 2$, 5-dim. purely monomial

Let $D_4=\langle\rho,\tau\rangle$ act on the rational function field $k(x_1,x_2,x_3,x_4,x_5)$ by k-automorphisms defined as

$$\rho: x_1 \mapsto x_2, \ x_2 \mapsto x_1, \ x_3 \mapsto \frac{1}{x_1 x_2 x_3}, \ x_4 \mapsto x_5, \ x_5 \mapsto \frac{1}{x_4}, \tau: x_1 \mapsto x_3, \ x_2 \mapsto \frac{1}{x_1 x_2 x_3}, \ x_3 \mapsto x_1, \ x_4 \mapsto x_5, \ x_5 \mapsto x_4.$$

Then $k(x_1, x_2, x_3, x_4, x_5)^{D_4}$ is not retract rational over k. In particular, it is not rational over k.

Theorem (H-Kang-Kitayama), 5-dim. purely monomial

Let M be a G-lattice and G act on k(M) by purely monomial k-automorphisms. Assume that (i) $M = M_1 \oplus M_2$ as $\mathbb{Z}[G]$ -modules where $\operatorname{rank}_{\mathbb{Z}} M_1 = 3$ and $\operatorname{rank}_{\mathbb{Z}} M_2 = 2$, (ii) either M_1 or M_2 is a faithful G-lattice. Then $k(M)^G$ is rational over k except for the case as in Theorem A.

• we may apply Theorem of 2-dim. to $k(M) = k(x_1, x_2, x_3, y_1, y_2) = k(x_1, x_2, x_3)(y_1, y_2) = K(y_1, y_2).$

§4. Rationality problem for algebraic tori (2-dim., 3-dim.)

 $G \simeq \operatorname{Gal}(K/k) \curvearrowright K(x_1, \ldots, x_n)$: purely quasi-monomial, $K(x_1, \ldots, x_n)^G$ may be regarded as the function field of algebraic torus T over k which splits over K $(T \otimes_k K \simeq \mathbb{G}_m^n)$.

- ▶ T is unirational over k, i.e. $K(x_1, \ldots, x_n)^G \subset k(t_1, \ldots, t_n)$.
- ▶ $\exists 13 \mathbb{Z}$ -coujugacy subgroups $G \leq GL_2(\mathbb{Z})$.

Theorem (Voskresenskii, 1967) 2-dim. algebraic tori T

T is rational over k.

▶ $\exists 73 \mathbb{Z}$ -coujugacy subgroups $G \leq GL_3(\mathbb{Z})$.

Theorem (Kunyavskii, 1990) 3-dim. algebraic tori T

(i) T is rational over $k \iff T$ is stably rational over k

- $\iff T$ is retract rational over $k \iff \exists G: 58 \text{ groups};$
- (ii) T is not rational over $k \iff T$ is not stably rational over k

 \iff T is not retract rational over $k \iff \exists G: 15$ groups.

Rationality of algebraic tori (4-dim., 5-dim.)

▶ $\exists 710 \ \mathbb{Z}$ -coujugacy subgroups $G \leq \operatorname{GL}_4(\mathbb{Z})$.

Theorem (H-Yamasaki, arXiv:1210.4525) 4-dim. algebraic tori T

- (i) T is stably rational over $k \iff \exists G: 487 \text{ groups};$
- (ii) T is not stably but retract rational over $k \iff \exists G: 7 \text{ groups};$
- (iii) T is not retract rational over $k \iff \exists G: 216$ groups.
 - ▶ $\exists 6079 \ \mathbb{Z}$ -coujugacy subgroups $G \leq \operatorname{GL}_5(\mathbb{Z})$.

Theorem (H-Yamasaki, arXiv:1210.4525) 5-dim. algebraic tori T

(i) T is stably rational over $k \iff \exists G: 3051$ groups; (ii) T is not stably but retract rational over $k \iff \exists G: 25$ groups; (iii) T is not retract rational over $k \iff \exists G: 3003$ groups.

- (Voskresenskii's conjecture) any stably rational torus is rational.
- ▶ $\exists 85308 \ \mathbb{Z}$ -coujugacy subgroups $G \leq \operatorname{GL}_6(\mathbb{Z})!$

$\S3$. Proof: Flabby (Flasque) resolution (1/2)

- ► The function field of *n*-dim. $T \xrightarrow{\text{identified}} L(M)^G$, $G \leq \text{GL}(n, \mathbb{Z})$
- M: G-lattice, i.e. f.g. \mathbb{Z} -free $\mathbb{Z}[G]$ -module.

Definition

(i) M is permutation $\stackrel{\text{def}}{\iff} M \simeq \bigoplus_{1 \le i \le m} \mathbb{Z}[G/H_i].$ (ii) M is stably permutation $\stackrel{\text{def}}{\iff} M \oplus \exists P \simeq P', P, P'$: permutation. (iii) M is invertible $\stackrel{\text{def}}{\iff} M \oplus \exists M' \simeq P$: permutation. (iv) M is coflabby $\stackrel{\text{def}}{\iff} H^1(H, M) = 0 \ (\forall H \le G).$ (v) M is flabby $\stackrel{\text{def}}{\iff} \widehat{H}^{-1}(H, M) = 0 \ (\forall H \le G).$ (\widehat{H} : Tate cohomology)

- "permutation"
 - \implies "stably permutation"
 - \implies "invertible"
 - \implies "flabby and coflabby".

Proof: Flabby (Flasque) resolution (2/2)

Commutative monoid \mathcal{M}

 $M_1 \sim M_2 \iff M_1 \oplus P_1 \simeq M_2 \oplus P_2 (\exists P_1, \exists P_2: \text{ permutation}).$ $\implies \text{ commutative monoid } \mathcal{M}: [M_1] + [M_2] := [M_1 \oplus M_2], \ 0 = [P].$

Theorem (Endo-Miyata, 1974, Colliot-Thélène-Sansuc, 1977)

 $\exists P$: permutation, $\exists F$: flabby such that

 $0 \to M \to P \to F \to 0$: flabby resolution of M.

 $[M]^{fl} := [F], \quad [M]^{fl} \text{ is invertible } \stackrel{\text{def}}{\Longleftrightarrow} \ [M]^{fl} = [E] \ (\exists E: \text{ invertible}).$

Theorem (Endo-Miyata, 1973, Voskresenskii, 1974, Saltman, 1984) (EM73) $[M]^{fl} = 0 \iff L(M)^G$ is stably rational over k. (Vos74) $[M]^{fl} = [M']^{fl} \iff L(M)^G(x_1, \dots, x_m) \simeq L(M')^G(y_1, \dots, y_n)$. (Sal84) $[M]^{fl}$ is invertible $\iff L(M)^G$ is retract rational over k.

Our contribution

- ▶ We give a procedure to compute a flabby resolution of M, in particular [M]^{fl} = [F], effectively (with smaller rank after base change) by computer software GAP.
- The function IsFlabby (resp. IsCoflabby) may determine whether M is flabby (resp. coflabby).
- ▶ The function IsInvertibleF may determine whether $[M]^{fl} = [F]$ is invertible (\leftrightarrow whether $L(M)^G$ (resp. T) is retract rational).
- ► We provide some functions for checking a possibility of isomorphism

$$\left(\bigoplus_{i=1}^{r} a_i \mathbb{Z}[G/H_i]\right) \oplus a_{r+1}F \simeq \bigoplus_{i=1}^{r} b'_i \mathbb{Z}[G/H_i]$$
(*)

by computing some invariants (e.g. trace, \widehat{Z}^0 , \widehat{H}^0) of both sides. • [HY, Example 10.7]. $G \simeq S_5 \leq \operatorname{GL}(5, \mathbb{Z})$ with number (5, 946, 4) $\Longrightarrow \operatorname{rank}(F) = 17$ and $\operatorname{rank}(*) = 88$ holds $\Longrightarrow [F] = 0 \Longrightarrow L(M)^G$ (resp. T) is stably rational over k.

Application

Corollary ($[F] = [M]^{fl}$: invertible case, $G \simeq S_5, F_{20}$)

 $\exists T, T'$; 4-dim. not stably rational algebraic tori over k such that $T \not\sim T'$ (birational) and $T \times T'$: 8-dim. stably rational over k. $\because -[M]^{fl} = [M']^{fl} \neq 0.$

Prop. ([HY], Krull-Schmidt fails for permutation D_6 -lattices) {1}, $C_2^{(1)}$, $C_2^{(2)}$, $C_2^{(3)}$, C_3 , C_2^2 , C_6 , $S_3^{(1)}$, $S_3^{(2)}$, D_6 : conj. subgroups of D_6 . $\mathbb{Z}[D_6] \oplus \mathbb{Z}[D_6/C_2^2]^{\oplus 2} \oplus \mathbb{Z}[D_6/C_6] \oplus \mathbb{Z}[D_6/S_3^{(1)}] \oplus \mathbb{Z}[D_6/S_3^{(2)}]$ $\simeq \mathbb{Z}[D_6/C_2^{(1)}] \oplus \mathbb{Z}[D_6/C_2^{(2)}] \oplus \mathbb{Z}[D_6/C_2^{(3)}] \oplus \mathbb{Z}[D_6/C_3] \oplus \mathbb{Z}^{\oplus 2}.$

• D_6 is the smallest example exhibiting the failure of K-S:

Theorem (Dress, 1973)

Krull-Schmidt holds for permutation G-lattices $\iff G/O_p(G)$ is cyclic where $O_p(G)$ is the maximal normal p-subgroup of G.

Krull-Schmidt and Direct sum cancelation

Theorem (Hindman-Klingler-Odenthal, 1998) Assume $G \neq D_8$

Krull-Schmidt holds for G-lattices \iff (i) $G = C_p$ ($p \le 19$; prime), (ii) $G = C_n$ (n = 1, 4, 8, 9), (iii) $G = V_4$ or (iv) $G = D_4$.

Theorem (Endo-Hironaka, 1979)

Direct sum cancellation holds, i.e. $M_1 \oplus N \simeq M_2 \oplus N \Longrightarrow M_1 \simeq M_2$, $\Longrightarrow G$ is abelian, dihedral, A_4 , S_4 or A_5 (*).

- ▶ via projective class group (see Swan (1988) Corollary 1.3, Section 7).
- Except for (*) \implies Direct sum cancelation fails \implies K-S fails

Theorem ([HY]) $G \leq GL(n, \mathbb{Z})$ (up to conjugacy)

(i) $n \leq 4 \Longrightarrow \text{K-S holds}$.

(ii) n = 5. K-S fails $\iff 11$ groups G (among 6079 groups).

(iii) n = 6. K-S fails $\iff 131$ groups G (among 85308 groups).

Special case: $T = R_{K/k}^{(1)}(\mathbb{G}_m)$; norm one tori (1/5)

▶ Rationality problem for T = R⁽¹⁾_{K/k}(𝔅m) is investigated by S. Endo, Colliot-Thélène and Sansuc, W. Hürlimann, L. Le Bruyn, A. Cortella and B. Kunyavskii, N. Lemire and M. Lorenz, M. Florence, etc.

Theorem (Endo-Miyata, 1974), (Saltman, 1984)

Let K/k be a finite Galois field extension and $G = \operatorname{Gal}(K/k)$. (i) T is retract k-rational \iff all the Sylow subgroups of G are cyclic; (ii) T is stably k-rational \iff G is a cyclic group, or a direct product of a cyclic group of order m and a group $\langle \sigma, \tau | \sigma^n = \tau^{2^d} = 1, \tau \sigma \tau^{-1} = \sigma^{-1} \rangle$, where $d, m \ge 1, n \ge 3, m, n$: odd, and (m, n) = 1.

Theorem (Endo, 2011)

Let K/k be a finite non-Galois, separable field extension and L/k be the Galois closure of K/k. Assume that the Galois group of L/k is nilpotent. Then the norm one torus $T = R_{K/k}^{(1)}(\mathbb{G}_m)$ is not retract k-rational.

Special case:
$$T = R_{K/k}^{(1)}(\mathbb{G}_m)$$
; norm one tori (2/5)

- Let K/k be a finite non-Galois, separable field extension
- Let L/k be the Galois closure of K/k.
- Let $G = \operatorname{Gal}(L/k)$ and $H = \operatorname{Gal}(L/K) \leq G$.

Theorem (Endo, 2011)

Assume that all the Sylow subgroups of G are cyclic.

Then T is retract k-rational.

$$T = R_{K/k}^{(1)}(\mathbb{G}_m)$$
 is stably k-rational $\iff G = D_n$, $n \text{ odd } (n \ge 3)$ or
 $C_m \times D_n$, $m, n \text{ odd } (m, n \ge 3)$, $(m, n) = 1$, $H \le D_n$ with $\#H = 2$.

Special case:
$$T = R_{K/k}^{(1)}(\mathbb{G}_m)$$
; norm one tori (3/5)

Theorem (Endo, 2011) dim T = n - 1

Assume that $\operatorname{Gal}(L/k) = S_n$, $n \ge 3$, and $\operatorname{Gal}(L/K) = S_{n-1}$ is the stabilizer of one of the letters in S_n . (i) $R_{K/k}^{(1)}(\mathbb{G}_m)$ is retract k-rational $\iff n$ is a prime; (ii) $R_{K/k}^{(1)}(\mathbb{G}_m)$ is (stably) k-rational $\iff n = 3$.

Theorem (Endo, 2011) dim T = n - 1

Assume that $\operatorname{Gal}(L/k) = A_n$, $n \ge 4$, and $\operatorname{Gal}(L/K) = A_{n-1}$ is the stabilizer of one of the letters in A_n . (i) $R_{K/k}^{(1)}(\mathbb{G}_m)$ is retract k-rational $\iff n$ is a prime; (ii) $\exists t \in \mathbb{N}$ s.t. $[R_{K/k}^{(1)}(\mathbb{G}_m)]^{(t)}$ is stably k-rational $\iff n = 5$.

• $[R_{K/k}^{(1)}(\mathbb{G}_m)]^{(t)}$: the product of t copies of $R_{K/k}^{(1)}(\mathbb{G}_m)$.

Special case:
$$T = R_{K/k}^{(1)}(\mathbb{G}_m)$$
; norm one tori (4/5)

Theorem ([HY], Rationality for $R_{K/k}^{(1)}(\mathbb{G}_m)$ (dim. 4, [K:k] = 5))

Let K/k be a separable field extension of degree 5 and L/k be the Galois closure of K/k. Assume that $G = \operatorname{Gal}(L/k)$ is a transitive subgroup of S_5 and $H = \operatorname{Gal}(L/K)$ is the stabilizer of one of the letters in G. Then the rationality of $R_{K/k}^{(1)}(\mathbb{G}_m)$ is given by

G		$L(M) = L(x_1, x_2, x_3, x_4)^G$
5T1	C_5	stably k -rational
5T2	D_5	stably k-rational
5T3	F_{20}	not stably but retract k -rational
5T4	A_5	stably k-rational
5T5	S_5	not stably but retract k -rational

- ▶ This theorem is already known except for the case of A₅ (Endo).
- Stably k-rationality for the case A_5 is asked by S. Endo (2011).

Special case:
$$T=R^{(1)}_{K/k}(\mathbb{G}_m)$$
; norm one tori (5/5)

By combining this theorem with Endo's theorem, we obtain:

Corollary

Assume that $\operatorname{Gal}(L/k) = A_n$, $n \ge 4$, and $\operatorname{Gal}(L/K) = A_{n-1}$ is the stabilizer of one of the letters in A_n . Then $R_{K/k}^{(1)}(\mathbb{G}_m)$ is stably k-rational $\iff n = 5$.