Degree three unramifed cohomology groups and Noether's problem for groups of order 243

Akinari Hoshi 1 Ming-chang Kang 2 Aiichi Yamasaki 3

¹Niigata University

²National Taiwan University

³Kyoto University

Mach 18, 2018

Table of contents

- 1 Noether's problem over ${\mathbb C}$ and unramified Brauer groups
- **2** Noether's problem over $\mathbb C$ and unramified cohomology groups

Hoshi-Kang-Yamasaki, Degree three unramified cohomology groups and Noether's problem for groups of order 243, arXiv:1710.01958, 61 pages.

 $\operatorname{Br}_{\operatorname{nr}}(X/\mathbb{C}) \simeq H^3(X,\mathbb{Z})_{\operatorname{tors}}$; Artin-Mumford invariant

 $H^3_{\mathrm{nr}}(X, \mathbb{Q}/\mathbb{Z}) \simeq \mathrm{Hdg}^4(X, \mathbb{Z})/\mathrm{Hdg}^4(X, \mathbb{Z})_{\mathrm{alg}} \leftrightarrow \mathrm{integral} \ \mathrm{Hodge} \ \mathrm{conjecture}$

cf. Colliot-Thélène and Voisin, Duke Math. J. 161 (2012) 735-801.

Theorem (Colliot-Thélène and Voisin, 2012, Duke Math. J.)

For any smooth projective complex variety X, there is an exact sequence

$$0 \to H^3_{\mathrm{nr}}(X, \mathbb{Z}) \otimes \mathbb{Q}/\mathbb{Z} \to H^3_{\mathrm{nr}}(X, \mathbb{Q}/\mathbb{Z}) \to \mathrm{Tors}(Z^4(X)) \to 0$$

where

$$Z^4(X) = \mathrm{Hdg}^4(X, \mathbb{Z})/\mathrm{Hdg}^4(X, \mathbb{Z})_{\mathrm{alg}}$$

and the lower index "alg" means that we consider the group of integral Hodge classes which are algebraic. In particular, if X is rationally connected, then we have

$$H^3_{\mathrm{nr}}(X, \mathbb{Q}/\mathbb{Z}) \simeq \mathrm{Hdg}^4(X, \mathbb{Z})/\mathrm{Hdg}^4(X, \mathbb{Z})_{\mathrm{alg}}.$$

• We show $H^3_{nr}(X, \mathbb{Q}/\mathbb{Z}) \simeq \mathbb{Z}/3\mathbb{Z}$

for some $X = \mathbb{P}^n/G$ with $|G| = 3^5 = 243$.

$\S1.$ Noether's problem/ $\mathbb C$ and unram. Brauer group (1/4)

- ► *k*; field, *G*; finite group
- ▶ $G \frown k$; trivial, $G \frown k(x_g \mid g \in G)$; permutation.
- $k(G) := k(x_g \mid g \in G)^G$; invariant field

Noether's problem (Emmy Noether, 1913)

Is k(G) rational over k?, i.e. $k(G) \simeq k(t_1, \ldots, t_n)$?

- Is the quotient variety \mathbb{P}^n/G rational over k?
- Assume G = A; abelian group.
- (Fisher, 1915) $\mathbb{C}(A)$ is rational over \mathbb{C} .

Noether's problem/ $\mathbb C$ and unram. Brauer group (2/4)

Let G be a p-group. $\mathbb{C}(G) := \mathbb{C}(x_g \mid g \in G)^G$.

- (Saltman, 1984, Invent. Math.)
 For ∀p; prime, ∃ meta-abelian p-group G of order p⁹
 such that C(G) is not retract rational over C.
- (Bogomolov, 1988)
 For ∀p; prime, ∃ p-group G of order p⁶
 such that C(G) is not retract rational over C.

Indeed they showed $\operatorname{Br}_{\operatorname{nr}}(\mathbb{C}(G)/\mathbb{C}) \neq 0$; unramified Brauer group

• rational \implies stably rational \implies retract rational \implies Br_{nr}($\mathbb{C}(G)$) = 0.

not rational \leftarrow not stably rational \leftarrow not retract rational \leftarrow Br_{nr}($\mathbb{C}(G)$) $\neq 0$.

Definition (Unramified Brauer group) Saltman (1984)

Let $k \subset K$ be an extension of fields.

$$\operatorname{Br}_{\operatorname{nr}}(K/k) := \bigcap_{\substack{k \in R \subset K: \operatorname{DVR} \\ \operatorname{and} Q(R) = K}} \operatorname{Image} \{ \operatorname{Br}(R) \to \operatorname{Br}(K) \}.$$

- If K is retract rational over k, then Br(k) → Br_{nr}(K/k). In particular, if K is retract rational over C, then Br_{nr}(K/C) = 0.
- For a smooth projective variety X over C with function field K, Br_{nr}(K/C) ≃ H³(X, Z)_{tors} which is given by Artin-Mumford (1972).

Unramified Brauer group (2/2)

$$\blacktriangleright \ K = \mathbb{C}(G).$$

Theorem (Bogomolov 1988, Saltman 1990) $\operatorname{Br}_{\operatorname{nr}}(\mathbb{C}(G)/\mathbb{C}) \simeq B_0(G)$

Let G be a finite group. Then $\operatorname{Br}_{\operatorname{nr}}(\operatorname{\mathbb{C}}(G)/\operatorname{\mathbb{C}})$ is isomorphic to

$$B_0(G) = \bigcap_{A \le G: \text{bicyclic}} \text{Ker}\{\text{res} : H^2(G, \mathbb{Q}/\mathbb{Z}) \to H^2(A, \mathbb{Q}/\mathbb{Z})\}.$$

- ▶ $\mathbb{C}(G)$: "retract rational" $\implies B_0(G) = 0$. $B_0(G) \neq 0 \implies \mathbb{C}(G)$: not (retract) rational over k.
- ▶ $B_0(G) \le H^2(G, \mathbb{Q}/\mathbb{Z}) \simeq H_2(G, \mathbb{Z})$; Schur multiplier.
- $B_0(G)$ is called Bogomolov multiplier.

Noether's problem/ ${\mathbb C}$ and unram. Brauer group (3/4)

▶ (Chu-Kang, 2001) G is p-group ($|G| \le p^4$) $\Longrightarrow \mathbb{C}(G)$ is rational.

Theorem (Moravec, 2012, Amer. J. Math.)

Assume $|G| = 3^5 = 243$. $B_0(G) \neq 0 \iff G = G(243, i), 28 \le i \le 30$. In particular, $\exists 3$ groups G such that $\mathbb{C}(G)$ is not retract rational over \mathbb{C} .

▶ $\exists G: 67 \text{ groups such that } |G| = 243.$

Theorem (H-Kang-Kunyavskii, 2013, Asian J. Math.)

Assume $|G| = p^5$ where p is odd prime. $B_0(G) \neq 0 \iff G$ belongs to the isoclinism family Φ_{10} . In particular, $\exists \gcd(4, p - 1) + \gcd(3, p - 1) + 1$ (resp. $\exists 3$) groups G of order p^5 $(p \ge 5)$ (resp. p = 3) s.t. $\mathbb{C}(G)$ is not retract rational over \mathbb{C} .

►
$$\exists 2p + 61 + \gcd(4, p - 1) + 2 \gcd(3, p - 1)$$
 groups such that $|G| = p^5(p \ge 5)$. $(\exists \Phi_1, \dots, \Phi_{10})$

From the proof (1/3)

Definition (isoclinic)

p-groups G_1 and G_2 are isoclinic $\stackrel{\text{def}}{\iff}$ isom. $\theta: G_1/Z(G_1) \xrightarrow{\sim} G_2/Z(G_2)$, $\phi: [G_1, G_1] \xrightarrow{\sim} [G_2, G_2]$ such that

Invariants

- Iower central series
- # of conj. classes with precisely p^i members
- # of irr. complex rep. of G of degree p^i

From the proof (2/3)

$\begin{array}{c} \\ \# \\ (p=3) \end{array}$	Φ_1	Φ_2	Φ_3	Φ_4	Φ_5	Φ_6	Φ_7	Φ_8		
#	7	15	13	p+8	2	p+7	5	1		
(p = 3)						7				
	Φ_9			Φ_{10}						
#	2 +	(3, p -	- 1)	$\frac{1 + (4, p - 1) + (3, p - 1)}{3}$						
(p=3)						3				

From the proof (3/3)

[H-Kang-Kunyavskii, Question 1.11] (2013)

Let G_1 and G_2 be isoclinic *p*-groups. Is it true that the fields $k(G_1)$ and $k(G_2)$ are stably isomorphic, i.e. $k(G_1)(\exists s_1, \ldots, \exists s_m) \simeq k(G_2)(\exists t_1, \ldots, \exists t_n)$, or, at least, that $B_0(G_1) \simeq B_0(G_2)$?

Theorem (Moravec, 2013)

 G_1 and G_2 are isoclinic $\Longrightarrow B_0(G_1) \simeq B_0(G_2)$.

Theorem (Bogomolov-Böhning, 2013)

 G_1 and G_2 are isoclinic $\Longrightarrow \mathbb{C}(G_1)$ and $\mathbb{C}(G_2)$ are stably isomorphic.

Noether's problem/ $\mathbb C$ and unram. Brauer group (4/4)

Theorem (H-Kang-Kunyavskii, 2013, Asian J. Math.)

Assume $|G| = p^5$ where p is odd prime. $B_0(G) \neq 0 \iff G$ belongs to the isoclinism family Φ_{10} .

Theorem (Chu-H-Hu-Kang, 2015, J. Algebra) $|G| = 3^5 = 243$

If $B_0(G) = 0$, then $\mathbb{C}(G)$ is rational over \mathbb{C} except for Φ_7 .

- Rationality of Φ_7 was unknown.
- Φ_5 and Φ_7 are very similar: $C = 1 \ (\Phi_5)$, $C = \omega \ (\Phi_7)$.

 $\mathbb{C}(G)$ is stably isomorphic to $\mathbb{C}(z_1,z_2,z_3,z_4,z_5,z_6,z_7,z_8,z_9)^{\langle f_1,f_2 \rangle}$

$$\begin{split} f_1 &: z_1 \mapsto z_2, z_2 \mapsto \frac{1}{z_1 z_2}, z_3 \mapsto z_4, z_4 \mapsto \frac{1}{z_3 z_4}, \\ &z_5 \mapsto \frac{z_5}{z_1^2 z_3}, z_6 \mapsto \frac{z_1 z_6}{z_3}, z_7 \mapsto z_8, z_8 \mapsto \frac{1}{z_7 z_8}, z_9 \mapsto \frac{z_4 z_9}{z_1}, \\ &f_2 &: z_1 \mapsto z_3, z_2 \mapsto z_4, z_3 \mapsto \frac{1}{z_1 z_3}, z_4 \mapsto \frac{1}{z_2 z_4}, \\ &z_5 \mapsto z_6, z_6 \mapsto \frac{1}{z_5 z_6}, z_7 \mapsto C \frac{z_4 z_7}{z_3}, z_8 \mapsto C \frac{z_8}{z_3 z_4^2}, z_9 \mapsto \frac{z_4 z_9}{z_1}. \end{split}$$

Hoshi Kang Yamasaki (Niigata NTU Kyoto)

Degree 3 unram. cohomology & NP

$\S 2.$ Noether's problem/ $\mathbb C$ and unram. cohomology (1/7)

From
$$\operatorname{Br}_{\operatorname{nr}}(K/\mathbb{C})$$
 to $H^i_{\operatorname{nr}}(K/\mathbb{C}, \mathbb{Q}/\mathbb{Z})$.

Definition (Colliot-Thélène and Ojanguren, 1989, Invent. Math.)

Let K/\mathbb{C} be a function field, that is finitely generated as a field over \mathbb{C} . The unramified cohomology group $H^i_{\mathrm{nr}}(K/\mathbb{C},\mu_n^{\otimes j})$ of K over \mathbb{C} of degree $i \geq 1$ is defined to be

$$H^{i}_{\mathrm{nr}}(K/\mathbb{C},\mu_{n}^{\otimes j}) = \bigcap_{\substack{\mathbb{C}\subset R\subset K: \mathrm{DVR} \text{ of rank one} \\ \mathrm{and} \ Q(R)=K}} \mathrm{Ker}\{H^{i}(K,\mu_{n}^{\otimes j}) \xrightarrow{r} H^{i-1}(\Bbbk_{R},\mu_{n}^{\otimes (j-1)})\}.$$

 If K is the function field of a complete smooth variety over k, then
 Hⁱ_{nr}(K/ℂ, μ^{⊗j}_n) = ∩ Image{Hⁱ_{ét}(R, μ^{⊗j}_n) → Hⁱ_{ét}(K, μ^{⊗j}_n)}
 _{ℂ⊂R⊂K:DVR of rank one} and Q(R)=K

 Note that _nBr_{nr}(K/ℂ) ≃ H²_{nr}(K/ℂ, μ_n).

Theorem (Colliot-Thélène and Ojanguren, 1989)

If K and L are stably \mathbb{C} -isomorphic, then $H^i_{\mathrm{nr}}(K/\mathbb{C}, \mu_n^{\otimes j}) \xrightarrow{\sim} H^i_{\mathrm{nr}}(L/\mathbb{C}, \mu_n^{\otimes j}).$ In particular, K is stably \mathbb{C} -rational, then $H^i_{\mathrm{nr}}(K/\mathbb{C}, \mu_n^{\otimes j}) = 0.$

- Moreover, if K is retract \mathbb{C} -rational, then $H^i_{\mathrm{nr}}(K/\mathbb{C}, \mu_n^{\otimes j}) = 0.$
- ► CTO (1989) $\exists K$ (trdeg_C K = 6) s.t. $H^3_{nr}(K/\mathbb{C}, \mu_2^{\otimes 3}) \neq 0$.
- ▶ Peyre (1993) gave a sufficient condition for $H^i_{nr}(K/\mathbb{C}, \mu_p^{\otimes i}) \neq 0$:
- ▶ $\exists K \text{ s.t. } H^3_{\mathrm{nr}}(K/\mathbb{C},\mu_p^{\otimes 3}) \neq 0 \text{ and } \mathrm{Br}_{\mathrm{nr}}(K/\mathbb{C}) = 0;$
- ► $\exists K \text{ s.t. } H^4_{\mathrm{nr}}(K/\mathbb{C},\mu_2^{\otimes 4}) \neq 0 \text{ and } \mathrm{Br}_{\mathrm{nr}}(K/\mathbb{C}) = 0.$

Noether's problem/ ${\mathbb C}$ and unram. cohomology (3/7)

Asok (2013) generalized Peyre's argument (1993):

Theorem (Asok, 2013, Compos. Math.)

(1) For any n > 0, \exists a smooth projective complex variety X that is \mathbb{C} -unirational, for which $H^i_{\mathrm{nr}}(\mathbb{C}(X), \mu_2^{\otimes i}) = 0$ for each i < n, yet $H^n_{\mathrm{nr}}(\mathbb{C}(X), \mu_2^{\otimes n}) \neq 0$, and so X is not \mathbb{A}^1 -connected, nor (retract, stably) \mathbb{C} -rational; (2) For any prime l and any $n \ge 2$, \exists a smooth projective rationally connected complex variety Y such that $H^n_{\mathrm{nr}}(\mathbb{C}(Y), \mu_l^{\otimes n}) \neq 0$. In particular, Y is not \mathbb{A}^1 -connected, nor (retract, stably) \mathbb{C} -rational.

- ▶ Namely, $H^i_{\mathrm{nr}}(\mathbb{C}(X), \mu_n^{\otimes j}) = 0$ is just a necessary condition for \mathbb{C} -rationality.
- It is interesting to consider an analog of above for quotient varieties V/G, e.g. ℂ(ℙⁿ/G) = ℂ(G) (Noether's problem).

Noether's problem/ \mathbb{C} and unram. cohomology (4/7)

Take the direct limit with respect to n:

$$H^{i}(K/\mathbb{C}, \mathbb{Q}/\mathbb{Z}(j)) = \lim_{\stackrel{\longrightarrow}{n}} H^{i}(K/\mathbb{C}, \mu_{n}^{\otimes j})$$

and we also define the unramified cohomology group

$$H^{i}_{\mathrm{nr}}(K/\mathbb{C}, \mathbb{Q}/\mathbb{Z}(j)) = \bigcap_{R} \operatorname{Ker}\{H^{i}(K, \mathbb{Q}/\mathbb{Z}(j)) \xrightarrow{r} H^{i-1}(\Bbbk_{R}, \mathbb{Q}/\mathbb{Z}(j-1))\}.$$

Then we have $\operatorname{Br}_{\operatorname{nr}}(K/\mathbb{C}) \simeq H^2_{\operatorname{nr}}(K/\mathbb{C}, \mathbb{Q}/\mathbb{Z}(1)).$

• The case
$$K = \mathbb{C}(G)$$
:

Theorem (Peyre, 2008, Invent. Math.) p: any odd prime

 $\exists p$ -group G of order p^{12} such that $B_0(G) = 0$ and $H^3_{nr}(\mathbb{C}(G), \mathbb{Q}/\mathbb{Z}) \neq 0$. In particular, $\mathbb{C}(G)$ is not (retract, stably) \mathbb{C} -rational. Theorem (Peyre, 2008, Invent. Math.) p : any odd prime

 $\exists p$ -group G of order p^{12} such that $B_0(G) = 0$ and $H^3_{nr}(\mathbb{C}(G), \mathbb{Q}/\mathbb{Z}) \neq 0$. In particular, $\mathbb{C}(G)$ is not (retract, stably) \mathbb{C} -rational.

Using Peyre's method, we improved this result:

Theorem (H-Kang-Yamasaki, 2016, J. Algebra) p : any odd prime

 $\exists p$ -group G of order p^9 such that $B_0(G) = 0$ and $H^3_{nr}(\mathbb{C}(G), \mathbb{Q}/\mathbb{Z}) \neq 0$. In particular, $\mathbb{C}(G)$ is not (retract, stably) \mathbb{C} -rational.

Noether's problem/ $\mathbb C$ and unram. cohomology (6/7)

 Using Saltman (1995) and Peyre's method (2008, Invent. Math.), we get our main results:

Theorem (H-Kang-Yamasaki, arXiv:1710.01958) $|G| = 3^5$

$$\begin{split} H^3_{\mathrm{nr}}(\mathbb{C}(G),\mathbb{Q}/\mathbb{Z}) &\neq 0 \iff G \text{ belongs to the isoclinism family } \Phi_7.\\ \text{Moreover, if } H^3_{\mathrm{nr}}(\mathbb{C}(G)/\mathbb{C},\mathbb{Q}/\mathbb{Z}) &\neq 0 \text{, then } H^3_{\mathrm{nr}}(\mathbb{C}(G)/\mathbb{C},\mathbb{Q}/\mathbb{Z}) \simeq \mathbb{Z}/3\mathbb{Z}. \end{split}$$

			-		-	-	Φ_7	-	-	-
$H^2_{\mathrm{nr}}(\mathbb{C}(G),\mathbb{Q}/\mathbb{Z})$										
$H^3_{\mathrm{nr}}(\mathbb{C}(G),\mathbb{Q}/\mathbb{Z})$	0	0	0	0	0	0	$\mathbb{Z}/3\mathbb{Z}$	0	0	0

Corollary (H-Kang-Yamasaki, arXiv:1710.01958) $|G| = 3^5$

 $\mathbb{C}(G)$ is not rational over $\mathbb{C} \iff G$ belongs to Φ_7, Φ_{10} .

► $H^3_{\mathrm{nr}}(X, \mathbb{Q}/\mathbb{Z}) \simeq \mathrm{Hdg}^4(X, \mathbb{Z})/\mathrm{Hdg}^4(X, \mathbb{Z})_{\mathrm{alg}}$ (CT-Voisin, 2012).

Noether's problem/ $\mathbb C$ and unram. cohomology (7/7)

• For
$$p \ge 5$$
?

Theorem (H-Kang-Yamasaki, arXiv:1710.01958) $|G| = 5^5$ or 7^5

 $H^3_{\mathrm{nr}}(\mathbb{C}(G), \mathbb{Q}/\mathbb{Z}) \neq 0 \iff G$ belongs to Φ_6, Φ_7 or Φ_{10} . Moreover, if $H^3_{\mathrm{nr}}(\mathbb{C}(G)/\mathbb{C}, \mathbb{Q}/\mathbb{Z}) \neq 0$, then $H^3_{\mathrm{nr}}(\mathbb{C}(G)/\mathbb{C}, \mathbb{Q}/\mathbb{Z}) \simeq \mathbb{Z}/p\mathbb{Z}$.

$ G = p^5 \ (p = 5, 7)$	Φ_1	Φ_2	Φ_3	Φ_4	Φ_5	Φ_6	Φ_7	Φ_8	Φ_9	Φ_{10}
$H^2_{\mathrm{nr}}(\mathbb{C}(G),\mathbb{Q}/\mathbb{Z})$	0	0	0	0	0	0	0	0	0	$\mathbb{Z}/p\mathbb{Z}$
$H^3_{\mathrm{nr}}(\mathbb{C}(G),\mathbb{Q}/\mathbb{Z})$	0	0	0	0	0	$\mathbb{Z}/p\mathbb{Z}$	$\mathbb{Z}/p\mathbb{Z}$	0	0	$\mathbb{Z}/p\mathbb{Z}$
$ G = 3^5$										
$\frac{ G = 3^5}{H_{\mathrm{nr}}^2(\mathbb{C}(G), \mathbb{Q}/\mathbb{Z})}$										