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Abstract

We give some fundamental results on the error constants for the piecewise constant interpolation function and the piecewise linear one
over triangles. For the piecewise linear one, we mainly analyze the conforming case, but some results are also given for the non-conform-
ing case. We obtain explicit relations for the dependence of such error constants on the geometric parameters of triangles. In particular,
we explicitly determine the Babuška–Aziz constant, which plays an essential role in the interpolation error estimation of the linear tri-
angular finite element. The equation for determination is the transcendental equation

ffiffiffi
k
p
þ tan

ffiffiffi
k
p
¼ 0, so that the solution can be

numerically obtained with desired accuracy and verification. Such highly accurate approximate values for the constant as well as esti-
mates for other constants can be widely used for a priori and a posteriori error estimations in adaptive computation and numerical ver-
ification of finite element solutions.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The finite element method (FEM) is now recognized as a
powerful numerical method for wide classes of partial dif-
ferential equations. Furthermore, it also has sound mathe-
matical bases such as highly refined a priori and a
posteriori error estimations. In the classical a priori error
analysis of FEM, interpolation errors are essential to
derive final error estimates in various norms [7,8,10]. In this
process, there appear various positive constants besides the
standard discretization parameter h and norms (or semi-
norms), but it has been very difficult to evaluate such con-
stants explicitly. For quantitative purposes, however, it is
indispensable to evaluate or bound them as accurately as
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possible, because sharper estimates enable more efficient
finite element computations. Thus such an evaluation has
become progressively more important and has been
attempted especially for adaptive finite element calcula-
tions based on a posteriori error estimation as well as for
numerical verification by FEM [1,4,6,7,13]. In this paper,
we will give a few fundamental results on some interpola-
tion error constants of the most popular triangular finite
elements.

More specifically, we give some results on interpolation
error constants appearing in the popular P0 (piecewise con-
stant) and P1 (piecewise linear) triangular finite elements.
Essentially based on the paper of Babuška–Aziz [3], we
analyze the dependence of several constants on the geomet-
ric parameters such as the maximum interior angle and the
minimum edge length of the triangle more quantitatively
than in [3]. Above all, the optimal constant (C3 in this
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Fig. 1. Notations for triangles: T a;h ¼ T a;h;1, T a ¼ T a;p=2, T = T1.
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paper) appearing in the H1 error estimate of the P1 interpo-
lation of H2 functions over the unit isosceles right triangle
is essential and frequently used, and it was explicitly evalu-
ated firstly by Natterer [15]. On the other hand, this con-
stant was shown to be closely related to the one (C1 in
this paper) presented and effectively used by Babuška and
Aziz in conjunction with the maximum angle condition
[3]. More precisely, C1 gives an upper bound quite close
to the optimal constant C3, and the relation between C3

and C1 was further discussed in [13,18]. Thus a precise esti-
mation of these two constants is very important, and a
number of researchers have given bounds for these using
various approximation methods including numerical verifi-
cation, see e.g. [2,11,13–15,18]. Furthermore, these con-
stants can be also used to evaluate the interpolation error
constants for the non-conforming P1 triangle, as will be
mentioned later.

For the above Babuška–Aziz constant, we have suc-
ceeded in obtaining a value which is in a sense optimal.
That is, by analytically solving an eigenvalue problem for
the 2D Laplacian over the above triangular domain, we
can show that the constant can be easily determined from
a solution of the simple transcendental equationffiffiffi

k
p
þ tan

ffiffiffi
k
p
¼ 0. In this process, we use the reflection (or

symmetry) method [16]. Moreover, we have obtained some
explicit relations for the dependence of such constants on
the geometry of triangles. It is to be emphasized that they
are consistent with the maximum angle condition in [3].
We also give some numerical and analytical results, the lat-
ter of which are based on asymptotic analysis. Thus our
results can be effectively used in the quantitative a priori
and a posteriori error estimations of the finite element solu-
tions by the P1 triangular element and also those based on
the P0 triangle. The former is of course the most classical
and fundamental one, but still in frequent use, while the
latter appears in some mixed finite element methods and
implicitly on various occasions. Moreover, we also give
some results for the non-conforming P1 triangle by using
the constants for the P0 and the conforming P1 triangles.
2. Preliminaries

Let h, a and h be positive constants such that

h > 0; 0 < a 6 1;
p
3
6

� �
cos�1 a

2
6 h < p: ð1Þ

Then we define the triangle T a;h;h by MOAB with three ver-
tices Oð0; 0Þ, Aðh; 0Þ and Bðah cos h; ah sin hÞ. From (1), AB

is shown to be the edge of maximum length, i.e.
AB P h P ah, so that h ¼ OA here denotes the medium
edge length, although the notation h is often used as the
largest edge length. A point on the closure of T a;h;h is de-
noted by x ¼ fx1; x2g. By an appropriate congruent trans-
formation in R2, we can configure any triangle as T a;h;h.
As the usage in [3], we will use abbreviated notations
T a;h ¼ T a;h;1, T a ¼ T a;p=2 and T ¼ T 1 (Fig. 1). Let us denote
the norm of L2ðT a;h;hÞ by k � kT a;h;h
, where the subscript T a;h;h

is often omitted.
Let us define the following closed linear spaces for func-

tions over T a;h;h:

V 0
a;h;h ¼ v 2 H 1ðT a;h;hÞ

Z
T a;h;h

vðxÞdx ¼ 0

�����
( )

; ð2Þ

V 1
a;h;h ¼ v 2 H 1ðT a;h;hÞ

Z h

0

vðx1; 0Þdx1 ¼ 0

����� �
; ð3Þ

V 2
a;h;h ¼ v 2 H 1ðT a;h;hÞ

Z h

0

vðsa cos h; sa sin hÞds ¼ 0

����� �
;

ð4Þ
V 3

a;h;h ¼ fv 2 H 2ðT a;h;hÞjvðOÞ ¼ vðAÞ ¼ vðBÞ ¼ 0g; ð5Þ

where H 1ðT a;h;hÞ and H 2ðT a;h;hÞ are respectively the first-
and second-order Sobolev spaces for real square integrable
functions over T a;h;h. For the above four spaces, we will
again use abbreviated notations V i

a;h ¼ V i
a;h;1, V i

a ¼ V i
a;p=2

and V i ¼ V i
1 ð0 6 i 6 3Þ. Moreover, the spaces of constant

functions and (at most) linear functions over T a;h;h are
respectively denoted by P0 and P1.

Let us consider the usual P0 interpolation operator P0
a;h;h

and P1 one P1
a;h;h for functions on T a;h;h [7,8,10]: P0

a;h;hv for
8v 2 H 1ðT a;h;hÞ is a function in P0 well defined by

ðP0
a;h;hvÞðxÞ ¼

Z
T a;h;h

vðyÞdy
Z

T a;h;h

dy ð8x 2 T a;h;hÞ
,

; ð6Þ

while P1
a;h;hv for 8v 2 H 2ðT a;h;hÞ is a function in P1 such that

ðP1
a;h;hvÞðxÞ ¼ vðxÞ for x ¼ O;A;B: ð7Þ

To give error estimates for these interpolation operators,
it is natural to evaluate the positive constants defined by

Ciða;h;hÞ ¼ sup
v2V i

a;h;h
nf0g

kvk
kDvk ði¼ 0;1;2Þ; ð8Þ

C3ða;h;hÞ ¼ sup
v2V 3

a;h;h
nf0g

kDvk
kD2vk

; C4ða;h;hÞ ¼ sup
v2V 3

a;h;h
nf0g

kvk
kD2vk

;

ð9Þ

where kDvk ¼ ð
P2

i¼1kov=oxik2Þ1=2, and kD2vk ¼ ð
P2

i;j¼1

ko2v=oxioxjk2Þ1=2. The existence of these constants easily
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follows from the standard compactness arguments. We will
again use abbreviated notations Ciða; hÞ ¼ Ciða; h; 1Þ,
CiðaÞ ¼ Ciða; p=2Þ and Ci ¼ Cið1Þ for 0 6 i 6 4.

By a simple scale change, we find that Ciða; h; hÞ ¼
hCiða; hÞ ði ¼ 0; 1; 2; 3Þ and C4ða; h; hÞ ¼ h2C4ða; hÞ. These
relations and constants are used to evaluate interpolation
errors for functions on T a;h;h. That is, we can easily have
the popular interpolation error estimates [7,8,10]:

kv�P0
a;h;hvk6 C0ða;hÞhkDvk; 8v 2 H 1ðT a;h;hÞ; ð10Þ

kDðv�P1
a;h;hvÞk6 C3ða;hÞhkD2vk; 8v 2 H 2ðT a;h;hÞ; ð11Þ

kv�P1
a;h;hvk6 C4ða;hÞh2kD2vk; 8v 2 H 2ðT a;h;hÞ; ð12Þ

where we have used the fact that v�P0
a;h;hv 2 V 0

a;h;h for
v 2 H 1ðT a;h;hÞ and v�P1

a;h;hv 2 V 3
a;h;h for v 2 H 2ðT a;h;hÞ.

Moreover, for the partial derivatives of v 2 T a;p=2;h (h ¼
p=2; right triangle case), we have

oðv�P1
a;p=2;hvÞ

oxi

�����
����� 6 CiðaÞh D

ov
oxi

	 
���� ���� ði ¼ 1; 2Þ; ð13Þ

which are in a sense sharper than (11), cf. [10]. These
relations follow from the facts that oðv�P1

a;p=2;hvÞ=
oxi 2 V i

a;p=2;h for i ¼ 1; 2. It is to be noted that, for h 6¼
p=2, the results still hold if CiðaÞ is replaced with Ciða; hÞ
for each of i ¼ 1; 2 and the partial derivative for i = 2 is
done with the directional derivative of v in OB direction.

Thus we can give quantitative interpolation estimates if
we succeed in evaluating or bounding the constants
Ciða; hÞ’s explicitly. So we will give upper bounds of these
constants as fairly simple functions of a and h. Notice here
that each of such constants can be characterized by minimi-
zation of a kind of Rayleigh quotient. Then it is equivalent
to finding the minimum eigenvalue of a certain eigenvalue
problem expressed by a weak formulation, which is further
expressed by a partial differential equation with some aux-
iliary conditions.

For later purposes, let us explain the cases of C0ða; hÞ
and C1ða; hÞ as examples. From (8), C0ða; hÞ is character-
ized by using a kind of Rayleigh quotient:

C0ða; hÞ�2 ¼ inf
v2V 0

a;h
nf0g

kDvk2

kvk2
; ð14Þ

where all notations and quantities are for T a;h. The infimum
in the right-hand side is actually a minimum, and it is the
smallest eigenvalue of the eigenvalue problem: Find k 2 R
and u 2 V 0

a;h n f0g that satisfy

ðru;rvÞT a;h
¼ kðu; vÞT a;h

ð8v 2 V 0
a;hÞ: ð15Þ

Here, ð�; �ÞT a;h
denotes the inner products of both L2ðT a;hÞ

and L2ðT a;hÞ2, and r is the gradient operator. The present
eigenvalue problem is also expressed in terms of a partial
differential equation, the linear constraint for V 0

a;h and the
boundary condition [13,14]:
�Du ¼ ku in T a;h;

Z
T a;h

uðxÞdx ¼ 0;
ou
on
¼ 0 on oT a;h;

ð16Þ
where o

on denotes the outward normal derivative on edges,
and oT a;h does the boundary of T a;h. The above boundary
condition is the homogeneous Neumann one, and the de-
sired minimum eigenvalue is also the second (and positive)
one for the same problem without the linear constraint.

For C1ða; hÞ, it is characterized in essentially the same
fashion as (14) and (15), but the associated space V 0

a;h must
be replaced with V 1

a;h. On the other hand, the equations
corresponding to (16) become more complicated [13,14]:

� Du ¼ ku in T a;h;

Z 1

0

uðx1; 0Þdx1 ¼ 0;

ou
on
¼

0 on edges OB and AB;

c on edge OA;

�
ð17Þ

where c denotes an unknown constant to be decided with u

and k.
The other constants are characterized similarly, but the

partial differential equations related to C3ða; hÞ and C4ða; hÞ
are of fourth order and are more difficult to deal with than
the second-order equations like above, cf. [2,5]. Since T a;h is
a triangle, it is in general difficult to solve such eigenvalue
problems explicitly. However, in certain special cases, we
can achieve such aims as we will see later.

3. Dependence of constants on h

This section is devoted to analysis of the effects of the
maximum interior angle h on Ciða; hÞ’s for fixed a. For
C3ða; hÞ, the well-known maximum angle condition was
derived in [3]. However, the results reported there are not
fully quantitative, so that we give here more quantitative
estimates for the constants including C3ða; hÞ.

To this end, let us introduce the following simple
affine transformation between x ¼ fx1; x2g 2 T a;h and n ¼
fn1; n2g 2 T a:

n1 ¼ x1 � x2= tan h; n2 ¼ x2= sin h: ð18Þ
This transformation is a bit different from that in [3]. By
eigenvalue analysis of matrices resulting from the above
transformation in the Rayleigh quotients like (14), we
obtain the following results.

Theorem 1. For h = 1, it holds for each a 2 �0; 1� that
Ciða; hÞ 6 /iðhÞCiðaÞ 0 6 i 6 4;
p
3
6 cos�1 a

2
6 h < p

� �
;

ð19Þ
where

/iðhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j cos hj

p
ði ¼ 0; 1; 2Þ;

/3ðhÞ ¼
1þ j cos hjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� j cos hj
p ; /4ðhÞ ¼ 1þ j cos hj: ð20Þ
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Remark. The function form for /3ðhÞ is consistent with the
maximum angle condition in [3], since /3ðhÞ is bounded on
½p=3; p� d� for each sufficiently small d > 0. Notice also
that C3ðaÞ 6 C1 ¼ C2 for a 6 1, as will be shown in the
subsequent section. The other /i’s are uniformly bounded
on ½p=3; p½. Moreover, the corresponding result for
C3ða; hÞ by Natterer [15] is expressed in terms of C3,
að6 1Þ and h as

C3ða; hÞ 6
1þ a2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2a2 cos 2hþ a4
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 1þ a2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2a2 cos 2hþ a4
p� �q C3: ð21Þ

This estimation is, however, not consistent with the maxi-
mum angle condition. In fact, the right-hand side of the
above diverges to 1 as a # 0. When a � 1, our formula
for C3ða; hÞ is numerically comparable to Natterer’s, even
when C3ðaÞ in (19) is replaced with C1. In particular, when
a = 1, (21) is identical to (19) for i = 3.

Proof. We will use the coordinate transformation (18)
between T a;h and Ta. By simple calculations, we have for
~vðn1; n2Þ ¼ vðx1; x2Þ under the present transformation:X2

i¼1

ov
oxi

	 
2

¼ 1

sin2 h

o~v
on1

	 
2

� 2 cos h
o~v
on1

o~v
on2

þ o~v
on2

	 
2
" #

;

where v and ~v are assumed to be sufficiently smooth. Then
we can easily derive

1� j cos hj
sin2 h

X2

i¼1

o~v
oni

	 
2

6

X2

i¼1

ov
oxi

	 
2

6
1þ j cos hj

sin2 h

X2

i¼1

o~v
oni

	 
2

:

Moreover, the Jacobian of the present transformation is
evaluated as oðx1; x2Þ=oðn1; n2Þ ¼ sin h. From these esti-
mates, we have

kvk2
T a;h
¼ sin hk~vk2

T a
;

1� j cos hj
sin h

kD~vk2
T a
6 kDvk2

T a;h
6

1þ j cos hj
sin h

kD~vk2
T a
; ðaÞ

where k � kT a;h
, for example, denotes k � k for T a;h. The re-

sults for i ¼ 0; 1; 2 are now easy to obtain by using the
above and the definitions of the constants Ciða; hÞ’s.

Similarly, we obtain

X2

i;j¼1

o2v
oxioxj

	 
2

¼ 1

sin4 h

o2~v

on2
1

 !2

þ o2~v

on2
2

 !2
24

þ2ð1þ cos2 hÞ o2~v
on1on2

	 
2

þ2 cos2 h
o2~v

on2
1

o2~v

on2
2

�4 cos h
o

2~v

on2
1

o
2~v

on1on2

� 4 cos h
o

2~v

on2
2

o
2~v

on1on2

35:
Let us consider the following real symmetric matrix related
to the quadratic form in the right-hand side of the above
expression:

1

sin4 h

1 cos2 h �
ffiffiffi
2
p

cos h

cos2 h 1 �
ffiffiffi
2
p

cos h

�
ffiffiffi
2
p

cos h �
ffiffiffi
2
p

cos h 1þ cos2 h

0B@
1CA:

We can see that this has three eigenvalues 1=ð1þ
j cos hjÞ2; 1=ð1� j cos hj2Þ and 1=ð1� j cos hjÞ2, so that we
have the estimates

1

ð1þ j coshjÞ2
X2

i;j¼1

o2~v
onionj

	 
2

6

X2

i;j¼1

o2v
oxioxj

	 
2

6
1

ð1� j coshjÞ2
X2

i;j¼1

o2~v
onionj

	 
2

:

As (a), we have now

sin h

ð1þ j cos hjÞ2
kD2~vk2

T a
6 kD2vk2

T a;h

6
sin h

ð1� j cos hjÞ2
kD2~vk2

T a
: ðbÞ

Applying (a) and (b) to the definitions of the constants,
we have the results for i ¼ 3; 4. h
4. Dependence of constants on a

Up to now, we have given some basic results for depen-
dence of error constants on h and h. In this section, we will
consider the dependence of such constants on a when
h ¼ p=2. With this regard, we owe much the following
results to the analysis by Babuška and Aziz [3]. In particu-
lar, the estimation C3ðaÞ 6 C1 below is an important conse-
quence derived in [3] and also in [13,18], and so we here call
C1 the Babuška–Aziz constant.

Theorem 2. For h = 1 and h ¼ p=2, CiðaÞ ð0 6 i 6 4Þ are

continuous positive-valued functions of a 2 �0;þ1½ (here we

consider also for a > 1). In addition, except for i = 3, they are

monotonically increasing in a. Thus,

CiðaÞ 6 Ci; 8a 2 �0; 1� ði ¼ 0; 1; 2; 4Þ: ð22Þ

On the other hand, it holds for i = 3 and a 2 �0; 1� that

C3ðaÞ 6 maxfC1ðaÞ;C2ðaÞg 6 C1ð¼ C2Þ: ð23Þ

Proof. We just give sketches since the arguments employed
here are standard. It is convenient to consider over the
common domain T by applying a simple coordinate trans-
formation in [3] to Ta. For the continuity, we first show the
uniform boundedness over compact intervals, which
assures the existence of limb!aCiðbÞ and limb!aCiðbÞ for
each a > 0. Then we can prove the continuity by adopting
the weakly lower semi-continuity of L2-norm and the Rel-
lich compactness theorem. The monotonicity and (23) can
be concluded completely as in [3]. h
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Consequently, we can give P0 and P1 interpolation error
estimates in terms of C0; C1 and C4. That is, from the
preceding considerations, we have C0ða; h; hÞ 6 C0/0ðhÞh,
C3ða; h; hÞ 6 C1/3ðhÞh and C4ða; h; hÞ 6 C4/4ðhÞh2, so that
(10) through (12) become

kv�P0
a;h;hvk 6 C0/0ðhÞhkDvk; 8v 2 H 1ðT a;h;hÞ; ð24Þ

kDðv�P1
a;h;hvÞk 6 C1/3ðhÞhkD2vk; 8v 2 H 2ðT a;h;hÞ; ð25Þ

kv�P1
a;h;hvk 6 C4/4ðhÞh2kD2vk; 8v 2 H 2ðT a;h;hÞ: ð26Þ

These may be rough but are still correct upper bounds. As
was already noted, such error bounds are available for tri-
angles of general configuration by applying appropriate
congruent transformations [3,7,8,10].

Thus we can obtain a quantitative error bound for P0

interpolation of v 2 H 1ðT a;h;hÞ and those for P1 interpola-
tion of v 2 H 2ðT a;h;hÞ, provided that numerical values or
concrete upper bounds of C0;C1 ¼ C2 and C4 are known.
Rough upper bounds of these constants can be given even
by manual calculation [5,15]. For example, we found that
C4 6

ffiffiffiffiffi
12
p

(see Acknowledgements of this paper). To
obtain accurate upper (and lower) bounds, however, we
need numerical computations with verification. Quite
fortunately, we can get exact values for C0 and C1

(Babuška–Aziz constant) as will be shown in the subse-
quent section. An upper bound for C3 was first given by
Natterer [15]. By numerical computations without verifica-
tion, it is now known that C3 � 0:489 [2,11,18]. The rela-
tion between C3 and C1 was fully discussed in [18,13],
and in certain cases C1 is more essential than C3 itself as
we already noted, cf. [10]. We should also mention that
C1 was verified numerically in [13,14] with estimate
0.492 6 C1 6 0.494. Thus 0.493 or so is a nice upper bound
to C3 for most of practical purposes. In fact, 0.5 is recom-
mended in [18] for use as an upper bound for C3.

5. Determination of C0 and C1

First let us determine C0 exactly. Actually, its exact
value is already known, see e.g. [13,14]. However, we here
state the results with a proof, since the underlying idea is
somewhat common to the more complicated case of C1.

Theorem 3. With regard to C0, i.e., C0ða; hÞ for a = 1 and

h ¼ p=2, it holds that C0 ¼ 1=p.
Proof. We will prove in two steps, each of which is based
on rather well-known arguments and techniques. The tri-
angular domain to be considered here is T.

(1) Let X be a unit square domain: X ¼ fx ¼ fx1;
x2g 2 R2; 0 < x1; x2 < 1g. Let fk; ug 2 R� V 0 n f0g be an
arbitrary eigenpair of (15) or (16) for fa; hg ¼ f1; p=2g, and
define the (symmetric) extension ~u of u to X by reflection
with respect to the line x1 + x2 = 1:

~uðx1; x2Þ ¼ uðx1; x2Þ if x ¼ fx1; x2g 2 T ;

~uðx1; x2Þ ¼ uð1� x2; 1� x1Þ if x 2 X n T :
We can find that fk; ~ug is an eigenpair of the eigenvalue
problem for X:

~u 2 eV 0 n f0g; ðr~u;r~vÞX ¼ kð~u;~vÞX ð8~v 2 eV 0Þ; ðcÞ
where ð�; �ÞX denotes the inner products of L2ðXÞ and
L2ðXÞ2, and ~V 0 is defined by

~V 0 ¼ ~v 2 H 1ðXÞ;
Z

X

~vðxÞdx ¼ 0

� �
:

Conversely, any eigenpair of (c) with ~u restricted to T

satisfies (15), if ~u is symmetric with respect to the line
x1 + x2 = 1. Notice here the orthogonal decomposition ofeV 0 in H 1ðXÞ as well as in L2ðXÞ:

eV 0¼ eV 0
s � eV 0

a;
eV 0

s ¼ subspace of symmetric functions in eV 0;eV 0
a¼ subspace of antisymmetric functions in eV 0:

(

Consequently, for the present purposes, it suffices to deal
with (c) in eV 0

s .
(2) As is well known, a complete system of functions for

H1ðXÞ is given by the totality of (orthogonal) eigenfunc-
tions of (c) with eV 0 replaced with the whole H1ðXÞ:
/mnðx1; x2Þ ¼ cos mpx1 cos npx2 ðm; n ¼ 0; 1; 2; 3; . . .Þ:
Since we are interested in symmetric eigenfunctions only,
we should make a complete system of symmetric functions
in H 1ðXÞ from the above: for m P n; m; n ¼ 0; 1; 2; 3; . . .,

wmnðx1; x2Þ ¼ /mnðx1; x2Þ þ /mnð1� x2; 1� x1Þ:
These are orthogonal in L2ðXÞ, and also orthogonal with
respect to the bilinear form ðr�;r � ÞX (and in H 1ðXÞ).
More important to note is that all wmn’s for m P n except
for w00 � 2 belong to eV 0

s and are eigenfunctions of (c).
Thus the desired eigenvalue k0 is p2 associated to w10,
and hence C0 ¼ 1=

ffiffiffi
k
p

0 ¼ 1=p. h

Next we determine C1 = C2. See also [9] for a slightly
different approach.

Theorem 4. The minimum eigenvalue k1 associated to

C1 = C2 is equal to the minimum positive solution of the

transcendental equation for k:ffiffiffi
k
p
þ tan

ffiffiffi
k
p
¼ 0: ð27Þ

The concrete value of k1 can be obtained numerically with

verification. For example, we find 2:0287 <
ffiffiffi
k
p

1 < 2:0291,

and hence C1 ¼ 1=
ffiffiffi
k
p

1 is bounded as

0:49282 < C1 < 0:49293: ð28Þ

Remark. Numerical computation without verification
gives C1 ¼ 0:49291245 . . . The present transcendental equa-
tion can be commonly seen in vibration analysis of strings
with special boundary conditions [16].

Proof. The use of reflection and trigonometric functions is
common to the proof of the preceding theorem.

(1) Let X be the same as before. Let fk; ug 2
R� V 1 n f0g be an arbitrary eigenpair of (17) for T, and
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define the symmetric extension ~u of u to X by reflection.
Then fk; ~ug is an eigenpair of the eigenvalue problem for X:

~u 2 eV 1 n f0g; ðr~u;r~vÞX ¼ kð~u;~vÞX ð8~v 2 eV 1Þ; ðdÞ
where eV 1 is defined by

~V 1 ¼ ~v 2 H 1ðXÞ;
Z 1

0

~vðx1; 0Þdx1 ¼ 0;

Z 1

0

~vð1; x2Þdx2 ¼ 0

� �
:

ðeÞ
Conversely, any eigenpair of (d) with ~u restricted to T sat-
isfies the weak form of (17), if ~u is symmetric with respect
to the line x1 + x2 = 1. Notice here the orthogonal decom-
position of eV 1 in H 1ðXÞ as well as in L2ðXÞ:eV 1 ¼ eV 1

s � eV 1
a;

where eV 1
s and eV 1

a are respectively the symmetric and anti-
symmetric subspaces of eV 1. Consequently, for the present
purposes, it suffices to deal with (d) in eV 1

s .
(2) We use the complete system of symmetric functions

wmn’s for m P n; m; n ¼ 0; 1; 2; 3; . . . in H 1ðXÞ defined in
the proof of the preceding theorem. From (e), the condition
for a symmetric ~v 2 H 1ðXÞ to belong to eV 1

s is expressed by

2a00 þ
X1
m¼1

ð�1Þmam0 ¼ 0 for ~v ¼
X1

mPnP0

amnwmn

with
X1

mPnP0

ð1þ m2 þ n2Þa2
mn < þ1;

where amn’s are real coefficients, and we can show the seriesP1
m¼1ð�1Þmam0 is absolutely convergent under the condi-

tions imposed on the coefficients. Eliminating a00 by the
above equation, 8~v 2 eV 1

s is expressed by

~v ¼
X1
m¼1

am0½wm0 � ð�1Þm� þ
X1

mPnP1

amnwmn: ðfÞ

Clearly, wmn’s for m P n P 1 are eigenfunctions of (d) with
the homogeneous Neumann boundary condition, and the
minimum of the associated eigenvalues is 2p2.

(3) Taking notice of (f), eV 1
s is expressed by the direct

sumeV 1
s ¼ W 1 � W 2;

where W1 = closure of linear combinations of wm0�
ð�1Þm ðm ¼ 1; 2; 3; . . .Þ and W2 = closure of linear combi-
nations of wmn ðm P n P 1Þ. Here, W1 and W2 are orthog-
onal to each other in both L2ðXÞ and H 1ðXÞ, and moreover,
from the observation in step (2), all the eigenfunctions in
W2 are known. Consequently, our aim will be attained if
we obtain the minimum of eigenvalues associated with
eigenfunctions in W1. If it is smaller than 2p2, the obtained
one is nothing but the desired eigenvalue k1.

(4) Let us now solve the eigenvalue problem (d) in W1 by
expressing ~u 2 W 1 n f0g as

~u ¼
X1
m¼1

amum with
X1
m¼1

m2a2
m < þ1; ðgÞ
where umðx1; x2Þ ¼ wm0ðx1; x2Þ � ð�1Þm ¼ cos mpx1þ
cos mpð1� x2Þ � ð�1Þm ðm 2 NÞ. Thus, using the theory
of Fourier series with the inequality in ðgÞ taken into
account, ~u 2 W 1 must be of the form, for an unknown
single-variable function g ¼ gðtÞ,
~uðx1; x2Þ ¼ gðx1Þ þ gð1� x2Þ:
Substituting the above into (d), we have

�g00ðtÞ ¼ kgðtÞð0< t< 1Þ; g0ð0Þ ¼ 0; gð1Þþ
Z 1

0

gðtÞdt¼ 0:

Notice in this derivation that ~v in (d) can be taken from
whole eV 1 so that (17) is available, since W1 is orthogonal
to W2 and eV 1

a both in L2ðXÞ and H 1ðXÞ. Solving this eigen-
value problem, we obtain (27). Clearly, the minimum
positive solution of (27) lies in the interval �p2=4; p2½, and
is the unique solution there. It is surely smaller than 2p2,
and is exactly the desired eigenvalue k1. Moreover, an
eigenfunction associated to k1 is ~uðx1; x2Þ ¼ cos

ffiffiffi
k
p

1x1þ
cos

ffiffiffi
k
p

1ð1� x2Þ.
(5) To obtain

ffiffiffi
k
p

1 2 �p=2; p½ numerically with verifica-
tion, we can use various methods. Here we just use a
method based on modification of the equation t þ tan t ¼ 0
for t > 0: Let us find the minimum positive zero of
f ðtÞ :¼ cos t
2
þ sin t

2t
¼
X1
m¼0

ð�1Þmðmþ 1Þt2m

ð2mþ 1Þ! ðt > 0Þ:

The series appearing above is an alternating one, and
the absolute value of each term for fixed t converges
to 0 as m!1, monotonically for sufficiently large
m. Moreover, f ðtÞ is monotonically decreasing for
0 < t < p. Thus, as is well known in elementary calculus,
we can compute upper and lower bounds for the minimum
zero t0 by utilizing appropriate partial sums: fnðtÞ :¼
partial sum up to the term of m¼ n. It is to be noted here
that, at least in principle, all the computations can be per-
formed in the finite-digit binary arithmetic without com-
puter errors, provided that t is a rational number. For
example, by taking n = 4, 5, we can bound t0¼

ffiffiffiffiffi
k1

p
as

2:0287< t0 < 2:0291, since f ð2:0291Þ< f4ð2:0291Þ< 0 (even
n) and f ð2:0287Þ> f5ð2:0287Þ> 0 (odd n). h
6. Asymptotic behaviors of constants as a! þ0

Moreover, we can analyze the asymptotic behaviors of
the constants CiðaÞ’s as a! þ0, cf. [12]. In particular,
the right limit values Ciðþ0Þ’s are given by zeros of certain
transcendental equations (derived from eigenvalue prob-
lems of ordinary differential equations, ODE’s) in terms
of the hypergeometric functions [20]. For example,
C2ðþ0Þ�1 is equal to the first positive zero of the Bessel
function J 0ðzÞ.

For the analysis, we use various techniques including
compactness arguments. We will publish the detailed anal-
yses and results elsewhere, since they become rather



Table 1
Right limits of CiðaÞ: Ciðþ0Þ ¼ lima!þ0CiðaÞ ¼ 1=

ffiffiffiffiffiffi
kðiÞ

p
ð0 6 i 6 4Þ

i ODE’s for eigenvalue problems ðx 2 ½0; 1�Þ Constraints and/or boundary conditions Numerical values for Ciðþ0Þ’s
0 ðð1� xÞu0ðxÞÞ0 ¼ kð0Þð1� xÞuðxÞ

R 1
0 ð1� xÞuðxÞdx ¼ u0ð0Þ ¼ 0 0.26098

1 ðð1� xÞu0ðxÞÞ0 ¼ kð1Þð1� xÞuðxÞ þ C
R 1

0 uðxÞdx ¼ u0ð0Þ ¼ 0 0.32454

(C: unknown constant)
2 ðð1� xÞu0ðxÞÞ0 ¼ kð2Þð1� xÞuðxÞ uð0Þ ¼ 0 0.41583
3 ðð1� xÞu00ðxÞÞ00 ¼ kð3Þðð1� xÞu0ðxÞÞ0 uð0Þ ¼ uð1Þ ¼ u00ð0Þ ¼ 0 0.32454

(reduces to case: i = 1)
4 ðð1� xÞu00ðxÞÞ00 ¼ kð4Þð1� xÞuðxÞ uð0Þ ¼ uð1Þ ¼ u00ð0Þ ¼ 0 0.10790
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lengthy. Instead, we list up the related ODE’s with the con-
straint and/or boundary conditions in Table 1.
7. Nonconforming P1 triangle

We have mainly considered the conforming P1 triangle,
which can naturally construct subspaces of H1 space over
the entire domain. But there also exists a non-conforming
counterpart, which is also based on P1 but uses as nodes
the midpoints of edges or edges themselves [19]. Analysis
of such an element is more complicated, since we must
additionally evaluate the errors induced by the interelement
discontinuity of the approximate functions. Still we can
obtain some results for the interpolation errors. The esti-
mates shown below are based on the preceding results for
the usual P0 and P1 interpolations. They may be fairly
rough, but can be used for some purposes. To give sharper
estimates, we must introduce and analyze some new
constants.

We define here the non-conforming P1 interpolation
operator P1;n

a;h;h as follows: for 8v 2 H 1ðT a;h;hÞ, P1;n
a;h;hv is a

function in P1 such thatZ
e

P1;n
a;h;hvds ¼

Z
e

vds for edges e

ðe ¼ OA;AB;OB of T a;h;hÞ; ð29Þ

where ds denotes the infinitesimal line element on
edges.

Then we have the following results for v 2 H 2ðT a;h;hÞ in
terms of the constants introduced for the original P0 and
P1 interpolations:

oðv�P1;n
a;h;hvÞ

oxi

�����
����� 6 C0ða; hÞh D

ov
oxi

	 
���� ���� ði ¼ 1; 2Þ; ð30Þ

kv�P1;n
a;h;hvk 6 C0ða; hÞminfC1ða; hÞ;C2ða; hÞgh2kD2vk:

ð31Þ

To show (30), we use (29) and the Gauss formula to deriveR
T a;h;h

oðv�P1;n
a;h;hvÞ=oxi dx ¼ 0 for i ¼ 1; 2. Then we can

easily obtain (30) by noting the definition of C0ða; hÞ.
To derive (31), we should evaluate kv�P1;n

a;h;hvk=
kDðv�P1;n

a;h;hvÞk and kDðv�P1;n
a;h;hvÞk=kD2vk. The former

can be evaluated by using C1ða; hÞ and C2ða; hÞ, while the
latter can be done by (30).
8. Numerical results

We performed numerical computations to see the actual
dependence of various constants on a and h. Here, we just
show the results for C1ðaÞ, C2ðaÞ and C3ðaÞ by the P1 FEM
with the uniform triangulation of the domain Ta. In such
calculations, Ta is subdivided into a number of small con-
gruent triangles T a;p=2;h with h ¼ 1=20. The penalty method
in [18] was also adopted to calculate C3ðaÞ approximately.
The resulting approximate problems are matrix eigenvalue
ones, and can be solved numerically if the linear constraint
conditions imposed on eigenfunctions are appropriately
dealt with.

Fig. 2 illustrates the graphs of approximate CiðaÞ’s
ði ¼ 1; 2; 3Þ versus a 2�0; 1�. The exact value C1 = C2 at
a = 1 is also included as a horizontal line. At a = 1, the
approximate values coincide well with the exact one, and,
for general a, the monotonically increasing behaviors of
these functions are also well represented. The present
numerical results suggest that C3ðaÞ is also monotonically
increasing, but we have not succeeded in proving such a
conjecture. Moreover, when a � 0, the numerical results
agree well with the exact limits given in Table 1 based on
the asymptotic analysis.

As a simple example of application of our results, let us
consider a kind of a posteriori estimate for approximation
of k0 ¼ C�2

0 by P1 FEM. By Schultz [17] and many others,
we have the following a priori error estimate for the
approximation kh0 to k0:

k0 6 kh0 6 k0þ
ðeC3

~hk0Þ2

ð1� eC2
3
~h2k0Þ2

¼: uðk0Þ ðeC2
3
~h2k0 < 1Þ; ð32Þ

where eC3 is a positive constant such that eC3 P C3ða; hÞ for
all T a;h;h in the triangulation, and ~h ¼ max h in the triangu-
lation. Since the function uðk0Þ above is monotonically
increasing, it has the inverse function. Thus we have the
following a posteriori estimate for kh0:

u�1ðkh0Þ 6 k0 6 kh0: ð33Þ

Table 2 gives an application of (33) based on numerical
results by the P1 FEM. Here, the employed meshes are
uniform ones composed of small triangles similar to the
entire domain T. The values of parameters ~C3 and ~h that
are necessary to use (32) and (33) are also shown in the



Fig. 2. Numerical results for C1ðaÞ, C2ðaÞ and C3ðaÞ ð0 < a 6 1Þ.

Table 2
A posteriori estimates for C0

N Bounds for k0 Bounds for C0

2 5.9890 < k0 < 11.7154 0.2921 < C0 < 0.4086
3 7.8535 < k0 < 10.6563 0.3063 < C0 < 0.3568
4 8.7222 < k0 < 10.3156 0.3113 < C0 < 0.3386
8 9.5982 < k0 < 9.9867 0.3164 < C0 < 0.3278

16 9.8042 < k0 < 9.9000 0.31782 < C0 < 0.31937
32 9.8535 < k0 < 9.8774 0.31818 < C0 < 0.31856
64 9.8656 < k0 < 9.8716 0.31827 < C0 < 0.31838

1 k0 = p2 = 9.8696. . . C0 = 1/p = 0.318309. . .
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table. We can observe that this simple method can actually
bound C0 from both above and below. It is straightforward
to apply it to give a posteriori estimates to general C0ða; hÞ.
By slight modification, it can be also used to bound C1ða; hÞ
and C2ða; hÞ.
9. Concluding remarks

We have obtained some explicit relations for the depen-
dence of a few interpolation error constants on geometric
parameters of triangular finite elements. In particular, we
have succeeded in determining the Babuška–Aziz constant
from a very simple equation. We can effectively utilize these
results to give upper bounds of the a priori and a posteriori
error estimates of finite element solutions based on the P1

and/or P0 approximate functions. To obtain more clear
picture for the dependence of the interpolation error con-
stants, we should also perform various analyses including
numerical analysis with verifications, asymptotic analysis
etc. We will continue such study, and more detailed results
will be reported in due course.
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