Degree three unramified cohomology groups and Noether’s problem for groups of order 243

Akinari Hoshi1 Ming-chang Kang2 Aiichi Yamasaki3

1Niigata University

2National Taiwan University

3Kyoto University

Mach 18, 2018
Table of contents

1 Noether’s problem over \mathbb{C} and unramified Brauer groups

2 Noether’s problem over \mathbb{C} and unramified cohomology groups

$$\text{Br}_{nr}(X/\mathbb{C}) \cong H^3(X, \mathbb{Z})_{\text{tors}}; \text{ Artin-Mumford invariant}$$

$$H^3_{nr}(X, \mathbb{Q}/\mathbb{Z}) \cong \text{Hdg}^4(X, \mathbb{Z})/\text{Hdg}^4(X, \mathbb{Z})_{\text{alg}} \leftrightarrow \text{integral Hodge conjecture}$$

For any smooth projective complex variety X, there is an exact sequence

$$0 \rightarrow H^3_{nr}(X, \mathbb{Z}) \otimes \mathbb{Q}/\mathbb{Z} \rightarrow H^3_{nr}(X, \mathbb{Q}/\mathbb{Z}) \rightarrow \text{Tors}(Z^4(X)) \rightarrow 0$$

where

$$Z^4(X) = \text{Hdg}^4(X, \mathbb{Z})/\text{Hdg}^4(X, \mathbb{Z})_{\text{alg}}$$

and the lower index "alg" means that we consider the group of integral Hodge classes which are algebraic. In particular, if X is rationally connected, then we have

$$H^3_{nr}(X, \mathbb{Q}/\mathbb{Z}) \cong \text{Hdg}^4(X, \mathbb{Z})/\text{Hdg}^4(X, \mathbb{Z})_{\text{alg}}.$$

We show $H^3_{nr}(X, \mathbb{Q}/\mathbb{Z}) \cong \mathbb{Z}/3\mathbb{Z}$ for some $X = \mathbb{P}^n/G$ with $|G| = 3^5 = 243$.
§1. Noether’s problem/\(\mathbb{C}\) and unram. Brauer group (1/4)

- \(k\); field, \(G\); finite group
- \(G \curvearrowright k\); trivial, \(G \curvearrowright k(x_g \mid g \in G)\); permutation.
- \(k(G) := k(x_g \mid g \in G)^G\); invariant field

Noether’s problem (Emmy Noether, 1913)

Is \(k(G)\) rational over \(k\)?, i.e. \(k(G) \simeq k(t_1, \ldots, t_n)\)?

- Is the quotient variety \(\mathbb{P}^n/G\) rational over \(k\)?
- Assume \(G = A\); abelian group.
- (Fisher, 1915) \(\mathbb{C}(A)\) is rational over \(\mathbb{C}\).
Noether’s problem/\mathbb{C} and unram. Brauer group (2/4)

Let G be a p-group. $\mathbb{C}(G) := \mathbb{C}(x_g \mid g \in G)^G$.

- (Saltman, 1984, Invent. Math.)
 For $\forall p$; prime, \exists meta-abelian p-group G of order p^9
 such that $\mathbb{C}(G)$ is not retract rational over \mathbb{C}.

- (Bogomolov, 1988)
 For $\forall p$; prime, \exists p-group G of order p^6
 such that $\mathbb{C}(G)$ is not retract rational over \mathbb{C}.

Indeed they showed $\text{Br}_{\text{nr}}(\mathbb{C}(G)/\mathbb{C}) \neq 0$; unramified Brauer group

- rational \Rightarrow stably rational \Rightarrow retract rational \Rightarrow $\text{Br}_{\text{nr}}(\mathbb{C}(G)) = 0$.
- not rational \iff not stably rational \iff not retract rational \iff $\text{Br}_{\text{nr}}(\mathbb{C}(G)) \neq 0$.
Unramified Brauer group (1/2)

Definition (Unramified Brauer group) Saltman (1984)

Let \(k \subset K \) be an extension of fields.

\[
\text{Br}_{nr}(K/k) := \bigcap_{k \subset R \subset K: \text{DVR} \quad \text{and} \quad Q(R) = K} \text{Image}\{\text{Br}(R) \rightarrow \text{Br}(K)\}.
\]

- If \(K \) is retract rational over \(k \), then \(\text{Br}(k) \xrightarrow{\sim} \text{Br}_{nr}(K/k) \).
 In particular, if \(K \) is retract rational over \(\mathbb{C} \), then \(\text{Br}_{nr}(K/\mathbb{C}) = 0 \).

- For a smooth projective variety \(X \) over \(\mathbb{C} \) with function field \(K \),
 \(\text{Br}_{nr}(K/\mathbb{C}) \cong H^3(X, \mathbb{Z})_{\text{tors}} \) which is given by Artin-Mumford (1972).
Unramified Brauer group (2/2)

- \(K = C(G) \).

Theorem (Bogomolov 1988, Saltman 1990) \(\text{Br}_{\text{nr}}(\mathbb{C}(G)/\mathbb{C}) \cong B_0(G) \)

Let \(G \) be a finite group. Then \(\text{Br}_{\text{nr}}(\mathbb{C}(G)/\mathbb{C}) \) is isomorphic to

\[
B_0(G) = \bigcap_{A \leq G: \text{bicyclic}} \ker \{ \text{res} : H^2(G, \mathbb{Q}/\mathbb{Z}) \to H^2(A, \mathbb{Q}/\mathbb{Z}) \}.
\]

- \(C(G) : \) “retract rational” \(\implies B_0(G) = 0 \).
- \(B_0(G) \neq 0 \implies C(G) : \) not (retract) rational over \(k \).
- \(B_0(G) \leq H^2(G, \mathbb{Q}/\mathbb{Z}) \cong H_2(G, \mathbb{Z}) ; \) Schur multiplier.
- \(B_0(G) \) is called Bogomolov multiplier.
Noether’s problem/\mathbb{C} and unram. Brauer group ($3/4$)

- (Chu-Kang, 2001) G is p-group ($|G| \leq p^4 \implies \mathbb{C}(G)$ is rational.

Theorem (Moravec, 2012, Amer. J. Math.)

Assume $|G| = 3^5 = 243$. $B_0(G) \neq 0 \iff G = G(243, i)$, $28 \leq i \leq 30$.

In particular, $\exists 3$ groups G such that $C(G)$ is not retract rational over \mathbb{C}.

- $\exists G$: 67 groups such that $|G| = 243$.

Theorem (H-Kang-Kunyavskii, 2013, Asian J. Math.)

Assume $|G| = p^5$ where p is odd prime.

$B_0(G) \neq 0 \iff G$ belongs to the isoclinism family Φ_{10}.

In particular, $\exists \gcd(4, p - 1) + \gcd(3, p - 1) + 1$ (resp. $\exists 3$) groups G of order p^5 ($p \geq 5$) (resp. $p = 3$) s.t. $C(G)$ is not retract rational over \mathbb{C}.

- $\exists 2p + 61 + \gcd(4, p - 1) + 2 \gcd(3, p - 1)$ groups such that $|G| = p^5 (p \geq 5)$. ($\exists \Phi_1, \ldots, \Phi_{10}$)
From the proof (1/3)

Definition (isoclinic)

p-groups G_1 and G_2 are **isoclinic** \iff isom. $\theta : G_1/Z(G_1) \sim G_2/Z(G_2)$, $\phi : [G_1, G_1] \sim [G_2, G_2]$ such that

$$
\begin{array}{c}
G_1/Z(G_1) \times G_1/Z(G_1) \\
\downarrow \left[[,] \right]
\end{array}
\xrightarrow{\sim}
\begin{array}{c}
G_2/Z(G_2) \times G_2/Z(G_2) \\
\downarrow \left[[,] \right]
\end{array}
\xrightarrow{\phi \left[[,] \right]} [G_2, G_2]
$$

Invariants

- lower central series
- $\#$ of conj. classes with precisely p^i members
- $\#$ of irr. complex rep. of G of degree p^i
From the proof (2/3)

1. $|G| = p^4 (p > 2)$. There exist 15 groups (Φ_1, Φ_2, Φ_3)

2. $|G| = 2^4 = 16$. There exist 14 groups (Φ_1, Φ_2, Φ_3)

3. $|G| = p^5 (p > 3)$. There exist $2p + 61 + (4, p - 1) + 2 \times (3, p - 1)$ groups $(\Phi_1, \ldots, \Phi_{10})$

| | Φ_1 | Φ_2 | Φ_3 | Φ_4 | Φ_5 | Φ_6 | Φ_7 | Φ_8
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>7</td>
<td>15</td>
<td>13</td>
<td>$p + 8$</td>
<td>2</td>
<td>$p + 7$</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>$(p = 3)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| | Φ_9 | Φ_{10}
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>$2 + (3, p - 1)$</td>
<td>$1 + (4, p - 1) + (3, p - 1)$</td>
</tr>
<tr>
<td>$(p = 3)$</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>
Let G_1 and G_2 be isoclinic p-groups. Is it true that the fields $k(G_1)$ and $k(G_2)$ are stably isomorphic, i.e. $k(G_1)(\exists s_1, \ldots, \exists s_m) \simeq k(G_2)(\exists t_1, \ldots, \exists t_n)$, or, at least, that $B_0(G_1) \simeq B_0(G_2)$?

Theorem (Moravec, 2013)

G_1 and G_2 are isoclinic $\implies B_0(G_1) \simeq B_0(G_2)$.

Theorem (Bogomolov-Böhning, 2013)

G_1 and G_2 are isoclinic $\implies \mathbb{C}(G_1)$ and $\mathbb{C}(G_2)$ are stably isomorphic.
Noether’s problem/\mathbb{C} and unram. Brauer group (4/4)

Theorem (H-Kang-Kunyavskii, 2013, Asian J. Math.)

Assume $|G| = p^5$ where p is odd prime.

$B_0(G) \neq 0 \iff G$ belongs to the isoclinism family Φ_{10}.

Theorem (Chu-H-Hu-Kang, 2015, J. Algebra) $|G| = 3^5 = 243$

If $B_0(G) = 0$, then $\mathbb{C}(G)$ is rational over \mathbb{C} except for Φ_7.

- Rationality of Φ_7 was unknown.
- Φ_5 and Φ_7 are very similar: $C = 1$ (Φ_5), $C = \omega$ (Φ_7).

$\mathbb{C}(G)$ is stably isomorphic to $\mathbb{C}(z_1, z_2, z_3, z_4, z_5, z_6, z_7, z_8, z_9)\langle f_1, f_2 \rangle$

$$f_1 : z_1 \mapsto z_2, z_2 \mapsto \frac{1}{z_1 z_2}, z_3 \mapsto z_4, z_4 \mapsto \frac{1}{z_3 z_4},$$
$$z_5 \mapsto \frac{z_5}{z_2 z_3}, z_6 \mapsto \frac{z_1 z_6}{z_3}, z_7 \mapsto z_8, z_8 \mapsto \frac{1}{z_7 z_8}, z_9 \mapsto \frac{z_4 z_9}{z_1},$$

$$f_2 : z_1 \mapsto z_3, z_2 \mapsto z_4, z_3 \mapsto \frac{1}{z_1 z_3}, z_4 \mapsto \frac{1}{z_2 z_4},$$
$$z_5 \mapsto z_6, z_6 \mapsto \frac{1}{z_5 z_6}, z_7 \mapsto C \frac{z_4 z_7}{z_3}, z_8 \mapsto C \frac{z_8}{z_3 z_2^4}, z_9 \mapsto \frac{z_4 z_9}{z_1}.$$
From $\text{Br}_{nr}(K/\mathbb{C})$ to $H^i_{nr}(K/\mathbb{C}, \mathbb{Q}/\mathbb{Z})$.

Definition (Colliot-Thélène and Ojanguren, 1989, Invent. Math.)

Let K/\mathbb{C} be a function field, that is finitely generated as a field over \mathbb{C}. The **unramified cohomology group** $H^i_{nr}(K/\mathbb{C}, \mu \otimes j)$ of K over \mathbb{C} of degree $i \geq 1$ is defined to be

$$H^i_{nr}(K/\mathbb{C}, \mu \otimes j) = \bigcap_{\mathbb{C} \subset R \subset K: \text{DVR of rank one and } Q(R) = K} \text{Ker}\{H^i(K, \mu \otimes j) \to H^{i-1}(\mathbb{A}_R, \mu \otimes (j-1))\}.$$

If K is the function field of a complete smooth variety over k, then

$$H^i_{nr}(K/\mathbb{C}, \mu \otimes j) = \bigcap_{\mathbb{C} \subset R \subset K: \text{DVR of rank one and } Q(R) = K} \text{Image}\{H^i_{\text{ét}}(R, \mu \otimes j) \to H^i_{\text{ét}}(K, \mu \otimes j)\}.$$

Note that $n\text{Br}_{nr}(K/\mathbb{C}) \simeq H^2_{nr}(K/\mathbb{C}, \mu_n)$.

§2. Noether’s problem/\mathbb{C} and unram. cohomology (1/7)
Theorem (Colliot-Thélène and Ojanguren, 1989)

If K and L are stably \mathbb{C}-isomorphic, then

\[
H^i_{\text{nr}}(K/\mathbb{C}, \mu_n^\otimes j) \sim H^i_{\text{nr}}(L/\mathbb{C}, \mu_n^\otimes j).
\]

In particular, K is stably \mathbb{C}-rational, then

\[
H^i_{\text{nr}}(K/\mathbb{C}, \mu_n^\otimes j) = 0.
\]

- Moreover, if K is retract \mathbb{C}-rational, then $H^i_{\text{nr}}(K/\mathbb{C}, \mu_n^\otimes j) = 0$.
- CTO (1989) $\exists K$ (trdeg$_{\mathbb{C}}K = 6$) s.t. $H^3_{\text{nr}}(K/\mathbb{C}, \mu_2^\otimes 3) \neq 0$.
- Peyre (1993) gave a sufficient condition for $H^i_{\text{nr}}(K/\mathbb{C}, \mu_p^\otimes i) \neq 0$:
 - $\exists K$ s.t. $H^3_{\text{nr}}(K/\mathbb{C}, \mu_p^\otimes 3) \neq 0$ and $\text{Br}_{\text{nr}}(K/\mathbb{C}) = 0$;
 - $\exists K$ s.t. $H^4_{\text{nr}}(K/\mathbb{C}, \mu_2^\otimes 4) \neq 0$ and $\text{Br}_{\text{nr}}(K/\mathbb{C}) = 0$.

Theorem (Asok, 2013, Compos. Math.)

(1) For any $n > 0$, \exists a smooth projective complex variety X that is \mathbb{C}-unirational, for which $H^i_{nr}(\mathbb{C}(X), \mu_{2^i}) = 0$ for each $i < n$, yet $H^n_{nr}(\mathbb{C}(X), \mu_{2^n}) \neq 0$, and so X is not \mathbb{A}^1-connected, nor (retract, stably) \mathbb{C}-rational;

(2) For any prime l and any $n \geq 2$, \exists a smooth projective rationally connected complex variety Y such that $H^n_{nr}(\mathbb{C}(Y), \mu_{l^n}) \neq 0$. In particular, Y is not \mathbb{A}^1-connected, nor (retract, stably) \mathbb{C}-rational.

- Namely, $H^i_{nr}(\mathbb{C}(X), \mu_{n^j}) = 0$ is just a necessary condition for \mathbb{C}-rationality.

- It is interesting to consider an analog of above for quotient varieties V/G, e.g. $\mathbb{C}(\mathbb{P}^n/G) = \mathbb{C}(G)$ (Noether’s problem).
Take the direct limit with respect to n:

$$H^i(K/\mathbb{C}, \mathbb{Q}/\mathbb{Z}(j)) = \lim_{\rightarrow n} H^i(K/\mathbb{C}, \mu_n \otimes j)$$

and we also define the unramified cohomology group

$$H^i_{nr}(K/\mathbb{C}, \mathbb{Q}/\mathbb{Z}(j)) = \bigcap_{R} \ker\{ H^i(K, \mathbb{Q}/\mathbb{Z}(j)) \rightarrow H^{i-1}(\mathbb{A}_R, \mathbb{Q}/\mathbb{Z}(j-1)) \}.$$

Then we have $\text{Br}_{nr}(K/\mathbb{C}) \simeq H^2_{nr}(K/\mathbb{C}, \mathbb{Q}/\mathbb{Z}(1))$.

- The case $K = \mathbb{C}(G)$:

\exists p-group G of order p^{12} such that $B_0(G) = 0$ and $H^3_{nr}(\mathbb{C}(G), \mathbb{Q}/\mathbb{Z}) \neq 0$. In particular, $\mathbb{C}(G)$ is not (retract, stably) \mathbb{C}-rational.
Noether’s problem over \mathbb{C} and unram. cohomology (5/7)

\exists p-group G of order p^{12} such that $B_0(G) = 0$ and $H^3_{nr}(\mathbb{C}(G), \mathbb{Q}/\mathbb{Z}) \neq 0$. In particular, $\mathbb{C}(G)$ is not (retract, stably) \mathbb{C}-rational.

Using Peyre’s method, we improved this result:

\textbf{Theorem (H-Kang-Yamasaki, 2016, J. Algebra)} p: any odd prime

\exists p-group G of order p^9 such that $B_0(G) = 0$ and $H^3_{nr}(\mathbb{C}(G), \mathbb{Q}/\mathbb{Z}) \neq 0$. In particular, $\mathbb{C}(G)$ is not (retract, stably) \mathbb{C}-rational.

Theorem (H-Kang-Yamasaki, arXiv:1710.01958) \(|G| = 3^5\)

\[H^3_{nr}(\mathbb{C}(G), \mathbb{Q}/\mathbb{Z}) \neq 0 \iff G \text{ belongs to the isoclinism family } \Phi_7. \]

Moreover, if \(H^3_{nr}(\mathbb{C}(G)/\mathbb{C}, \mathbb{Q}/\mathbb{Z}) \neq 0 \), then \(H^3_{nr}(\mathbb{C}(G)/\mathbb{C}, \mathbb{Q}/\mathbb{Z}) \cong \mathbb{Z}/3\mathbb{Z}. \)

\[
\begin{array}{cccccccccc}
|G| = 3^5 & \Phi_1 & \Phi_2 & \Phi_3 & \Phi_4 & \Phi_5 & \Phi_6 & \Phi_7 & \Phi_8 & \Phi_9 & \Phi_{10} \\
H^2_{nr}(\mathbb{C}(G), \mathbb{Q}/\mathbb{Z}) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \mathbb{Z}/3\mathbb{Z} \\
H^3_{nr}(\mathbb{C}(G), \mathbb{Q}/\mathbb{Z}) & 0 & 0 & 0 & 0 & 0 & 0 & \mathbb{Z}/3\mathbb{Z} & 0 & 0 & 0
\end{array}
\]

Corollary (H-Kang-Yamasaki, arXiv:1710.01958) \(|G| = 3^5\)

\(\mathbb{C}(G) \text{ is not rational over } \mathbb{C} \iff G \text{ belongs to } \Phi_7, \Phi_{10}. \)

\[H^3_{nr}(X, \mathbb{Q}/\mathbb{Z}) \cong \text{Hdg}^4(X, \mathbb{Z})/\text{Hdg}^4(X, \mathbb{Z})_{\text{alg}} \text{ (CT-Voisin, 2012).} \]
For $p \geq 5$?

Theorem (H-Kang-Yamasaki, arXiv:1710.01958) $|G| = 5^5$ or 7^5

$H^3_{nr}(\mathbb{C}(G), \mathbb{Q}/\mathbb{Z}) \neq 0 \iff G \text{ belongs to } \Phi_6, \Phi_7 \text{ or } \Phi_{10}$.

Moreover, if $H^3_{nr}(\mathbb{C}(G)/\mathbb{C}, \mathbb{Q}/\mathbb{Z}) \neq 0$, then $H^3_{nr}(\mathbb{C}(G)/\mathbb{C}, \mathbb{Q}/\mathbb{Z}) \simeq \mathbb{Z}/p\mathbb{Z}$.

| $|G| = p^5$ ($p = 5, 7$) | Φ_1 | Φ_2 | Φ_3 | Φ_4 | Φ_5 | Φ_6 | Φ_7 | Φ_8 | Φ_9 | Φ_{10} |
|-----------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| $H^2_{nr}(\mathbb{C}(G), \mathbb{Q}/\mathbb{Z})$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbb{Z}/p\mathbb{Z}$ |
| $H^3_{nr}(\mathbb{C}(G), \mathbb{Q}/\mathbb{Z})$ | 0 | 0 | 0 | 0 | 0 | $\mathbb{Z}/p\mathbb{Z}$ | $\mathbb{Z}/p\mathbb{Z}$ | 0 | 0 | $\mathbb{Z}/p\mathbb{Z}$ |

| $|G| = 3^5$ | Φ_1 | Φ_2 | Φ_3 | Φ_4 | Φ_5 | Φ_6 | Φ_7 | Φ_8 | Φ_9 | Φ_{10} |
|-----------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| $H^2_{nr}(\mathbb{C}(G), \mathbb{Q}/\mathbb{Z})$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbb{Z}/3\mathbb{Z}$ |
| $H^3_{nr}(\mathbb{C}(G), \mathbb{Q}/\mathbb{Z})$ | 0 | 0 | 0 | 0 | 0 | $\mathbb{Z}/3\mathbb{Z}$ | 0 | 0 | 0 | 0 |