Rationality problem for fields of invariants, norm one tori and Hasse norm principle

Akinari Hoshi

Niigata University

July 28, 2025

Table of contents

- **1** Introduction: rationality problem for quasi-monomial actions
- 1 Monomial action & Noether's problem
- **2** Noether's problem over ${\mathbb C}$
 - Unramified Brauer/cohomology groups
- 3 Quasi-monomial action
- 4 Rationality problem for algebraic tori
 - Flabby resolution
 - Krull-Schmidt Theorem
- 5 Norm one tori and Hasse norm principle

 $\operatorname{Br}_{\operatorname{nr}}(X/\mathbb{C}) \simeq H^3(X,\mathbb{Z})_{\operatorname{tors}}$; Artin-Mumford invariant (X:RC)

 $H^3_{\mathrm{nr}}(X, \mathbb{Q}/\mathbb{Z}) \simeq \mathrm{Hdg}^4(X, \mathbb{Z})/\mathrm{Hdg}^4(X, \mathbb{Z})_{\mathrm{alg}} \leftrightarrow \text{integral Hodge conjecture}$

cf. Colliot-Thélène and Voisin, Duke Math. J. 161 (2012) 735-801.

§0. Introduction

Inverse Galois problem (IGP)

Does every finite group occur as a quotient group of the absolute Galois group ${\rm Gal}(\overline{\mathbb Q}/\mathbb Q)$?

Related to rationality problem (Emmy Noether's strategy: 1913)

A finite group $G \curvearrowright k(x_g \mid g \in G)$: rational function field over kby permutation $h(x_g) = x_{hg}$ (for any $g, h \in G$) $k(x \mid g \in G)^G$ is rational over k i.e. $k(x \mid g \in G)^G \simeq k(t_f = t_f)$

 $k(x_g \mid g \in G)^G$ is rational over k, i.e. $k(x_g \mid g \in G)^G \simeq k(t_1, \ldots, t_n)$ (Noether's problem has an affirmative answer)

 $\implies k(x_g \mid g \in G)^G$ is retract rational over k (weaker concept)

 $\iff \exists \text{ generic extension (polynomial) for } (G,k) \text{ (Saltman's sense)}$ $\stackrel{k:\text{Hilbertian}}{\Longrightarrow} \text{ IGP for } (k,G) \text{ has an affirmative answer}$

Rationality problem for quasi-monomial actions

Definition (quasi-monomial action)

Let K/k be a finite field extension and $G \leq \operatorname{Aut}_k(K(x_1, \ldots, x_n))$; finite where $K(x_1, \ldots, x_n)$ is the rational function field of n variables over K. The action of G on $K(x_1, \ldots, x_n)$ is called quasi-monomial if (i) $\sigma(K) \subset K$ for any $\sigma \in G$; (ii) $K^G = k$; (iii) for any $\sigma \in G$, $\sigma(x_j) = c_j(\sigma) \prod_{i=1}^n x_i^{a_{ij}}$ where $c_j(\sigma) \in K^{\times}$, $1 \leq j \leq n$, $[a_{i,j}]_{1 \leq i, j \leq n} \in GL_n(\mathbb{Z})$.

Rationality problem

Under what situation the fixed field $K(x_1, \ldots, x_n)^G$ is rational over k, i.e. $K(x_1, \ldots, x_n)^G \simeq k(t_1, \ldots, t_n)$ (=purely transcendental over k), if G acts on $K(x_1, \ldots, x_n)$ by quasi-monomial k-automorphisms.

Rationality problem for quasi-monomial actions

Definition (quasi-monomial action)

Let K/k be a finite field extension and $G \leq \operatorname{Aut}_k(K(x_1, \ldots, x_n))$; finite where $K(x_1, \ldots, x_n)$ is the rational function field of n variables over K. The action of G on $K(x_1, \ldots, x_n)$ is called quasi-monomial if (i) $\sigma(K) \subset K$ for any $\sigma \in G$; (ii) $K^G = k$; (iii) for any $\sigma \in G$, $\sigma(x_j) = c_j(\sigma) \prod_{i=1}^n x_i^{a_{ij}}$ where $c_j(\sigma) \in K^{\times}$, $1 \leq j \leq n$, $[a_{i,j}]_{1 \leq i, j \leq n} \in GL_n(\mathbb{Z})$.

- When $G \curvearrowright K$; trivial (i.e. K = k), called (just) monomial action.
- When $G \curvearrowright K$; trivial and permutation \leftrightarrow Noether's problem.
- ▶ When $c_j(\sigma) = 1$ ($\forall \sigma \in G, \forall j$), called purely (quasi-)monomial.
- $G = \operatorname{Gal}(K/k)$ and purely \leftrightarrow Rationality problem for algebraic tori.

Exercises (1/2): Noether's problem

$$\begin{array}{l} \blacktriangleright S_n \curvearrowright \mathbb{Q}(x_1,\ldots,x_n); \text{ permutation} \\ \hline \mathbb{Q}. \text{ Is } \mathbb{Q}(x_1,\ldots,x_n)^{S_n} \text{ rational over } \mathbb{Q}? \text{ Ans. Yes!} \\ \mathbb{Q}(x_1,\ldots,x_n)^{S_n} = \mathbb{Q}(s_1,\ldots,s_n); s_i, \text{ ith elementary symmetric} \\ \Longrightarrow \text{ IGP for } (\mathbb{Q},S_n) \text{ has affirmative solution.} \end{array}$$

•
$$A_n \curvearrowright \mathbb{Q}(x_1, \dots, x_n)$$
; permutation
Q. Is $\mathbb{Q}(x_1, \dots, x_n)^{A_n}$ rational over Q? Ans. Yes? ?? ??
 $\mathbb{Q}(x_1, \dots, x_n)^{A_n} = \mathbb{Q}(s_1, \dots, s_n, \Delta)$; but ...

Open problem Is $\mathbb{Q}(x_1, \ldots, x_n)^{A_n}$ rational over \mathbb{Q} ? $(n \ge 6)$

• $\mathbb{Q}(x_1,\ldots,x_5)^{A_5}$ is rational over \mathbb{Q} (Maeda, 1989).

Exercises (2/2): Noether's problem

$$\begin{array}{l} & \mathbb{Q}(x_1, x_2, x_3)^{A_3} = \mathbb{Q}(x_1, x_2, x_3)^{C_3} = \mathbb{Q}(t_1, t_2, t_3), \end{tabular}, \end{tabular}, t_1, t_2, t_3? \\ & (C_3: x_1 \mapsto x_2 \mapsto x_3 \mapsto x_1) \end{array} \\ & \hline \text{Ans.} \end{tabular} \mathbb{Q}(x_1, x_2, x_3)^{C_3} = \mathbb{Q}(t_1, t_2, t_3) \text{ where} \\ & t_1 = x_1 + x_2 + x_3, \\ & t_2 = \frac{x_1 x_2^2 + x_2 x_3^2 + x_3 x_1^2 - 3 x_1 x_2 x_3}{x_1^2 + x_2^2 + x_3^2 - x_1 x_2 - x_2 x_3 - x_3 x_1}, \\ & t_3 = \frac{x_1^2 x_2 + x_2^2 x_3 + x_3^2 x_1 - 3 x_1 x_2 x_3}{x_1^2 + x_2^2 + x_3^2 - x_1 x_2 - x_2 x_3 - x_3 x_1}. \\ & \hline \mathbb{Q}(x_1, x_2, \dots, x_8)^{C_8} = \mathbb{Q}(t_1, t_2, \dots, t_8), \end{tabular}, \end{tabular} \mathbb{Q}. \end{tabular} t_1, t_2, \dots, t_8? \\ & (C_8: x_1 \mapsto x_2 \mapsto x_3 \mapsto \dots \mapsto x_8 \mapsto x_1) \end{aligned}$$

Today's talk (1/2)

Definition (quasi-monomial action)

Let K/k be a finite field extension and $G \leq \operatorname{Aut}_k(K(x_1, \ldots, x_n))$; finite where $K(x_1, \ldots, x_n)$ is the rational function field of n variables over K. The action of G on $K(x_1, \ldots, x_n)$ is called quasi-monomial if (i) $\sigma(K) \subset K$ for any $\sigma \in G$; (ii) $K^G = k$; (iii) for any $\sigma \in G$, $\sigma(x_j) = c_j(\sigma) \prod_{i=1}^n x_i^{a_{ij}}$ where $c_j(\sigma) \in K^{\times}$, $1 \leq j \leq n$, $[a_{i,j}]_{1 \leq i,j \leq n} \in GL_n(\mathbb{Z})$.

§1. $G \curvearrowright K$; trivial: monomial action & Noether's problem §2. $G \curvearrowright K$; trivial and permutation: Noether's problem over \mathbb{C} §3. (general) quasi-monomial actions (1-dim. and 2-dim. cases) §4. G = Gal(K/k) and purely: rationality problem for algebraic tori

Today's talk (2/2)

§1. $G \curvearrowright K$; trivial: monomial action & Noether's problem Hoshi-Kitayama-Yamasaki, J. Algebra **341** (2011) 45–108. §2. $G \curvearrowright K$; trivial and permutation: Noether's problem over \mathbb{C} Hoshi-Kang-Kunyavskii, Asian J. Math. 17 (2013) 689-714. Chu-Hoshi-Hu-Kang, J. Algebra 442 (2015) 233-259. Hoshi, J. Algebra 445 (2016) 394-432. Hoshi-Kang-Yamasaki, J. Algebra **458** (2016) 120–133. Hoshi-Kang-Yamasaki, J. Algebra **544** (2020) 262–301. Hoshi-Kang-Yamasaki, Mem. AMS 283 (2023) no. 1403, 137 pp. $\S3.$ (general) guasi-monomial actions (1-dim. and 2-dim. cases) Hoshi-Kang-Kitayama, J. Algebra **403** (2014) 363–400. §4. $G = \operatorname{Gal}(K/k)$ and purely: rationality problem for algebraic tori Hoshi-Yamasaki, Mem. AMS 248 (2017) no. 1176, 215 pp.

Various rationalities: definitions

 $k \subset L$; f.g. field extension, L is rational over $k \iff L \simeq k(x_1, \ldots, x_n)$.

Definition (stably rational)

L is called stably rational over $k \iff L(y_1, \ldots, y_m)$ is rational over k.

Definition (retract rational)

L is retract rational over $k \iff \exists k$ -algebra $R \subset L$ such that (i) *L* is the quotient field of *R*; (ii) $\exists f \in k[x_1, \dots, x_n] \exists k$ -algebra hom. $\varphi : R \to k[x_1, \dots, x_n][1/f]$ and $\psi : k[x_1, \dots, x_n][1/f] \to R$ satisfying $\psi \circ \varphi = 1_R$.

Definition (unirational)

$$L$$
 is unirational over $k \stackrel{\mathrm{def}}{\Longleftrightarrow} L \subset k(t_1,\ldots,t_n)$.

 Assume L₁(x₁,...,x_n) ≃ L₂(y₁,...,y_m); stably isomorphic. If L₁ is retract rational over k, then L₂ is retract rational over k.
 "rational" ⇒ "stably rational" ⇒ "retract rational "⇒ "unirational" "rational" \implies "stably rational" \implies "retract rational " \implies "unirational"

- The direction of the implication cannot be reversed.
- (Lüroth's problem) "unirational" \implies "rational" ? YES if trdeg= 1
- (Castelnuovo, 1894) L is unirational over \mathbb{C} and $\operatorname{trdeg}_{\mathbb{C}}L = 2 \Longrightarrow L$ is rational over \mathbb{C} .
- (Zariski, 1958) Let k be an alg. closed field and k ⊂ L ⊂ k(x, y). If k(x, y) is separable algebraic over L, then L is rational over k.
- (Zariski cancellation problem) V₁ × Pⁿ ≈ V₂ × Pⁿ ⇒ V₁ ≈ V₂? In particular, "stably rational" ⇒ "rational"?
- ▶ (Beauville, Colliot-Thélène, Sansuc, Swinnerton-Dyer, 1985, Ann. Math.)
 L = Q(x, y, t) with x² + 3y² = t³ 2 (Châtelet surface)
 ⇒ L is not rational but stably rational over Q.
 Indeed, L(y₁, y₂, y₃) is rational over Q.
- ▶ $L(y_1, y_2)$ is rational over \mathbb{Q} (Shepherd-Barron, 2002, Fano Conf.).
- $\mathbb{Q}(x_1, \ldots, x_{47})^{C_{47}}$ is not stably but retract rational over \mathbb{Q} .
- $\mathbb{Q}(x_1, \ldots, x_8)^{C_8}$ is not retract but unirational over \mathbb{Q} .

Châtelet surface as an invariant field

- ▶ (Beauville, Colliot-Thélène, Sansuc, Swinnerton-Dyer, 1985, Ann. Math.)
 L = Q(x, y, t) with x² + 3y² = t³ 2 (Châtelet surface)
 ⇒ L is not rational but stably rational over Q.
- $\blacktriangleright \ L = \mathbb{Q}(x,y,t) = \mathbb{Q}(\sqrt{-3})(X,Y)^{\langle \sigma \rangle}$ where

$$\sigma: \sqrt{-3} \mapsto -\sqrt{-3}, X \mapsto X, Y \mapsto \frac{X^3 - 2}{Y}$$

Indeed, we have

$$x = \frac{1}{2} \left(Y + \frac{X^3 - 2}{Y} \right),$$
$$y = \frac{1}{2\sqrt{-3}} \left(Y - \frac{X^3 - 2}{Y} \right),$$
$$t = X.$$

Retract rationality and generic extension

Theorem (Saltman, 1982, DeMeyer)

Let k be an infinite field and G be a finite group. The following are equivalent: (i) $k(x_g | g \in G)^G$ is retract rational over k. (ii) There is a generic G-Galois extension over k; (iii) There exists a generic G-polynomial over k.

▶ related to Inverse Galois Problem (IGP). (i) \implies IGP(G/k): true

Definition (generic polynomial)

A polynomial $f(t_1, \ldots, t_n; X) \in k(t_1, \ldots, t_n)[X]$ is generic for G over k if (1) $\operatorname{Gal}(f/k(t_1, \ldots, t_n)) \simeq G$; (2) $\forall L/M \supset k$ with $\operatorname{Gal}(L/M) \simeq G$, $\exists a_1, \ldots, a_n \in M$ such that $L = \operatorname{Spl}(f(a_1, \ldots, a_n; X)/M)$.

▶ By Hilbert's irreducibility theorem, $\exists L/\mathbb{Q}$ such that $Gal(L/\mathbb{Q}) \simeq G$.

§1. Monomial action & Noether's problem

Definition (monomial action) $G \curvearrowright K$; trivial, $k = K^G = K$

An action of G on $k(x_1, \ldots, x_n)$ is monomial $\stackrel{\text{def}}{\iff}$

$$\sigma(x_j) = c_j(\sigma) \prod_{i=1}^n x_i^{a_{i,j}}, \ 1 \le j \le n, \forall \sigma \in G$$

where $[a_{i,j}]_{1 \le i,j \le n} \in \operatorname{GL}_n(\mathbb{Z})$, $c_j(\sigma) \in k^{\times} := k \setminus \{0\}$.

If $c_j(\sigma) = 1$ for any $1 \le j \le n$ then σ is called purely monomial.

Application to Noether's problem (permutation action)

Noether's problem (1/3) [G = A; abelian case]

- \blacktriangleright k; field, G; finite group
- ▶ $G \frown k$; trivial, $G \frown k(x_g \mid g \in G)$; permutation.
- ▶ $k(G) := k(x_g \mid g \in G)^G$; invariant field

Noether's problem (Emmy Noether, 1913)

Is k(G) rational over k?, i.e. $k(G) \simeq k(t_1, \ldots, t_n)$?

- ► Is the quotient variety Pⁿ/G rational over k?
- Assume G = A; abelian group.
- (Fisher, 1915) $\mathbb{C}(A)$ is rational over \mathbb{C} .
- (Masuda, 1955, 1968) $\mathbb{Q}(C_p)$ is rational over \mathbb{Q} for $p \leq 11$.
- (Swan, 1969, Invent. Math.) $\mathbb{Q}(C_{47}), \mathbb{Q}(C_{113}), \mathbb{Q}(C_{233})$ are not rational over \mathbb{Q} .
- ► S. Endo and T. Miyata (1973), V.E. Voskresenskii (1973), ... e.g. Q(C₈) is not rational over Q.
- (Lenstra, 1974, Invent. Math.)

k(A) is rational over $k \iff$ some condition;

Noether's problem (2/3) [G = A; abelian case]

- (Endo-Miyata, 1973) Q(C_pr) is rational over Q ⇔ ∃α ∈ Z[ζ_{φ(p}r)] such that N_Q(ζ_{φ(p}r))/Q</sub>(α) = ±p
 h(Q(ζ_m)) = 1 if m < 23 ⇒ Q(C_p) is rational over Q for p ≤ 43 and p = 61,67,71.
- (Endo-Miyata, 1973) For $p = 47, 79, 113, 137, 167, ..., \mathbb{Q}(C_p)$ is not rational over \mathbb{Q} .
- ▶ However, for $p = 59, 83, 89, 97, 107, 163, \ldots$, unknown. Under the GRH, $\mathbb{Q}(C_p)$ is not rational for the above primes. But it was unknown for $p = 251, 347, 587, 2459, \ldots$
- For p ≤ 20000, see speaker's paper (using PARI/GP): Proc. Japan Acad. Ser. A 91 (2015) 39-44.

Theorem (Plans, 2017, Proc. AMS)

 $\mathbb{Q}(C_p)$ is rational over $\mathbb{Q} \iff p \le 43$ or p = 61, 67, 71.

• Using lower bound of height, $\mathbb{Q}(C_p)$ is rational $\Rightarrow p < 173$.

Noether's problem (3/3) [G; non-abelian case]

Noether's problem (Emmy Noether, 1913)

Is k(G) rational over k?, i.e. $k(G) \simeq k(t_1, \ldots, t_n)$?

- Assume *G*; non-abelian group.
- (Maeda, 1989) $k(A_5)$ is rational over k;
- ▶ (Rikuna, 2003; Plans, 2007) k(GL₂(𝔽₃)) and k(SL₂(𝔽₃)) is rational over k;

(Serre, 2003) if 2-Sylow subgroup of G ≃ C_{8m}, then Q(G) is not rational over Q; if 2-Sylow subgroup of G ≃ Q₁₆, then Q(G) is not rational over Q; e.g. G = Q₁₆, SL₂(F₇), SL₂(F₉), SL₂(F_q) with q ≡ 7 or 9 (mod 16).

From Noether's problem to monomial actions (1/2)

▶
$$k(G) := k(x_g \mid g \in G)^G$$
; invariant field

Noether's problem (Emmy Noether, 1913)

Is k(G) rational over k?, i.e. $k(G) \simeq k(t_1, \ldots, t_n)$?

By Hilbert 90, we have:

No-name lemma (e.g. Miyata, 1971, Remark 3)

Let G act faithfully on k-vector space V, $W \subset V$ faithful k[G]-submodule. Then $K(V)^G = K(W)^G(t_1, \ldots, t_m)$.

Rationality problem: linear action

Let G act on finite-dimensional k-vector space V and ρ : $G \to GL(V)$ be a representation. Whether $k(V)^G$ is rational over k?

• the quotient variety V/G is rational over k?

From Noether's problem to monomial actions (2/2)

For $\rho: G \to GL(V)$; monomial representation, i.e. matrix rep. has exactly one non-zero entry in each row and each column, G acts on $k(\mathbb{P}(V)) = k(\frac{w_1}{w_n}, \dots, \frac{w_{n-1}}{w_n})$ by monomial action By Hilbert 90, we have:

Lemma (e.g. Miyata, 1971, Lemma) $k(V)^G = k(\mathbb{P}(V))^G(t).$

• $V/G \approx \mathbb{P}(V)/G \times \mathbb{P}^1$ (birational)

k(P(V))^G (monomial action) is rational over k
 ⇒ k(V)^G (linear action) is rational over k
 ⇒ k(G) (permutation action) is rational over k
 (Noether's problem has an affirmative answer)

Example: Noether's problem for $GL_2(\mathbb{F}_3)$ and $SL_2(\mathbb{F}_3)$

 $\blacktriangleright G = GL_2(\mathbb{F}_3) = \langle A, B, C, D \rangle \subset GL_4(\mathbb{Q}), |G| = 48,$ \blacktriangleright $H = SL_2(\mathbb{F}_3) = \langle A, B, C \rangle \subset GL_4(\mathbb{Q}), |H| = 24$, where • G and H act on $k(V) = k(w_1, w_2, w_3, w_4)$ by $A: w_1 \mapsto -w_2 \mapsto -w_1 \mapsto w_2 \mapsto w_1, w_3 \mapsto -w_4 \mapsto -w_3 \mapsto w_4 \mapsto w_3,$ $B: w_1 \mapsto -w_3 \mapsto -w_1 \mapsto w_3 \mapsto w_1, w_2 \mapsto w_4 \mapsto -w_2 \mapsto -w_4 \mapsto w_2,$ $C: w_1 \mapsto -w_2 \mapsto w_3 \mapsto w_1, w_4 \mapsto w_4, \quad D: w_1 \mapsto w_1, w_2 \mapsto -w_2, w_3 \leftrightarrow w_4.$ ▶ $k(\mathbb{P}(V)) = k(x, y, z), x = w_1/w_4, y = w_2/w_4, z = w_3/w_4.$ • G and H act on k(x, y, z) as $G/Z(G) \simeq S_4$ and $H/Z(H) \simeq A_4$: $A: x \mapsto \frac{y}{z}, \ y \mapsto \frac{-x}{z}, \ z \mapsto \frac{-1}{z}, \ B: x \mapsto \frac{-z}{y}, \ y \mapsto \frac{-1}{y}, \ z \mapsto \frac{x}{y},$ $C: x \mapsto y \mapsto z \mapsto x, \ D: x \mapsto \frac{x}{z}, \ y \mapsto \frac{-y}{z}, \ z \mapsto \frac{1}{z}.$ ▶ $k(\mathbb{P}(V))^G$: rational $\implies k(V)^G$: rational $\implies k(G)$: rational.

Monomial action (1/3) [3-dim. case]

Theorem (Hajja, 1987) 2-dim. monomial action

 $k(x_1, x_2)^G$ is rational over k.

Theorem (Hajja-Kang 1994, Hoshi-Rikuna 2008) 3-dim. purely monomial

 $k(x_1, x_2, x_3)^G$ is rational over k.

Theorem (Prokhorov, 2010) 3-dim. monomial action over $k=\mathbb{C}$

 $\mathbb{C}(x_1, x_2, x_3)^G$ is rational over \mathbb{C} .

However, $\mathbb{Q}(x_1, x_2, x_3)^{\langle \sigma \rangle}$, $\sigma : x_1 \mapsto x_2 \mapsto x_3 \mapsto \frac{-1}{x_1 x_2 x_3}$ is not rational over \mathbb{Q} (Hajja,1983).

Monomial action (2/3) [3-dim. case]

Theorem (Saltman, 2000) char $k \neq 2$

If $[k(\sqrt{a_1},\sqrt{a_2},\sqrt{a_3}):k]=8$, then $k(x_1,x_2,x_3)^{\langle\sigma
angle}$,

$$\sigma: x_1 \mapsto \frac{a_1}{x_1}, x_2 \mapsto \frac{a_2}{x_2}, x_3 \mapsto \frac{a_3}{x_3}$$

is not retract rational over k (hence not rational over k).

Theorem (Kang, 2004)

 $k(x_1, x_2, x_3)^{\langle \sigma \rangle}$, σ : $x_1 \mapsto x_2 \mapsto x_3 \mapsto \frac{c}{x_1 x_2 x_3} \mapsto x_1$, is rational over k \iff at least one of the following conditions is satisfied: (i) char k = 2; (ii) $c \in k^2$; (iii) $-4c \in k^4$; (iv) $-1 \in k^2$. If $k(x, y, z)^{\langle \sigma \rangle}$ is not rational over k, then it is not retract rational over k.

Recall that

• "rational" \implies "stably rational" \implies "retract rational " \implies "unirational"

Monomial action (3/3) [3-dim. case] (char $k \neq 2$)

Theorem (Yamasaki, 2012) 3-dim. monomial

 $\exists 8 \text{ cases } G \leq GL_3(\mathbb{Z}) \text{ s.t } k(x_1, x_2, x_3)^G \text{ is not retract rational over } k.$ Moreover, the necessary and sufficient conditions are given.

- Two of 8 cases are Saltman's and Kang's cases.
- ▶ $\exists G \leq GL_3(\mathbb{Z})$; 73 finite subgroups (up to conjugacy)

Theorem (Hoshi-Kitayama-Yamasaki, 2011) 3-dim. monomial

 $k(x_1, x_2, x_3)^G$ is rational over k except for the 8 cases and $G = A_4$. For $G = A_4$, if $[k(\sqrt{a}, \sqrt{-1}) : k] \le 2$, then it is rational over k.

Corollary

 $\exists L = k(\sqrt{a})$ such that $L(x_1, x_2, x_3)^G$ is rational over L.

► However, $\exists 4$ -dim. $\mathbb{C}(x_1, x_2, x_3, x_4)^{C_2 \times C_2}$ is not retract rational.

§2. Noether's problem over $\mathbb C$ (1/3)

Let G be a p-group. $\mathbb{C}(G) := \mathbb{C}(x_g \mid g \in G)^G$.

- ▶ (Fisher, 1915) $\mathbb{C}(A)$ is rational over \mathbb{C} if A; finite abelian group.
- (Saltman, 1984, Invent. Math.)
 For ∀p; prime, ∃ meta-abelian p-group G of order p⁹
 such that C(G) is not retract rational over C.
- (Bogomolov, 1988)
 For ∀p; prime, ∃ p-group G of order p⁶
 such that C(G) is not retract rational over C.

Indeed they showed $\operatorname{Br}_{\operatorname{nr}}(\mathbb{C}(G)/\mathbb{C}) \neq 0$; unramified Brauer group

▶ rational \implies stably rational \implies retract rational \implies $\operatorname{Br}_{\operatorname{nr}}(\mathbb{C}(G)) = 0$. not rational \Leftarrow not stably rational \Leftarrow not retract rational \Leftarrow $\operatorname{Br}_{\operatorname{nr}}(\mathbb{C}(G)) \neq 0$.

▶ k(G); retract rational \implies IGP for (k,G) has an affirmative answer.

Definition (Unramified Brauer group) Saltman (1984)

Let $k \subset K$ be an extension of fields. $\operatorname{Br}_{\operatorname{nr}}(K/k) = \bigcap_R \operatorname{Image} \{\operatorname{Br}(R) \to \operatorname{Br}(K)\}$ where $\operatorname{Br}(R) \to \operatorname{Br}(K)$ is the natural map of Brauer groups and R runs over all the DVR such that $k \subset R \subset K$ and $K = \operatorname{Quot}(R)$.

- ▶ If K is retract rational over k, then $\operatorname{Br}(k) \xrightarrow{\sim} \operatorname{Br}_{\operatorname{nr}}(K/k)$. In particular, if K is retract rational over \mathbb{C} , then $\operatorname{Br}_{\operatorname{nr}}(K/\mathbb{C}) = 0$.
- For a smooth projective variety X over \mathbb{C} with function field K, $\operatorname{Br}_{\operatorname{nr}}(K/\mathbb{C}) \simeq H^3(X, \mathbb{Z})_{\operatorname{tors}}$ which is given by Artin-Mumford (1972).

Theorem (Bogomolov 1988, Saltman 1990) $\operatorname{Br}_{\operatorname{nr}}(\mathbb{C}(G)/\mathbb{C}) \simeq B_0(G)$

Let G be a finite group. Then $\mathrm{Br}_{\mathrm{nr}}(\mathbb{C}(G)/\mathbb{C})$ is isomorphic to

$$B_0(G) = \bigcap_A \operatorname{Ker} \{ \operatorname{res} : H^2(G, \mathbb{Q}/\mathbb{Z}) \to H^2(A, \mathbb{Q}/\mathbb{Z}) \}$$

where A runs over all the bicyclic subgroups of G(bicyclic = cyclic or direct product of two cyclic groups).

- ▶ $\mathbb{C}(G)$: "retract rational" $\implies B_0(G) = 0$. $B_0(G) \neq 0 \implies \mathbb{C}(G)$: not (retract) rational over k.
- ▶ $B_0(G) \le H^2(G,\mu) \simeq H_2(G,\mathbb{Z})$; Schur multiplier.
- $B_0(G)$ is called Bogomolov multiplier.

Noether's problem over \mathbb{C} (2/3)

▶ (Chu-Kang, 2001) G is p-group ($|G| \le p^4$) $\Longrightarrow \mathbb{C}(G)$ is rational.

Theorem (Moravec, 2012, Amer. J. Math.)

Assume $|G| = 3^5 = 243$. $B_0(G) \neq 0 \iff G = G(243, i)$, $28 \le i \le 30$. In particular, $\exists 3$ groups G such that $\mathbb{C}(G)$ is not retract rational over \mathbb{C} .

▶ $\exists G: 67$ groups such that |G| = 243.

Theorem (Hoshi-Kang-Kunyavskii, 2013, Asian J. Math.)

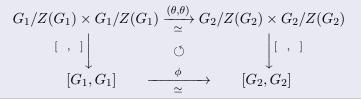
Assume $|G| = p^5$ where p is odd prime. $B_0(G) \neq 0 \iff G$ belongs to the isoclinism family Φ_{10} . In particular, $\exists \gcd(4, p - 1) + \gcd(3, p - 1) + 1$ (resp. $\exists 3$) groups G of order p^5 $(p \ge 5)$ (resp. p = 3) s.t. $\mathbb{C}(G)$ is not retract rational over \mathbb{C} .

►
$$\exists 2p + 61 + \gcd(4, p - 1) + 2 \gcd(3, p - 1)$$
 groups such that $|G| = p^5 (p \ge 5)$. $(\exists \Phi_1, \dots, \Phi_{10})$

From the proof (1/3)

Definition (isoclinic)

p-groups G_1 and G_2 are isoclinic $\stackrel{\text{def}}{\iff}$ isom. $\theta: G_1/Z(G_1) \xrightarrow{\sim} G_2/Z(G_2)$, $\phi: [G_1, G_1] \xrightarrow{\sim} [G_2, G_2]$ such that



Invariants

- Iower central series
- # of conj. classes with precisely p^i members
- # of irr. complex rep. of G of degree p^i

From the proof (2/3)

July 28, 2025

From the proof (3/3)

Hoshi-Kang-Kunyavskii [HKK, Question 1.11] (2013) (arXiv:1202.5812)

Let G_1 and G_2 be isoclinic *p*-groups. Is it true that the fields $k(G_1)$ and $k(G_2)$ are stably isomorphic, or, at least, that $B_0(G_1)$ is isomorphic to $B_0(G_2)$?

Theorem (Moravec, 2013) (arXiv:1203.2422)

 G_1 and G_2 are isoclinic $\Longrightarrow B_0(G_1) \simeq B_0(G_2)$.

Theorem (Bogomolov-Böhning, 2013) (arXiv: 1204.4747)

 G_1 and G_2 are isoclinic $\Longrightarrow \mathbb{C}(G_1)$ and $\mathbb{C}(G_2)$ are stably isomorphic.

Proof (Φ_{10}) : $B_0(G) \neq 0$

Lemma 1. $N \lhd G$.

(i) tr: H¹(N, Q/Z)^G → H²(G/N, Q/Z) is not surjective where tr is the transgression map.
(ii) AN/N ≤ G/N is cyclic (∀A ≤ G; bicyclic). ⇒ B₀(G) ≠ 0.

Proof. Consider the Hochschild-Serre 5-term exact sequence

 $0 \to H^1(G/N, \mathbb{Q}/\mathbb{Z}) \to H^1(G, \mathbb{Q}/\mathbb{Z}) \to H^1(N, \mathbb{Q}/\mathbb{Z})^G$ $\xrightarrow{\mathrm{tr}} H^2(G/N, \mathbb{Q}/\mathbb{Z}) \xrightarrow{\psi} H^2(G, \mathbb{Q}/\mathbb{Z})$

where ψ is an inflation map.

(i) $\implies \psi$ is not zero-map \implies Image $(\psi) \neq 0$. We will show that Image $(\psi) \subset B_0(G)$ by (ii).

It suffices to show that $H^2(G/N, \mathbb{Q}/\mathbb{Z}) \xrightarrow{\psi} H^2(G, \mathbb{Q}/\mathbb{Z}) \xrightarrow{\text{res}} H^2(A, \mathbb{Q}/\mathbb{Z})$ is zero-map ($\forall A \leq G$: bicyclic). Consider the following commutative diagram:

where ψ_0 is the restriction map, ψ_1 is the inflation map, $\widetilde{\psi}$ is the natural isomorphism.

(ii)
$$\Longrightarrow AN/N \simeq C_m \Longrightarrow H^2(C_m, \mathbb{Q}/\mathbb{Z}) = 0.$$

 $\Longrightarrow \psi_0 \text{ is zero-map.}$
 $\Longrightarrow \operatorname{res} \circ \psi \colon H^2(G/N, \mathbb{Q}/\mathbb{Z}) \to H^2(A, \mathbb{Q}/\mathbb{Z}) \text{ is zero-map.}$
 $\therefore \operatorname{Image}(\psi) \subset B_0(G)$
 $\operatorname{Image}(\psi) \subset B_0(G) \text{ and } \operatorname{Image}(\psi) \neq 0 \text{ (by (i))} \Longrightarrow B_0(G) \neq 0.$

Akinari Hoshi (Niigata University) Rationality problem, norm 1 tori and HNP

Proof (Φ_6) : $B_0(G) = 0$

•
$$G = \Phi_6(211)a = \langle f_1, f_2, f_0, h_1, f_2 \rangle, f_1^p = h_1, f_2^p = h_2,$$

 $Z(G) = \langle h_1, h_2 \rangle, f_0^p = h_1^p = h_2^p = 1$
 $[f_1, f_2] = f_0, [f_0, f_1] = h_1, [f_0, f_2] = h_2$

Hochschild-Serre 5-term exact sequence:

 $0 \to H^1(G/N, \mathbb{Q}/\mathbb{Z}) \to H^1(G, \mathbb{Q}/\mathbb{Z}) \to H^1(N, \mathbb{Q}/\mathbb{Z})^G \xrightarrow{\mathrm{tr}} H^2(G/N, \mathbb{Q}/\mathbb{Z}) \xrightarrow{\psi} H^2(G, \mathbb{Q}/\mathbb{Z})$

Proof (Φ_6) : $B_0(G) = 0$

•
$$G = \Phi_6(211)a = \langle f_1, f_2, f_0, h_1, f_2 \rangle, f_1^p = h_1, f_2^p = h_2,$$

 $Z(G) = \langle h_1, h_2 \rangle, f_0^p = h_1^p = h_2^p = 1$
 $[f_1, f_2] = f_0, [f_0, f_1] = h_1, [f_0, f_2] = h_2$
Hochschild-Serre 5-term exact sequence:

Explicit formula for λ is given by Dekimpe-Hartl-Wauters (2012)
N := ⟨f₁, f₀, h₁, h₂⟩ ⇒ G/N ≃ C_p ⇒ H²(G/N, Q/Z) = 0
B₀(G) ⊂ H²(G, Q/Z)₁
We should show H²(G, Q/Z)₁ = 0 (⇔ λ: injective)

Akinari Hoshi (Niigata University)

Noether's problem over \mathbb{C} (3/3)

Theorem (Hoshi-Kang-Kunyavskii, 2013, Asian J. Math.)

Assume $|G| = p^5$ where p is odd prime. $B_0(G) \neq 0 \iff G$ belongs to the isoclinism family Φ_{10} .

Theorem (Chu-Hoshi-Hu-Kang, 2015, J. Algebra) $|G| = 3^5 = 243$

If $B_0(G) = 0$, then $\mathbb{C}(G)$ is rational over \mathbb{C} except for Φ_7 .

Non-rationality of Φ₇ is detected by H³_{nr}(ℂ(G), ℚ/ℤ) (later).
 Φ₅ and Φ₇ are very similar: C = 1 (Φ₅), C = ω (Φ₇).
 ℂ(G) is stably isomorphic to ℂ(z₁, z₂, z₃, z₄, z₅, z₆, z₇, z₈, z₉)^{⟨f₁,f₂⟩}

$$\begin{split} f_1 &: z_1 \mapsto z_2, z_2 \mapsto \frac{1}{z_1 z_2}, z_3 \mapsto z_4, z_4 \mapsto \frac{1}{z_3 z_4}, \\ &z_5 \mapsto \frac{z_5}{z_1^2 z_3}, z_6 \mapsto \frac{z_1 z_6}{z_3}, z_7 \mapsto z_8, z_8 \mapsto \frac{1}{z_7 z_8}, z_9 \mapsto \frac{z_4 z_9}{z_1}, \\ f_2 &: z_1 \mapsto z_3, z_2 \mapsto z_4, z_3 \mapsto \frac{1}{z_1 z_3}, z_4 \mapsto \frac{1}{z_2 z_4}, \\ &z_5 \mapsto z_6, z_6 \mapsto \frac{1}{z_5 z_6}, z_7 \mapsto C \frac{z_4 z_7}{z_3}, z_8 \mapsto C \frac{z_8}{z_3 z_4^2}, z_9 \mapsto \frac{z_4 z_9}{z_1}. \end{split}$$

Akinari Hoshi (Niigata University) Rationality problem, norm 1 tori and HNP

Unramified Brauer group: purely monomial case (1/3)

Theorem (Hoshi-Kang-Yamasaki, 2023, Mem AMS) purely monomial

Let ${\cal G}$ be a finite group and ${\cal M}$ be a faithful ${\cal G}\mbox{-lattice}.$

- (1) If $\operatorname{rank}_{\mathbb{Z}} M \leq 3$, then $\operatorname{Br}_{\operatorname{nr}}(\mathbb{C}(M)^G) = 0$.
- (2) When $\operatorname{rank}_{\mathbb{Z}}M = 4$, $\exists 5 M$'s with $\operatorname{Br}_{\operatorname{nr}}(\mathbb{C}(M)^G) \neq 0$.
- (3) When $\operatorname{rank}_{\mathbb{Z}}M = 5$, $\exists 46 \ M$'s with $\operatorname{Br}_{\operatorname{nr}}(\mathbb{C}(M)^G) \neq 0$.
- (4) When $\operatorname{rank}_{\mathbb{Z}}M = 6$, $\exists 1073 \ M$'s with $\operatorname{Br}_{\operatorname{nr}}(\mathbb{C}(M)^G) \neq 0$.

rank	# of G -lattices	# of unramified Brauer groups $\neq 0$
1	2	0
2	13	0
3	73	0
4	710	5
5	6079	46
6	85308	1073

▶ If M is of rank ≤ 6 and $\operatorname{Br}_{\operatorname{nr}}(\mathbb{C}(M^G)) \neq 0$, then G is solvable and non-abelian, and $\operatorname{Br}_{\operatorname{nr}}(\mathbb{C}(M)^G) \simeq \mathbb{Z}/2\mathbb{Z}$, $\mathbb{Z}/3\mathbb{Z}$ or $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$.

Unramified Brauer group: purely monomial case (2/3)

Theorem (Hoshi-Kang-Yamasaki, 2023, Mem. AMS) $G = A_6$: simple

Embed $A_6 \simeq PSL_2(\mathbb{F}_9) \hookrightarrow S_{10}$. Let $N = \bigoplus_{1 \le i \le 10} \mathbb{Z} \cdot x_i$ be the S_{10} -lattice defined by $\sigma \cdot x_i = x_{\sigma(i)}$ for any $\sigma \in S_{10}$; it becomes an A_6 -lattice by restricting the action of S_{10} to A_6 . Define $M = N/(\mathbb{Z} \cdot \sum_{i=1}^{10} x_i)$ with rank $\mathbb{Z}M = 9$. $\exists A_6$ -lattices $M = M_1, M_2, \ldots, M_6$ which are \mathbb{Q} -conjugate but not \mathbb{Z} -conjugate to each other; in fact, all these M_i form a single \mathbb{Q} -class, but this \mathbb{Q} -class consists of six \mathbb{Z} -classes. Then we have

$$H^2_{\rm nr}(A_6, M_1) \simeq H^2_{\rm nr}(A_6, M_3) \simeq \mathbb{Z}/2\mathbb{Z}, \ H^2_{\rm nr}(A_6, M_i) = 0 \text{ for } i = 2, 4, 5, 6.$$

In particular, $\mathbb{C}(M_1)^{A_6}$ and $\mathbb{C}(M_3)^{A_6}$ are not retract rational over \mathbb{C} . Furthermore, M_1 and M_3 may be distinguished by Tate cohomologies:

$$H^{1}(A_{6}, M_{1}) = 0, \qquad \widehat{H}^{-1}(A_{6}, M_{1}) = \mathbb{Z}/10\mathbb{Z},$$

$$H^{1}(A_{6}, M_{3}) = \mathbb{Z}/5\mathbb{Z}, \qquad \widehat{H}^{-1}(A_{6}, M_{3}) = \mathbb{Z}/2\mathbb{Z}.$$

By using a result of Saltman (1987, J. Algebra, Corollary 3.3), as a corollary of Theorem above, we can get:

Theorem (Hoshi-Kang-Yamasaki, 2023, Mem. AMS) $G = A_6$: simple Let $N_1 \simeq (C_{10})^9$ and $N_3 \simeq (C_2)^8 \times C_{10}$. Then, for i = 1, 3, $\operatorname{Br}_u(\mathbb{C}(N_i \rtimes A_6)) \simeq \mathbb{Z}/2\mathbb{Z}$ and Noether's problem for $N_i \rtimes A_6$ over \mathbb{C} has a negative answer. Moreover, $\mathbb{C}(N_i \rtimes A_6)$ (i = 1, 3) is not retract (stably) rational over \mathbb{C} .

Noether's problem for A_6 over \mathbb{Q} (resp. over \mathbb{C}) is still unsolved!

Unramified cohomology (1/4)

Colliot-Thélène and Ojanguren (1989) generalized the notion of the unramified Brauer group $\operatorname{Br}_{\operatorname{nr}}(K/\mathbb{C})$ to the unramified cohomology $H^i_{\operatorname{nr}}(K/\mathbb{C},\mu_n^{\otimes j})$ of degree $i \geq 1$:

Definition (Colliot-Thélène and Ojanguren, 1989, Invent. Math.)

Let K/\mathbb{C} be a function field, that is finitely generated as a field over \mathbb{C} . The unramified cohomology group $H^i_{\mathrm{nr}}(K/\mathbb{C},\mu_n^{\otimes j})$ of K over \mathbb{C} of degree $i \geq 1$ is defined to be

$$H^{i}_{\mathrm{nr}}(K/\mathbb{C},\mu_{n}^{\otimes j}) = \bigcap_{R} \operatorname{Ker}\{r_{R}: H^{i}(K,\mu_{n}^{\otimes j}) \to H^{i-1}(\Bbbk_{R},\mu_{n}^{\otimes (j-1)})\}$$

where R runs over all the DVR of rank one such that $\mathbb{C} \subset R \subset K$ and K = Quot(R) and r_R is the residue map.

• Note that ${}_{n}\mathrm{Br}_{\mathrm{nr}}(K/\mathbb{C}) \simeq H^{2}_{\mathrm{nr}}(K/\mathbb{C},\mu_{n}).$

Proposition (Colliot-Thélène and Ojanguren, 1989)

If K and L are stably \mathbb{C} -isomorphic, then $H^i_{\mathrm{nr}}(K/\mathbb{C}, \mu_n^{\otimes j}) \xrightarrow{\sim} H^i_{\mathrm{nr}}(L/\mathbb{C}, \mu_n^{\otimes j}).$ In particular, K is stably rational over \mathbb{C} , then $H^i_{\mathrm{nr}}(K/\mathbb{C}, \mu_n^{\otimes j}) = 0.$

- Moreover, if K is retract rational over \mathbb{C} , then $H^i_{nr}(K/\mathbb{C}, \mu_n^{\otimes j}) = 0$.
- CTO (1989) ∃ C-unirational field K with trdeg_CK = 6 s.t. H³_{nr}(K/C, μ₂^{⊗3}) ≠ 0 and Br_{nr}(K/C) = 0.
- Peyre (1993) gave a sufficient condition for $H^i_{nr}(K/\mathbb{C}, \mu_p^{\otimes i}) \neq 0$:
- ► $\exists K \text{ s.t. } H^3_{\mathrm{nr}}(K/\mathbb{C}, \mu_p^{\otimes 3}) \neq 0 \text{ and } \mathrm{Br}_{\mathrm{nr}}(K/\mathbb{C}) = 0;$
- ► $\exists K \text{ s.t. } H^4_{\mathrm{nr}}(K/\mathbb{C}, \mu_2^{\otimes 4}) \neq 0 \text{ and } \mathrm{Br}_{\mathrm{nr}}(K/\mathbb{C}) = 0.$

Unramified cohomology (2/4)

Take the direct limit with respect to n:

$$H^{i}(K/\mathbb{C}, \mathbb{Q}/\mathbb{Z}(j)) = \lim_{\stackrel{\longrightarrow}{n}} H^{i}(K/\mathbb{C}, \mu_{n}^{\otimes j})$$

and we also define the unramified cohomology group

$$H^{i}_{\mathrm{nr}}(K/\mathbb{C}, \mathbb{Q}/\mathbb{Z}(j)) = \bigcap_{R} \mathrm{Ker}\{r_{R} : H^{i}(K/\mathbb{C}, \mathbb{Q}/\mathbb{Z}(j)) \to H^{i-1}(\Bbbk_{R}, \mathbb{Q}/\mathbb{Z}(j-1))\}.$$

Then we have $\operatorname{Br}_{\operatorname{nr}}(K/\mathbb{C}) \simeq H^2_{\operatorname{nr}}(K/\mathbb{C}, \mathbb{Q}/\mathbb{Z}(1)).$

• The case
$$K = \mathbb{C}(G)$$
:

Theorem (Peyre, 2008, Invent. Math.) p: odd prime

 $\exists p$ -group G of order p^{12} such that $B_0(G) = 0$ and $H^3_{nr}(\mathbb{C}(G), \mathbb{Q}/\mathbb{Z}) \neq 0$. In particular, $\mathbb{C}(G)$ is not (retract, stably) rational over \mathbb{C} .

Asok (2013) generalized Peyre's argument (1993):

Theorem (Asok, 2013, Compos. Math.)

(1) For any n > 0, \exists a smooth projective complex variety X that is \mathbb{C} -unirational, for which $H^i_{\mathrm{nr}}(\mathbb{C}(X), \mu_2^{\otimes i}) = 0$ for each i < n, yet $H^n_{\mathrm{nr}}(\mathbb{C}(X), \mu_2^{\otimes n}) \neq 0$, and so X is not \mathbb{A}^1 -connected, nor (retract, stably) rational over \mathbb{C} ; (2) For any prime l and any $n \ge 2$, \exists a smooth projective rationally connected complex variety Y such that $H^n_{\mathrm{nr}}(\mathbb{C}(Y), \mu_l^{\otimes n}) \neq 0$. In particular, Y is not \mathbb{A}^1 -connected, nor (retract, stably) rational over \mathbb{C} .

- Namely, the triviality of the unramified Brauer group or the unramified cohomology of higher degree is just a necessary condition of C-rationality of fields.
- ► It is interesting to consider an analog of above Theorem for quotient varieties V/G, e.g. C(V_{reg}/G) = C(G).

Unramified cohomology (3/4)

Theorem (Peyre, 2008, Invent. Math.) p: odd prime

 $\exists p$ -group G of order p^{12} such that $B_0(G) = 0$ and $H^3_{nr}(\mathbb{C}(G), \mathbb{Q}/\mathbb{Z}) \neq 0$. In particular, $\mathbb{C}(G)$ is not (retract, stably) rational over \mathbb{C} .

Using Peyre's method, we improve this result:

Theorem (Hoshi-Kang-Yamasaki, 2016, J. Algebra) p: odd prime

 $\exists p$ -group G of order p^9 such that $B_0(G) = 0$ and $H^3_{nr}(\mathbb{C}(G), \mathbb{Q}/\mathbb{Z}) \neq 0$. In particular, $\mathbb{C}(G)$ is not (retract, stably) rational over \mathbb{C} .

On the other hand, CT and Voisin proved: (\leftrightarrow integral Hodge conjecture)

Theorem (Colliot-Thélène and Voisin, 2012, Duke Math. J.)

Let X be a smooth projective rationally connected complex variety. Then $H^3_{\mathrm{nr}}(X, \mathbb{Q}/\mathbb{Z}) \simeq \mathrm{Hdg}^4(X, \mathbb{Z})/\mathrm{Hdg}^4(X, \mathbb{Z})_{\mathrm{alg}}.$

Unramified cohomology (4/4)

Using Peyre's formula [Peyre, 2008, Invent. Math.], we get:

Theorem (Hoshi-Kang-Yamasaki, 2020, J. Algebra) $|G| = 3^5$

 $H^3_{\mathrm{nr}}(\mathbb{C}(G), \mathbb{Q}/\mathbb{Z}) \neq 0 \iff G$ belongs to the isoclinism family Φ_7 . In particular, $\mathbb{C}(G)$ is not rational over $\mathbb{C} \iff G$ belongs to Φ_7, Φ_{10} .

							Φ_7			
$H^2_{\mathrm{nr}}(\mathbb{C}(G),\mathbb{Q}/\mathbb{Z})$	0	0	0	0	0	0	0	0	0	$\mathbb{Z}/3\mathbb{Z}$
$H^3_{\mathrm{nr}}(\mathbb{C}(G),\mathbb{Q}/\mathbb{Z})$	0	0	0	0	0	0	$\mathbb{Z}/3\mathbb{Z}$	0	0	0

Theorem (Hoshi-Kang-Yamasaki, 2020, J. Algebra) $|G| = 5^5$ or 7^5

 $H^3_{\mathrm{nr}}(\mathbb{C}(G),\mathbb{Q}/\mathbb{Z})\neq 0\iff G \text{ belongs to } \Phi_6, \Phi_7 \text{ or } \Phi_{10}.$

$ G = p^5 \ (p = 5, 7)$	Φ_1	Φ_2	Φ_3	Φ_4	Φ_5	Φ_6	Φ_7	Φ_8	Φ_9	Φ_{10}
$H^2_{\mathrm{nr}}(\mathbb{C}(G),\mathbb{Q}/\mathbb{Z})$	0	0	0	0	0	0	0	0	0	$\mathbb{Z}/p\mathbb{Z}$
$H^3_{\mathrm{nr}}(\mathbb{C}(G),\mathbb{Q}/\mathbb{Z})$	0	0	0	0	0	$\mathbb{Z}/p\mathbb{Z}$	$\mathbb{Z}/p\mathbb{Z}$	0	0	$\mathbb{Z}/p\mathbb{Z}$

Noether's problem over ${\mathbb C}$ for $2\mbox{-}{\rm groups}$

- ▶ (Chu-Kang, 2001) G is p-group $(|G| \le p^4) \Longrightarrow \mathbb{C}(G)$ is rational.
- ► (Chu-Hu-Kang-Prokhorov, 2008) $|G| = 32 = 2^5 \implies \mathbb{C}(G)$ is rational.
- ► ∃267 groups G of order 64 = 2⁶ which are classified into 27 isoclinism families Φ₁,..., Φ₂₇.

Theorem (Chu-Hu-Kang-Kunyavskii, 2010) $|G| = 64 = 2^6$

(1) $B_0(G) \neq 0 \iff G$ belongs to Φ_{16} . ($\exists 9 \text{ such } G$'s) Moreover, if $B_0(G) \neq 0$, then $B_0(G) \simeq C_2$. (2) If $B_0(G) = 0$, then $\mathbb{C}(G)$ is rational except for Φ_{13} . ($\exists 5 \text{ such } G$'s)

- ► ([CHKK10], [HY14]) $(B_0(G) = 0$, but rationality unknown) If G belongs to Φ_{13} , then $\mathbb{C}(G)$ is stably \mathbb{C} -isomorphic to $L^{(0)}_{\mathbb{C}}$.
- ▶ ([CHKK10], [HKK14]) $(B_0(G) \simeq C_2$, not retract rational) If G belongs to Φ_{16} , then $\mathbb{C}(G)$ is stably \mathbb{C} -isomorphic to $L_{\mathbb{C}}^{(1)}$.

- ► ([CHKK10], [HY14]) ($B_0(G) = 0$, but rationality unknown) If G belongs to Φ_{13} , then $\mathbb{C}(G)$ is stably \mathbb{C} -isomorphic to $L_{\mathbb{C}}^{(0)}$.
- ▶ ([CHKK10], [HKK14]) $(B_0(G) \simeq C_2$, not retract rational) If G belongs to Φ_{16} , then $\mathbb{C}(G)$ is stably \mathbb{C} -isomorphic to $L_{\mathbb{C}}^{(1)}$.

Definition (The fields $L_{\mathbb{C}}^{(0)}$ and $L_{\mathbb{C}}^{(1)}$)

(i) The field $L^{(0)}_{\mathbb{C}}$ is defined to be $\mathbb{C}(X_1, X_2, X_3, X_4, X_5, X_6)^H$ where $H = \langle \sigma_1, \sigma_2 \rangle \simeq C_2 \times C_2$ act on $\mathbb{C}(X_1, X_2, X_3, X_4, X_5, X_6)$ by

$$\begin{aligned} &\sigma_1: X_1 \mapsto X_3, \; X_2 \mapsto \frac{1}{X_1 X_2 X_3}, \; X_3 \mapsto X_1, \; X_4 \mapsto X_6, \; X_5 \mapsto \frac{1}{X_4 X_5 X_6}, \; X_6 \mapsto X_4, \\ &\sigma_2: X_1 \mapsto X_2, \; X_2 \mapsto X_1, \; X_3 \mapsto \frac{1}{X_1 X_2 X_3}, \; X_4 \mapsto X_5, \; X_5 \mapsto X_4, \; X_6 \mapsto \frac{1}{X_4 X_5 X_6}. \end{aligned}$$

(ii) The field $L_{\mathbb{C}}^{(1)}$ is defined to be $\mathbb{C}(X_1, X_2, X_3, X_4)^{\langle \tau \rangle}$ where $\langle \tau \rangle \simeq C_2$ acts on $\mathbb{C}(X_1, X_2, X_3, X_4)$ by

$$\tau: X_1 \mapsto -X_1, \ X_2 \mapsto \frac{X_4}{X_2}, \ X_3 \mapsto \frac{(X_4 - 1)(X_4 - X_1^2)}{X_3}, \ X_4 \mapsto X_4.$$

- ([CHKK10], [HY14]) ($B_0(G) = 0$, but rationality unknown) If G belongs to Φ_{13} , then $\mathbb{C}(G)$ is stably \mathbb{C} -isomorphic to $L_{\mathbb{C}}^{(0)}$.
- ([CHKK10], [HKK14]) ($B_0(G) \simeq C_2$, not retract rational) If G belongs to Φ_{16} , then $\mathbb{C}(G)$ is stably \mathbb{C} -isomorphic to $L_{\mathbb{C}}^{(1)}$.

► ∃2328 groups G of order 128 = 2⁷ which are classified into 115 isoclinism families Φ₁,..., Φ₁₁₅.

Theorem (Moravec, 2012, Amer. J. Math.) $|G| = 128 = 2^7$

 $B_0(G)\neq 0$ if and only if G belongs to the isoclinism family Φ_{16} , Φ_{30} , Φ_{31} , Φ_{37} , Φ_{39} , Φ_{43} , Φ_{58} , Φ_{60} , Φ_{80} , Φ_{106} or Φ_{114} . If $B_0(G)\neq 0$, then

 $B_0(G) \simeq \begin{cases} C_2 & (\Phi_{16}, \Phi_{31}, \Phi_{37}, \Phi_{39}, \Phi_{43}, \Phi_{58}, \Phi_{60}, \Phi_{80}, \Phi_{106}, \Phi_{114}) \\ C_2 \times C_2 & (\Phi_{30}). \end{cases}$

In particular, $\mathbb{C}(G)$ is not (retract, stably) rational over \mathbb{C} .

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	Total
Family	Φ_{16}	Φ_{31}	Φ_{37}	Φ_{39}	Φ_{43}	Φ_{58}	Φ_{60}	Φ_{80}	Φ_{106}	Φ_{114}	Φ_{30}	
$B_0(G)$					C_2						$C_2 \times C_2$	
# G's	48	55	18	6	26	20	10	9	2	2	34	220

▶ Q. Birational classification of $\mathbb{C}(G)$? In particular, what happens when $B_0(G) \neq 0$? How many $\mathbb{C}(G)$'s exist up to stably \mathbb{C} -isomorphism?

Theorem (Hoshi, 2016, J. Algebra) $|G| = 128 = 2^7$

Assume that $B_0(G) \neq 0$. Then $\mathbb{C}(G)$ and $L_{\mathbb{C}}^{(m)}$ are stably \mathbb{C} -isomorphic where

$$m = \begin{cases} 1 & \text{if } G \text{ belongs to } \Phi_{16}, \Phi_{31}, \Phi_{37}, \Phi_{39}, \Phi_{43}, \Phi_{58}, \Phi_{60} \text{ or } \Phi_{80}, \\ 2 & \text{if } G \text{ belongs to } \Phi_{106} \text{ or } \Phi_{114}, \\ 3 & \text{if } G \text{ belongs to } \Phi_{30}. \end{cases}$$

In particular, $\operatorname{Br}_{\operatorname{nr}}(L_{\mathbb{C}}^{(1)}) \simeq \operatorname{Br}_{\operatorname{nr}}(L_{\mathbb{C}}^{(2)}) \simeq C_2$ and $\operatorname{Br}_{\operatorname{nr}}(L_{\mathbb{C}}^{(3)}) \simeq C_2 \times C_2$ and hence $L_{\mathbb{C}}^{(1)}$, $L_{\mathbb{C}}^{(2)}$ and $L_{\mathbb{C}}^{(3)}$ are not (retract, stably) rational over \mathbb{C} .

- ▶ $L_{\mathbb{C}}^{(1)} \sim L_{\mathbb{C}}^{(3)}$, $L_{\mathbb{C}}^{(2)} \sim L_{\mathbb{C}}^{(3)}$ (not stably \mathbb{C} -isomorphic) because their unramified Brauer groups are not isomorphic.
- However, we do not know whether $L_{\mathbb{C}}^{(1)} \sim L_{\mathbb{C}}^{(2)}$.
- ▶ If not, evaluate the higher unramified cohomologies Hⁱ_{nr}(i ≥ 3)? (Peyre's formula can not work for |G| = 2^m)

Definition (The fields $L_{\mathbb{C}}^{(2)}$ and $L_{\mathbb{C}}^{(3)}$)

(i) The field $L_{\mathbb{C}}^{(2)}$ is defined to be $\mathbb{C}(X_1, X_2, X_3, X_4, X_5, X_6)^{\langle \rho \rangle}$ where $\langle \rho \rangle \simeq C_4$ acts on $\mathbb{C}(X_1, X_2, X_3, X_4, X_5, X_6)$ by

$$\rho: X_1 \mapsto X_2, X_2 \mapsto -X_1, X_3 \mapsto X_4, X_4 \mapsto X_3,$$
$$X_5 \mapsto X_6, X_6 \mapsto \frac{(X_1^2 X_2^2 - 1)(X_1^2 X_3^2 + X_2^2 - X_3^2 - 1)}{X_5}$$

(ii) The field $L_{\mathbb{C}}^{(3)}$ is defined to be $\mathbb{C}(X_1, X_2, X_3, X_4, X_5, X_6, X_7)^{\langle \lambda_1, \lambda_2 \rangle}$ where $\langle \lambda_1, \lambda_2 \rangle \simeq C_2 \times C_2$ acts on $\mathbb{C}(X_1, X_2, X_3, X_4, X_5, X_6, X_7)$ by

$$\begin{split} \lambda_1 &: X_1 \mapsto X_1, X_2 \mapsto \frac{X_1}{X_2}, X_3 \mapsto \frac{1}{X_1 X_3}, X_4 \mapsto \frac{X_2 X_4}{X_1 X_3}, \\ &X_5 \mapsto -\frac{X_1 X_6^2 - 1}{X_5}, X_6 \mapsto -X_6, X_7 \mapsto X_7, \\ \lambda_2 &: X_1 \mapsto \frac{1}{X_1}, X_2 \mapsto X_3, X_3 \mapsto X_2, X_4 \mapsto \frac{(X_1 X_6^2 - 1)(X_1 X_7^2 - 1)}{X_4}, \\ &X_5 \mapsto -X_5, X_6 \mapsto -X_1 X_6, X_7 \mapsto -X_1 X_7. \end{split}$$

§3. (general) quasi-monomial actions

Notion of "quasi-monomial" actions is defined in Hoshi-Kang-Kitayama [HKK14], J. Algebra (2014).

Theorem ([HKK14]) 1-dim. quasi-monomial actions

(1) purely quasi-monomial $\implies K(x)^G$ is rational over k. (2) $K(x)^G$ is rational over k except for the case: $\exists N \leq G$ such that (i) $G/N = \langle \sigma \rangle \simeq C_2$; (ii) $K(x)^N = k(\alpha)(y), \alpha^2 = a \in K^{\times}, \sigma(\alpha) = -\alpha$ (if char $k \neq 2$), $\alpha^2 + \alpha = a \in K, \sigma(\alpha) = \alpha + 1$ (if char k = 2); (iii) $\sigma \cdot y = b/y$ for some $b \in k^{\times}$. For the exceptional case, $K(x)^G = k(\alpha)(y)^{G/N}$ is rational over $k \iff$ Hilbert symbol $(a, b)_k = 0$ (if char $k \neq 2$), $[a, b)_k = 0$ (if char k = 2). Moreover, $K(x)^G$ is not rational over $k \implies$ not unirational over k. Theorem ([HKK14]) 2-dim. purely quasi-monomial actions

 $N = \{ \sigma \in G \mid \sigma(x) = x, \ \sigma(y) = y \}, \ H = \{ \sigma \in G \mid \sigma(\alpha) = \alpha (\forall \alpha \in K) \}.$ $K(x,y)^G$ is rational over k except for: (1) char $k \neq 2$ and (2) (i) $(G/N, HN/N) \simeq (C_4, C_2)$ or (ii) (D_4, C_2) . For the exceptional case, we have k(x, y) = k(u, v): (i) $(G/N, HN/N) \simeq (C_4, C_2)$. $K^N = k(\sqrt{a}), \ G/N = \langle \sigma \rangle \simeq C_4, \ \sigma : \sqrt{a} \mapsto -\sqrt{a}, \ u \mapsto \frac{1}{u}, \ v \mapsto -\frac{1}{v};$ (ii) $(G/N, HN/N) \simeq (D_4, C_2);$ $K^N = k(\sqrt{a}, \sqrt{b}), \ G/N = \langle \sigma, \tau \rangle \simeq D_4, \ \sigma : \sqrt{a} \mapsto -\sqrt{a}, \ \sqrt{b} \mapsto \sqrt{b},$ $u \mapsto \frac{1}{u}, v \mapsto -\frac{1}{v}, \tau : \sqrt{a} \mapsto \sqrt{a}, \sqrt{b} \mapsto -\sqrt{b}, u \mapsto u, v \mapsto -v.$ Case (i), $K(x, y)^G$ is rational over $k \iff$ Hilbert symbol $(a, -1)_k = 0$. Case (ii), $K(x, y)^G$ is rational over $k \iff$ Hilbert symbol $(a, -b)_k = 0$. Moreover, $K(x, y)^G$ is not rational over $k \Longrightarrow$ $Br(k) \neq 0$ and $K(x, y)^G$ is not unirational over k.

Galois-theoretic interpretation:

(i) rational over $k \iff k(\sqrt{a})$ may be embedded into C_4 -ext. of k. (ii) rational over $k \iff k(\sqrt{a},\sqrt{b})$ may be embedded into D_4 -ext. of k.

Theorem ([HKK14]), 4-dim. purely monomial

Let M be a G-lattice with $\operatorname{rank}_{\mathbb{Z}} M = 4$ and G act on k(M) by purely monomial k-automorphisms. If M is decomposable, i.e. $M = M_1 \oplus M_2$ as $\mathbb{Z}[G]$ -modules where $1 \leq \operatorname{rank}_{\mathbb{Z}} M_1 \leq 3$, then $k(M)^G$ is rational over k.

- When rank_ℤM₁ = 1, rank_ℤM₂ = 3, it is easy to see k(M)^G is rational.
- ▶ When $\operatorname{rank}_{\mathbb{Z}} M_1 = \operatorname{rank}_{\mathbb{Z}} M_2 = 2$, we may apply Theorem of 2-dim. to $k(M) = k(x_1, x_2, y_1, y_2) = k(x_1, x_2)(y_1, y_2) = K(y_1, y_2)$.

Theorem ([HKK14]) char $k \neq 2$

Let $C_2 = \langle \tau \rangle$ act on the rational function field $k(x_1, x_2, x_3, x_4)$ by *k*-automorphisms defined as

$$\tau: x_1 \mapsto -x_1, \ x_2 \mapsto \frac{x_4}{x_2}, \ x_3 \mapsto \frac{(x_4-1)(x_4-x_1^2)}{x_3}, \ x_4 \mapsto x_4.$$

Then $k(x_1, x_2, x_3, x_4)^{C_2}$ is not retract rational over k. In particular, it is not rational over k.

Theorem A ([HKK14]) char $k \neq 2$, 5-dim. purely monomial

Let $D_4 = \langle \rho, \tau \rangle$ act on the rational function field $k(x_1, x_2, x_3, x_4, x_5)$ by k-automorphisms defined as

$$\rho: x_1 \mapsto x_2, \ x_2 \mapsto x_1, \ x_3 \mapsto \frac{1}{x_1 x_2 x_3}, \ x_4 \mapsto x_5, \ x_5 \mapsto \frac{1}{x_4}, \\ \tau: x_1 \mapsto x_3, \ x_2 \mapsto \frac{1}{x_1 x_2 x_3}, \ x_3 \mapsto x_1, \ x_4 \mapsto x_5, \ x_5 \mapsto x_4.$$

Then $k(x_1, x_2, x_3, x_4, x_5)^{D_4}$ is not retract rational over k. In particular, it is not rational over k.

Application to purely monomial actions (2/2)

Theorem ([HKK14]), 5-dim. purely monomial

Let M be a G-lattice and G act on k(M) by purely monomial k-automorphisms. Assume that (i) $M = M_1 \oplus M_2$ as $\mathbb{Z}[G]$ -modules where $\operatorname{rank}_{\mathbb{Z}} M_1 = 3$ and $\operatorname{rank}_{\mathbb{Z}} M_2 = 2$, (ii) either M_1 or M_2 is a faithful G-lattice. Then $k(M)^G$ is rational over k except for the case as in Theorem A.

• we may apply Theorem of 2-dim. to
$$k(M) = k(x_1, x_2, x_3, y_1, y_2) = k(x_1, x_2, x_3)(y_1, y_2) = K(y_1, y_2).$$

More recent results

 3-dim. purely quasi-monomial actions (Hoshi-Kitayama, 2020, Kyoto J. Math.)

§4. Rationality problem for algebraic tori (2-dim., 3-dim.)

 $G \simeq \operatorname{Gal}(K/k) \curvearrowright K(x_1, \ldots, x_n)$: purely quasi-monomial, $K(x_1, \ldots, x_n)^G$ may be regarded as the function field of algebraic torus T over k which splits over K $(T \otimes_k K \simeq \mathbb{G}_m^n)$.

- ▶ T is unirational over k, i.e. $K(x_1, ..., x_n)^G \subset k(t_1, ..., t_n)$.
- ▶ $\exists 13 \mathbb{Z}$ -coujugacy subgroups $G \leq GL_2(\mathbb{Z})$.

Theorem (Voskresenskii, 1967) 2-dim. algebraic tori T

T is rational over k.

	$\exists 73$	\mathbb{Z} -coujugacy	subgroups	$G \leq \operatorname{GL}_3(\mathbb{Z}).$
--	--------------	-------------------------	-----------	---

Theorem (Kunyavskii, 1990) 3-dim. algebraic tori T

(i) T is rational over $k \iff T$ is stably rational over k $\iff T$ is retract rational over $k \iff \exists G: 58$ groups; (ii) T is not rational over $k \iff T$ is not stably rational over k $\iff T$ is not retract rational over $k \iff \exists G: 15$ groups.

Rationality of algebraic tori (4-dim., 5-dim.)

▶ $\exists 710 \ \mathbb{Z}$ -coujugacy subgroups $G \leq \operatorname{GL}_4(\mathbb{Z})$.

Theorem (Hoshi-Yamasaki, 2017, Mem. AMS) 4-dim. alg. tori T(i) T is stably rational over $k \iff \exists G: 487$ groups; (ii) T is not stably but retract rational over $k \iff \exists G: 7$ groups; (iii) T is not retract rational over $k \iff \exists G: 216$ groups.

▶ $\exists 6079 \ \mathbb{Z}$ -coujugacy subgroups $G \leq \operatorname{GL}_5(\mathbb{Z})$.

Theorem (Hoshi-Yamasaki, 2017, Mem. AMS) 5-dim. alg. tori T

(i) T is stably rational over $k \iff \exists G: 3051$ groups; (ii) T is not stably but retract rational over $k \iff \exists G: 25$ groups; (iii) T is not retract rational over $k \iff \exists G: 3003$ groups.

- (Voskresenskii's conjecture) any stably rational torus is rational.
- ► $\exists 85308 \ \mathbb{Z}$ -coujugacy subgroups $G \leq \operatorname{GL}_6(\mathbb{Z})!$

Proof: Flabby (Flasque) resolution (1/2)

- The function field of *n*-dim. $T \xrightarrow{\text{identified}} L(M)^G$, $G \leq \operatorname{GL}(n, \mathbb{Z})$
- M: G-lattice, i.e. f.g. \mathbb{Z} -free $\mathbb{Z}[G]$ -module.

Definition

(i) M is permutation $\stackrel{\text{def}}{\iff} M \simeq \bigoplus_{1 \le i \le m} \mathbb{Z}[G/H_i].$ (ii) M is stably permutation $\stackrel{\text{def}}{\iff} M \oplus \exists P \simeq P', P, P'$: permutation. (iii) M is invertible $\stackrel{\text{def}}{\iff} M \oplus \exists M' \simeq P$: permutation. (iv) M is coflabby $\stackrel{\text{def}}{\iff} H^1(H, M) = 0 \ (\forall H \le G).$ (v) M is flabby $\stackrel{\text{def}}{\iff} \widehat{H}^{-1}(H, M) = 0 \ (\forall H \le G).$ (\widehat{H} : Tate cohomology)

- "permutation"
 - \implies "stably permutation"
 - \implies "invertible"
 - \implies "flabby and coflabby".

Proof: Flabby (Flasque) resolution (2/2)

Commutative monoid \mathcal{M}

 $M_1 \sim M_2 \iff M_1 \oplus P_1 \simeq M_2 \oplus P_2 (\exists P_1, \exists P_2: \text{ permutation}).$ $\implies \text{ commutative monoid } \mathcal{M}: [M_1] + [M_2] := [M_1 \oplus M_2], \ 0 = [P].$

Theorem (Endo-Miyata, 1974, Colliot-Thélène-Sansuc, 1977)

 $\exists P$: permutation, $\exists F$: flabby such that

 $0 \to M \to P \to F \to 0$: flabby resolution of M.

 $[M]^{fl} := [F], \quad [M]^{fl} \text{ is invertible } \stackrel{\text{def}}{\Longleftrightarrow} \ [M]^{fl} = [E] \ (\exists E: \text{ invertible}).$

Theorem (Endo-Miyata, 1973, Voskresenskii, 1974, Saltman, 1984) (EM73) $[M]^{fl} = 0 \iff L(M)^G$ is stably rational over k. (Vos74) $[M]^{fl} = [M']^{fl} \iff L(M)^G(x_1, \dots, x_m) \simeq L(M')^G(y_1, \dots, y_n)$. (Sal84) $[M]^{fl}$ is invertible $\iff L(M)^G$ is retract rational over k.

Our contribution

- ▶ We give a procedure to compute a flabby resolution of M, in particular [M]^{fl} = [F], effectively (with smaller rank after base change) by computer software GAP.
- The function IsFlabby (resp. IsCoflabby) may determine whether M is flabby (resp. coflabby).
- ▶ The function IsInvertibleF may determine whether $[M]^{fl} = [F]$ is invertible (\leftrightarrow whether $L(M)^G$ (resp. T) is retract rational).
- ► We provide some functions for checking a possibility of isomorphism

$$\left(\bigoplus_{i=1}^{r} a_i \mathbb{Z}[G/H_i]\right) \oplus a_{r+1}F \simeq \bigoplus_{i=1}^{r} b'_i \mathbb{Z}[G/H_i]$$
(*)

by computing some invariants (e.g. trace, \widehat{Z}^0 , \widehat{H}^0) of both sides.

▶ [HY17, Example 10.7]. $G \simeq S_5 \leq \operatorname{GL}(5, \mathbb{Z})$ with number (5, 946, 4) $\Longrightarrow \operatorname{rank}(F) = 17$ and $\operatorname{rank}(*) = 88$ holds $\Longrightarrow [F] = 0 \Longrightarrow L(M)^G$ (resp. T) is stably rational over k.

Application

Corollary ($[F] = [M]^{fl}$: invertible case, $G \simeq S_5, F_{20}$)

 $\exists T, T'$; 4-dim. not stably rational algebraic tori over k such that $T \not\sim T'$ (birational) and $T \times T'$: 8-dim. stably rational over k. $\because -[M]^{fl} = [M']^{fl} \neq 0.$

Prop. ([HY17], Krull-Schmidt fails for permutation D_6 -lattices) {1}, $C_2^{(1)}$, $C_2^{(2)}$, $C_2^{(3)}$, C_3 , C_2^2 , C_6 , $S_3^{(1)}$, $S_3^{(2)}$, D_6 : conj. subgroups of D_6 . $\mathbb{Z}[D_6] \oplus \mathbb{Z}[D_6/C_2^2]^{\oplus 2} \oplus \mathbb{Z}[D_6/C_6] \oplus \mathbb{Z}[D_6/S_3^{(1)}] \oplus \mathbb{Z}[D_6/S_3^{(2)}]$ $\simeq \mathbb{Z}[D_6/C_2^{(1)}] \oplus \mathbb{Z}[D_6/C_2^{(2)}] \oplus \mathbb{Z}[D_6/C_2^{(3)}] \oplus \mathbb{Z}[D_6/C_3] \oplus \mathbb{Z}^{\oplus 2}.$

▶ D₆ is the smallest example exhibiting the failure of K-S:

Theorem (Dress, 1973)

Krull-Schmidt holds for permutation G-lattices $\iff G/O_p(G)$ is cyclic where $O_p(G)$ is the maximal normal p-subgroup of G.

Krull-Schmidt and Direct sum cancelation

Theorem (Hindman-Klingler-Odenthal, 1998) Assume $G \neq D_8$

Krull-Schmidt holds for G-lattices \iff (i) $G = C_p$ ($p \le 19$; prime), (ii) $G = C_n$ (n = 1, 4, 8, 9), (iii) $G = V_4$ or (iv) $G = D_4$.

Theorem (Endo-Hironaka, 1979)

Direct sum cancellation holds, i.e. $M_1 \oplus N \simeq M_2 \oplus N \Longrightarrow M_1 \simeq M_2$, $\Longrightarrow G$ is abelian, dihedral, A_4 , S_4 or A_5 (*).

▶ via projective class group (see Swan (1988) Corollary 1.3, Section 7).

• Except for (*) \implies Direct sum cancelation fails \implies K-S fails

Theorem ([HY17]) $G \leq GL(n, \mathbb{Z})$ (up to conjugacy)

(i) $n \leq 4 \Longrightarrow \text{K-S holds}$.

(ii) n = 5. K-S fails $\iff 11$ groups G (among 6079 groups).

(iii) n = 6. K-S fails $\iff 131$ groups G (among 85308 groups).

Special case: $T = R_{K/k}^{(1)}(\mathbb{G}_m)$; norm one tori (1/5)

Rationality problem for T = R⁽¹⁾_{K/k}(G_m) is investigated by S. Endo, Colliot-Thélène and Sansuc, W. Hürlimann, L. Le Bruyn, A. Cortella and B. Kunyavskii, N. Lemire and M. Lorenz, M. Florence, etc.

Theorem (Endo-Miyata, 1974), (Saltman, 1984)

Let K/k be a finite Galois field extension and $G = \operatorname{Gal}(K/k)$. (i) T is retract k-rational \iff all the Sylow subgroups of G are cyclic; (ii) T is stably k-rational \iff G is a cyclic group, or a direct product of a cyclic group of order m and a group $\langle \sigma, \tau | \sigma^n = \tau^{2^d} = 1, \tau \sigma \tau^{-1} = \sigma^{-1} \rangle$, where $d, m \ge 1, n \ge 3, m, n$: odd, and (m, n) = 1.

Theorem (Endo, 2011)

Let K/k be a finite non-Galois, separable field extension and L/k be the Galois closure of K/k. Assume that the Galois group of L/k is nilpotent. Then the norm one torus $T = R_{K/k}^{(1)}(\mathbb{G}_m)$ is not retract k-rational.

Special case:
$$T = R_{K/k}^{(1)}(\mathbb{G}_m)$$
; norm one tori (2/5)

- Let K/k be a finite non-Galois, separable field extension
- Let L/k be the Galois closure of K/k.
- Let $G = \operatorname{Gal}(L/k)$ and $H = \operatorname{Gal}(L/K) \leq G$.

Theorem (Endo, 2011)

Assume that all the Sylow subgroups of G are cyclic. Then T is retract k-rational. $T = R_{K/k}^{(1)}(\mathbb{G}_m)$ is stably k-rational $\iff G = D_n$, $n \text{ odd } (n \ge 3)$ or $C_m \times D_n$, $m, n \text{ odd } (m, n \ge 3)$, (m, n) = 1, $H \le D_n$ with |H| = 2.

Special case:
$$T = R_{K/k}^{(1)}(\mathbb{G}_m)$$
; norm one tori (3/5)

Theorem (Endo, 2011) dim T = n - 1

Assume that $\operatorname{Gal}(L/k) = S_n$, $n \ge 3$, and $\operatorname{Gal}(L/K) = S_{n-1}$ is the stabilizer of one of the letters in S_n . (i) $R_{K/k}^{(1)}(\mathbb{G}_m)$ is retract k-rational $\iff n$ is a prime; (ii) $R_{K/k}^{(1)}(\mathbb{G}_m)$ is (stably) k-rational $\iff n = 3$.

Theorem (Endo, 2011) dim T = n - 1

Assume that $\operatorname{Gal}(L/k) = A_n$, $n \ge 4$, and $\operatorname{Gal}(L/K) = A_{n-1}$ is the stabilizer of one of the letters in A_n . (i) $R_{K/k}^{(1)}(\mathbb{G}_m)$ is retract k-rational $\iff n$ is a prime; (ii) $\exists t \in \mathbb{N}$ s.t. $[R_{K/k}^{(1)}(\mathbb{G}_m)]^{(t)}$ is stably k-rational $\iff n = 5$.

• $[R_{K/k}^{(1)}(\mathbb{G}_m)]^{(t)}$: the product of t copies of $R_{K/k}^{(1)}(\mathbb{G}_m)$.

Special case:
$$T = R_{K/k}^{(1)}(\mathbb{G}_m)$$
; norm one tori (4/5)

Theorem ([HY17], Rationality for $R_{K/k}^{(1)}(\mathbb{G}_m)$ (dim. 4, [K:k] = 5))

Let K/k be a separable field extension of degree 5 and L/k be the Galois closure of K/k. Assume that $G = \operatorname{Gal}(L/k)$ is a transitive subgroup of S_5 and $H = \operatorname{Gal}(L/K)$ is the stabilizer of one of the letters in G. Then the rationality of $R_{K/k}^{(1)}(\mathbb{G}_m)$ is given by

G		$L(M) = L(x_1, x_2, x_3, x_4)^G$
5T1	C_5	stably k-rational
5T2	D_5	stably k-rational
5T3	F_{20}	not stably but retract k -rational
5T4	A_5	stably k-rational
5T5	S_5	not stably but retract k -rational

This theorem is already known except for the case of A₅ (Endo).

Stably k-rationality for the case A_5 is asked by S. Endo (2011).

Special case:
$$T = R_{K/k}^{(1)}(\mathbb{G}_m)$$
; norm one tori (5/5)

Corollary of (Endo, 2011) and [HY17]

Assume that $\operatorname{Gal}(L/k) = A_n$, $n \ge 4$, and $\operatorname{Gal}(L/K) = A_{n-1}$ is the stabilizer of one of the letters in A_n . Then $R_{K/k}^{(1)}(\mathbb{G}_m)$ is stably k-rational $\iff n = 5$.

More recent results on stably/retract k-rational classification for T

▶ $G \leq S_n \ (n \leq 10)$ and $G \neq 9T27 \simeq PSL_2(\mathbb{F}_8)$, $G \leq S_p$ and $G \neq PSL_2(\mathbb{F}_{2^e}) \ (p = 2^e + 1 \geq 17$; Fermat prime) (Hoshi-Yamasaki, 2021, Israel J. Math.)

 $\operatorname{III}(T)$ and Hasse norm principle over number fields k

 (Hoshi-Kanai-Yamasaki, 2022, Math. Comp., 2023, J. Number Theory, 2024, J. Algebra, and arXiv:2210.09119)

Akinari Hoshi (Niigata University) Ra

§5. Norm one tori and Hasse norm principle (HNP)

▶ k: a global field, i.e. a number field or a finite extension of $\mathbb{F}_q(t)$.

Definition (Hasse norm principle)

Let k be a global field. K/k be a finite extension and \mathbb{A}_K^{\times} be the idele group of K. We say that the Hasse norm principle holds for K/k if

$$Obs(K/k) := (N_{K/k}(\mathbb{A}_K^{\times}) \cap k^{\times})/N_{K/k}(K^{\times}) = 1$$

where $N_{K/k}$ is the norm map.

Theorem (Hasse's norm theorem 1931)

If K/k is a cyclic extension of a number field, then

Obs(K/k) = 1.

Example (Hasse [Has31]): $Obs(\mathbb{Q}(\sqrt{-39}, \sqrt{-3})/\mathbb{Q}) \simeq \mathbb{Z}/2\mathbb{Z}$. $Obs(\mathbb{Q}(\sqrt{2}, \sqrt{-1})/\mathbb{Q}) = 1$.

In both cases, Galois group $G \simeq V_4$ (Klein four-group).

Tate's theorem (1967)

For any Galois extension K/k, Tate gave:

Theorem (Tate 1967, in Alg. Num. Th. ed. by Cassels and Fröhlich)

Let K/k be a finite Galois extension with Galois group $Gal(K/k) \simeq G$. Let V_k be the set of all places of k and G_v be the decomposition group of G at $v \in V_k$. Then

$$\operatorname{Obs}(K/k) \simeq \operatorname{Coker} \{ \bigoplus_{v \in V_k} \widehat{H}^{-3}(G_v, \mathbb{Z}) \xrightarrow{\operatorname{cores}} \widehat{H}^{-3}(G, \mathbb{Z}) \}$$

where \hat{H} is the Tate cohomology. In particular, In particular, the Hasse norm principle holds for K/k if and only if the restriction map $H^3(G,\mathbb{Z}) \xrightarrow{\text{res}} \bigoplus_{v \in V_k} H^3(G_v,\mathbb{Z})$ is injective.

- If G ≃ C_n is cyclic, then H³(C_n, Z) ≃ H¹(C_n, Z) = 0 and hence the Hasse's original theorem follows.
- ▶ If $G \simeq V_4$, then $Obs(K/k) = 0 \iff \exists v \in V_k$ such that $G_v = V_4$ $(H^3(V_4, \mathbb{Z}) = \mathbb{Z}/2\mathbb{Z})$ (v: should be ramified).

Known results for HNP (1/2)

The HNP for Galois extensions K/k was investigated by Gerth [Ger77], [Ger78], Gurak [Gur78a], [Gur78b], [Gur80], Morishita [Mor90], Horie [Hor93], Takeuchi [Tak94], Kagawa [Kag95], etc.

(Gurak 1978; Endo-Miyata 1975 + Ono 1963)
 If all the Sylow subgroups of Gal(K/k) is cyclic, then Obs(K/k) = 0.

However, for non-Galois extensions K/k, very little is known whether the Hasse norm principle holds:

- (Bartels 1981) [K:k] = p; prime \Rightarrow HNP for K/k holds.
- (Bartels 1981) [K:k] = n and Galois closure $Gal(L/k) \simeq D_n$ \Rightarrow HNP for K/k holds.
- ▶ (Voskresenskii-Kunyavskii 1984) [K:k] = n and $Gal(L/k) \simeq S_n$ ⇒ HNP for K/k holds.
- (Macedo 2020) [K : k] = n and Gal(L/k) ≃ A_n
 ⇒ HNP for K/k holds if n ≥ 5; n = 6 using Hoshi-Yamasaki [HY17].

Ono's theorem (1963)

- ▶ T : algebraic k-torus, i.e. $T \times_k \overline{k} \simeq (\mathbb{G}_{m,\overline{k}})^n$.
- $\operatorname{III}(T) := \operatorname{Ker}\{H^1(k,T) \xrightarrow{\operatorname{res}} \bigoplus_{v \in V_k} H^1(k_v,T)\}$: Shafarevich-Tate gp.
- The norm one torus $R_{K/k}^{(1)}(\mathbb{G}_m)$ of K/k:

$$1 \longrightarrow R_{K/k}^{(1)}(\mathbb{G}_m) \longrightarrow R_{K/k}(\mathbb{G}_{m,K}) \xrightarrow{\mathcal{N}_{K/k}} \mathbb{G}_{m,k} \longrightarrow 1$$

where $R_{K/k}$ is the Weil restriction.

▶ $R_{K/k}^{(1)}(\mathbb{G}_m)$ is biregularly isomorphic to the norm hyper surface $f(x_1, \ldots, x_n) = 1$ where $f \in k[x_1, \ldots, x_n]$ is the norm form of K/k.

Theorem (Ono 1963, Ann. of Math.)

Let K/k be a finite extension and $T = R_{K/k}^{(1)}(\mathbb{G}_m)$. Then

$$\operatorname{III}(T) \simeq \operatorname{Obs}(K/k).$$

Akinari Hoshi (Niigata University) Rat

Rationality problem, norm 1 tori and HNP

July 28, 2025

Known results for HNP (2/2)

•
$$T = R_{K/k}^{(1)}(\mathbb{G}_m).$$

• $\operatorname{III}(T) \simeq \operatorname{Obs}(K/k).$

Theorem (Kunyavskii 1984)

Let [K:k] = 4, $G = \operatorname{Gal}(L/k) \simeq 4Tm$ $(1 \le m \le 5)$. Then $\operatorname{III}(T) = 0$ except for 4T2 and 4T4. For $4T2 \simeq V_4$, $4T4 \simeq A_4$, (i) $\operatorname{III}(T) \le \mathbb{Z}/2\mathbb{Z}$; (ii) $\operatorname{III}(T) = 0 \Leftrightarrow \exists v \in V_k$ such that $V_4 \le G_v$.

Theorem (Drakokhrust-Platonov 1987)

Let [K:k] = 6, $G = \operatorname{Gal}(L/k) \simeq 6Tm$ $(1 \le m \le 16)$. Then $\operatorname{III}(T) = 0$ except for 6T4 and 6T12. For $6T4 \simeq A_4$, $6T12 \simeq A_5$, (i) $\operatorname{III}(T) \le \mathbb{Z}/2\mathbb{Z}$; (ii) $\operatorname{III}(T) = 0 \Leftrightarrow \exists v \in V_k$ such that $V_4 \le G_v$.

Theorem (Voskresenskii 1969)

Let k be a global field, T be an algebraic k-torus and X be a smooth k-compactification of T. Then there exists an exact sequence

$$0 \to A(T) \to H^1(k, \operatorname{Pic} \overline{X})^{\vee} \to \operatorname{III}(T) \to 0$$

where $M^{\vee} = \operatorname{Hom}(M, \mathbb{Q}/\mathbb{Z})$ is the Pontryagin dual of M.

- ▶ The group $A(T) := \left(\prod_{v \in V_k} T(k_v)\right) / \overline{T(k)}$ is called the kernel of the weak approximation of T.
- T : retract rational ⇔ [Î]^{fl} = [Pic X̄] is invertible
 ⇒ Pic X̄ is flabby and coflabby
 ⇒ H¹(k, Pic X̄)[∨] = 0 ⇒ A(T) = III(T) = 0.
 when T = R⁽¹⁾_{K/k}(G_m), by Ono's theorem III(T) ≃ Obs(K/k),
 - when $I = R_{K/k}(\mathbb{G}_m)$, by Ono's theorem $\operatorname{III}(I) \simeq \operatorname{Obs}(K/k)$, T: retract k-rational $\Longrightarrow \operatorname{Obs}(K/k) = 0$ (HNP for K/k holds).

Voskresenskii's theorem (1969) (2/2)

▶ when $T = R_{K/k}^{(1)}(\mathbb{G}_m)$, by Ono's theorem $\operatorname{III}(T) \simeq \operatorname{Obs}(K/k)$, T: retract k-rational $\Longrightarrow \operatorname{Obs}(K/k) = 0$ (HNP for K/k holds).

▶ when
$$T = R_{K/k}^{(1)}(\mathbb{G}_m)$$
, $\widehat{T} = J_{G/H}$ where
 $J_{G/H} = (I_{G/H})^{\circ} = \operatorname{Hom}(I_{G/H}, \mathbb{Z})$ is the dual lattice of
 $I_{G/H} = \operatorname{Ker}(\varepsilon)$ and $\varepsilon : \mathbb{Z}[G/H] \to \mathbb{Z}$ is the augmentation map.

- (Hoshi-Yamasaki, 2018, Hasegawa-Hoshi-Yamasaki, 2020)
 For [K : k] = n ≤ 17 except 9T27 ≃ PSL₂(𝔽₈), the classification of stably/retract rational R⁽¹⁾_{K/k}(𝔄_m) was given.
- ▶ H¹(k, Pic X) ≃ Br(X)/Br(k) ≃ Br_{nr}(k(X)/k)/Br(k) where Br(X) is the étale cohomological/Azumaya Brauer group of X by Colliot-Thélène-Sansuc 1987.

Main theorems 1, 2, 3, 4, 5 (1/3)

▶ $\exists 2, 13, 73, 710, 6079$ cases of alg. k-tori T of dim(T) = 1, 2, 3, 4, 5. • X: a smooth k-compactification of T, $\overline{X} = X \times_k \overline{k}$.

Theorem 1 ([HKY22, Theorem 1.5 and Theorem 1.6]) (i) $\dim(T) = 4$. Among the 216 cases (of 710) of not retract k-rational T, $H^{1}(k, \operatorname{Pic} \overline{X}) \simeq \begin{cases} 0 & (194 \text{ of } 216), \\ \mathbb{Z}/2\mathbb{Z} & (20 \text{ of } 216), \\ (\mathbb{Z}/2\mathbb{Z})^{\oplus 2} & (2 \text{ of } 216). \end{cases}$ (ii) $\dim(T) = 5$. Among 3003 cases (of 6079) of not retract k-rational T, $H^{1}(k, \operatorname{Pic} \overline{X}) \simeq \begin{cases} 0 & (2729 \text{ of } 3003), \\ \mathbb{Z}/2\mathbb{Z} & (263 \text{ of } 3003), \\ (\mathbb{Z}/2\mathbb{Z})^{\oplus 2} & (11 \text{ of } 3003). \end{cases}$

Kunyavskii (1984) showed that among the 15 cases (of 73) of not retract k-rational T of dim(T) = 3, $H^1(k, \operatorname{Pic} \overline{X}) = 0$ (13 of 15), $H^1(k, \operatorname{Pic} \overline{X}) \simeq \mathbb{Z}/2\mathbb{Z}$ (2 of 15).

Akinari Hoshi (Niigata University)

Main theorems 1, 2, 3, 4, 5 (2/3)

▶ k : a field, K/k : a separable field extension of [K:k] = n.

•
$$T = R_{K/k}^{(1)}(\mathbb{G}_m)$$
 with $\dim(T) = n - 1$.

- X : a smooth k-compactification of T.
- ▶ L/k: Galois closure of K/k, G := Gal(L/k) and H = Gal(L/K)with $[G:H] = n \Longrightarrow G = nTm \le S_n$: transitive.

Theorem 2 ([HKY22, Theorem 1.5], [HKY23, Theorem 1.1])

Let $2 \le n \le 15$ be an integer. Then $H^1(k, \operatorname{Pic} \overline{X}) \ne 0 \iff G = nTm$ is given as in [HKY22, Table 1] $(n \ne 12)$ or [HKY23, Table 1] (n = 12).

► The number of transitive subgroups nTm of S_n (2 ≤ n ≤ 16) up to conjugacy (with H¹(k, Pic X) ≠ 0) is given as follows:

								9	
# of nTm	1	2	5	5	16	7	50	34	45
$\frac{\# \text{ of } nTm}{(\text{with } H^1(k, \operatorname{Pic} \overline{X}) \neq 0)}$	0	0	2	0	2	0	15	7	3
n	11		12	13	14	1	5	16	
# of nTm	8	3	01	9	63	10	4	1954	
(with $H^1(k, \operatorname{Pic} \overline{X}) \neq 0$)	0		64	0	1		2	853	

Akinari Hoshi (Niigata University) Rationality pro

Rationality problem, norm 1 tori and HNP

[HKY22, Table 1]: $H^1(k, \operatorname{Pic} \overline{X}) \simeq H^1(G, [J_{G/H}]^{fl}) \neq 0$ where $G = nTm$ with $2 \le n \le 15$ and $n \ne 12$					
G	$H^1(k, \operatorname{Pic} \overline{X}) \simeq H^1(G, [J_{G/H}]^{fl})$				
$4T2 \simeq V_4$	$\mathbb{Z}/2\mathbb{Z}$				
$4T4 \simeq A_4$	$\mathbb{Z}/2\mathbb{Z}$				
$6T4 \simeq A_4$	$\mathbb{Z}/2\mathbb{Z}$				
$6T12 \simeq A_5$	$\mathbb{Z}/2\mathbb{Z}$				
$8T2 \simeq C_4 \times C_2$	$\mathbb{Z}/2\mathbb{Z}$				
$8T3 \simeq (C_2)^3$	$(\mathbb{Z}/2\mathbb{Z})^{\oplus 3}$				
$8T4 \simeq D_4$	$\mathbb{Z}/2\mathbb{Z}$				
$8T9 \simeq D_4 \times C_2$	$\mathbb{Z}/2\mathbb{Z}$				
$8T11 \simeq (C_4 \times C_2) \rtimes C_2$	$\mathbb{Z}/2\mathbb{Z}$				
$8T13 \simeq A_4 \times C_2$	$\mathbb{Z}/2\mathbb{Z}$				
$8T14 \simeq S_4$	$\mathbb{Z}/2\mathbb{Z}$				
$8T15 \simeq C_8 \rtimes V_4$	$\mathbb{Z}/2\mathbb{Z}$				
$8T19 \simeq (C_2)^3 \rtimes C_4$	$\mathbb{Z}/2\mathbb{Z}$				
$8T21 \simeq (C_2)^3 \rtimes C_4$	$\mathbb{Z}^{'}/2\mathbb{Z}$				
$8T22 \simeq (C_2)^3 \rtimes V_4$	$\mathbb{Z}/2\mathbb{Z}$				
$8T31 \simeq ((C_2)^4 \rtimes C_2) \rtimes C_2$	$\mathbb{Z}/2\mathbb{Z}$				
$8T32 \simeq ((C_2)^3 \rtimes V_4) \rtimes C_3$	$\mathbb{Z}^{'}/2\mathbb{Z}$				
$8T37 \simeq \mathrm{PSL}_3(\mathbb{F}_2) \simeq \mathrm{PSL}_2(\mathbb{F}_7)$	$\mathbb{Z}^{'}/2\mathbb{Z}$				
$8T38 \simeq (((C_2)^4 \rtimes C_2) \rtimes C_2) \rtimes C_3$	$\mathbb{Z}^{/2}\mathbb{Z}$				

Akinari Hoshi (Niigata University)

Rationality problem, norm 1 tori and HNP

July 28, 2025

[HKY22, Table 1]: $H^1(k, \operatorname{Pic} \overline{X}) \simeq H^1(G, [J_{G/H}]^{fl}) \neq 0$ where $G = nTm$ with $2 \le n \le 15$ and $n \ne 12$					
G	$H^1(k, \operatorname{Pic} \overline{X}) \simeq H^1(G, [J_{G/H}]^{fl})$				
$9T2 \simeq (C_3)^2$	$\mathbb{Z}/3\mathbb{Z}$				
$9T5 \simeq (C_3)^2 \rtimes C_2$	$\mathbb{Z}/3\mathbb{Z}$				
$9T7 \simeq (C_3)^2 \rtimes C_3$	$\mathbb{Z}/3\mathbb{Z}$				
$9T9 \simeq (C_3)^2 \rtimes C_4$	$\mathbb{Z}/3\mathbb{Z}$				
$9T11 \simeq (C_3)^2 \rtimes C_6$	$\mathbb{Z}/3\mathbb{Z}$				
$9T14 \simeq (C_3)^2 \rtimes Q_8$	$\mathbb{Z}/3\mathbb{Z}$				
$9T23 \simeq ((C_3)^2 \rtimes Q_8) \rtimes C_3$	$\mathbb{Z}/3\mathbb{Z}$				
$10T7 \simeq A_5$	$\mathbb{Z}/2\mathbb{Z}$				
$10T26 \simeq \mathrm{PSL}_2(\mathbb{F}_9) \simeq A_6$	$\mathbb{Z}/2\mathbb{Z}$				
$10T32 \simeq S_6$	$\mathbb{Z}/2\mathbb{Z}$				
$14T30 \simeq \mathrm{PSL}_2(\mathbb{F}_{13})$	$\mathbb{Z}/2\mathbb{Z}$				
$15T9 \simeq (C_5)^2 \rtimes C_3$	$\mathbb{Z}/5\mathbb{Z}$				
$15T14 \simeq (C_5)^2 \rtimes S_3$	$\mathbb{Z}/5\mathbb{Z}$				

Theorem 3 ([HKY25, Theorem 1.1]) [K:k] = 16

Assume that $G = \operatorname{Gal}(L/k) = 16Tm \ (1 \le m \le 1954)$ is a transitive subgroup of S_{16} and $H = \operatorname{Gal}(L/K)$ with [G:H] = 16. Then

	$\left(\mathbb{Z}/2\mathbb{Z}\right)$	if m is given as in [HKY25, Table 1-1] (774 cases),
	$(\mathbb{Z}/2\mathbb{Z})^{\oplus 2}$	if m is given as in [HKY25, Table 1-1] (774 cases), if $m = 7, 10, 11, 46, 58, 61, 73, 76, 82, 87, 89, 107, 113, 118, 120, 128, 120, 138, 142, 162, 164, 165, 178, 183, 206, 207, 308$
	1	120, 120, 129, 130, 142, 102, 104, 100, 170, 100, 200, 297, 500,
		319, 414, 731, 1080 (31 cases),
	$(\mathbb{Z}/2\mathbb{Z})^{\oplus 3}$	319, 414, 731, 1080 (31 cases), if $m = 2, 9, 18, 20, 23, 25, 67, 69, 83, 92, 98, 101, 127, 173,$ 197, 202, 212, 241, 246, 270, 295, 301, 313, 358, 372, 440, 463, 466, 604, 632, 649, 656, 794, 801, 1082, 1187, 1378 (37 cases).
$H^1(k, \operatorname{Pic} \overline{X}) = \cdot$	{	197, 202, 212, 241, 246, 270, 295, 301, 313, 358, 372, 440, 463,
		466, 604, 632, 649, 656, 794, 801, 1082, 1187, 1378 (37 cases),
	$(\mathbb{Z}/2\mathbb{Z})^{\oplus 4}$	466, 604, 632, 649, 656, 794, 801, 1082, 1187, 1378 (37 cases), if $m = 64$ (1 case), if $m = 3$ (1 case), if $m = 4, 51, 63, 143, 185, 323, 375, 430, 769$ (9 cases), otherwise (1101 cases).
	$(\mathbb{Z}/2\mathbb{Z})^{\oplus 6}$	if $m = 3$ (1 case),
	$\mathbb{Z}/4\mathbb{Z}$	if $m = 4, 51, 63, 143, 185, 323, 375, 430, 769$ (9 cases),
	0	otherwise (1101 cases).

16T64 ≃ (C₂)⁴ ⋊ C₃ with H¹(k, Pic X̄) ≃ (Z/2Z)⁴.
16T3 ≃ (C₂)⁴ with H¹(k, Pic X̄) ≃ (Z/2Z)⁶.
16T4 ≃ (C₄)², 16T51 ≃ (C₄)² ⋊ C₂, 16T63 ≃ (C₄)² ⋊ C₃, 16T143 ≃ (C₄)² ⋊ C₄, 16T185 ≃ (C₄)² ⋊ C₆, 16T430 ≃ (C₄)² ⋊ Q₁₂ with H¹(k, Pic X̄) ≃ Z/4Z.
Akinari Hoshi (Niigata University) Rationality problem, norm 1 tori and HNP July 28, 2025

Main theorems 1, 2, 3, 4, 5 (3/3)

k : a number field, K/k : a separable field extension of [K : k] = n.
 T = R⁽¹⁾_{K/k}(𝔅m), X : a smooth k-compactification of T.

Theorem 4 ([HKY22, Th 1.18], [HKY23, Th 1.3], [HKY25, Th 1.4])

Let $2 \le n \le 16$ be an integer. For G = nTm with $H^1(k, \operatorname{Pic} \overline{X}) \ne 0$, assume G is primitive (\exists 22 cases), i.e. $H \le G$: maximal, when n = 16,

 $\operatorname{III}(T) = 0 \iff G = nTm \text{ satisfies } | \text{ some conditions } | \text{ of } G_v$

where G_v is the decomposition group of G at v.

▶ By Ono's theorem III(T) ≃ Obs(K/k), Theorem 4 gives a necessary and sufficient condition for HNP holds for K/k.

Theorem 5 ([HKY22, Theorem 1.17])

Assume that $G = M_n \leq S_n$ (n = 11, 12, 22, 23, 24) is the Mathieu group of degree n. Then $H^1(k, \operatorname{Pic} \overline{X}) = 0$. In particular, $\operatorname{III}(T) = 0$.

Examples of Theorem 4

Example ($G = 8T4 \simeq D_4$, $8T13 \simeq A_4 \times C_2$, $8T14 \simeq S_4$, $8T37 \simeq \text{PSL}_2(\mathbb{F}_7)$, $10T7 \simeq A_5$, $14T30 \simeq \text{PSL}_2(\mathbb{F}_{13})$)

 $\operatorname{III}(T) = 0 \iff \exists v \in V_k \text{ such that } V_4 \leq G_v.$

Example ($G = 10T26 \simeq PSL_2(\mathbb{F}_9)$)

 $\operatorname{III}(T) = 0 \iff \exists v \in V_k \text{ such that } D_4 \leq G_v.$

Example ($G = 10T32 \simeq S_6 \leq S_{10}$)

$$\begin{split} & \mathrm{III}(T) = 0 \iff {}^{\exists} v \in V_k \text{ such that} \\ & (\mathrm{i}) \ V_4 \leq G_v \text{ where } N_{\widetilde{G}}(V_4) \simeq C_8 \rtimes (C_2 \times C_2) \text{ for the normalizer } N_{\widetilde{G}}(V_4) \\ & \mathrm{of} \ V_4 \text{ in } \widetilde{G} \text{ with the normalizer } \widetilde{G} = N_{S_{10}}(G) \simeq \mathrm{Aut}(G) \text{ of } G \text{ in } S_{10} \text{ or} \\ & (\mathrm{ii}) \ D_4 \leq G_v \text{ where } D_4 \leq [G,G] \simeq A_6. \end{split}$$

45/165 subgroups V₄ ≤ G satisfy (i).
 45/180 subgroups D₄ ≤ G satisfy (ii).

Akinari Hoshi (Niigata University)

81/81