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Abstract: For Poisson’s equation over a polygonal domain of general shape, the solution of
which may have a singularity around re-entrant corners, we provide an explicit a priori error
estimate for the approximate solution obtained by finite element methods of high degree. The
method used herein is a direct extension of the one developed in preceding paper of the second
and third listed authors, which provided a new approach to deal with the singularity by using
linear finite elements. In the present paper, we also give a detailed discussion of the dependency
of the convergence order on solution singularities, mesh sizes and degrees of the finite element
method used.
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1. Introduction
The goal of this paper is to apply a finite element method (FEM) of high degree to obtain a significantly
improved a priori estimate for the solution to the boundary value problem of Poisson’s equation over
a polygonal domain Ω:

−Δu = f in Ω; u = 0 on ∂Ω .

For the above boundary value problem, FEMs are efficient tools for calculating an approximate
solution. Estimating the approximation error is a fundamental problem in both industrial applications
and theoretical analysis. In particular, for non-linear equations, e.g., f is a non-linear function of u,
explicit error estimates are highly desirable for verification of the existence of solutions. Furthermore,
when the domain under consideration has a re-entrant corner, the solution has a singularity there,
making explicit a priori error estimates somewhat difficult.
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In [2], N. Yamamoto and M.T. Nakao provided an explicit a priori error estimate for Poisson’s
equation over an L-shaped domain. However, the techniques used in the error estimates therein
cannot easily be applied to domains of more general shape. More recently, X. Liu and S. Oishi [1]
successfully adopted a mixed FEM and a conforming FEM to compute an a priori error estimate for
a polygonal domain. The main idea of [1] is to utilize the hypercircle equation originating from [10]
to handle the singularity, and their method can be applied to solve the problem over more general
domains without additional effort.

In this paper, we extend the method of X. Liu and S. Oishi to consider high degree FEMs and
give an improved a priori error estimate. Due to the singularity of the solution in the case of a
non-convex domain, a finite element method of higher degree cannot give a higher convergence order.
However, if we use a FEM in which we vary both the mesh size (h) and shape function degree (p),
which is called by HP-FEM [3], an improved error estimate becomes possible. Our sample numerical
computations demonstrate that implementing HP-FEMs can give very fast convergence versus the
degrees of freedom of the FEM space.

The outline of this paper is as follows: in Section 2, we give the preliminary definitions and results
on function spaces and problems needed in the sequel; in Section 3, we prove the main theorem for a
priori error estimates for high degree FEMs; in Section 4, we provide computations over several non-
convex domains to illustrate our results; in the final section, we give an application of our proposed
estimate to the verification of the existence of solution for a semilinear elliptic equation.

2. Preliminaries
Given polygonal domain Ω ⊂ R2, the Sobolev spaces Hr (r ∈ N) with the usual norms are defined
by

‖u‖2
Hr(Ω) =

∑
0≤|α|≤r

‖∂αu‖2
L2(Ω), ∂αu =

∂|α|

∂xα1
1 ∂xα2

2

u,

where α = (α1, α2) is a non-negative integer pair, |α| = α1 + α2; ‖ · ‖L2(Ω) denotes the usual norm in
L2(Ω) or L2(Ω)2. The semi-norm | · |Hr(Ω) for u ∈ Hr(Ω) is defined via

|u|2Hr(Ω) =
∑
|α|=r

‖∂αu‖2
L2(Ω).

Let H(div,Ω) denote the space of vector functions such that

H(div,Ω) :=
{
ψ ∈ (L2(Ω))2 : div ψ ∈ L2(Ω)

}
,

where ‘div’ means the divergence: for ψ = (ψ1, ψ2)T , div ψ = ∂ψ1
∂x1

+ ∂ψ2
∂x2

.
In this paper, we consider the error estimate for an FEM applied to Poisson’s equation:

−Δu = f in Ω, u|∂Ω = 0 , (1)

where f ∈ L2(Ω) is a given function. We fix a function space

V = H1
0 (Ω) := {v ∈ H1(Ω) : v = 0 on ∂Ω}.

Here, v = 0 on ∂Ω is in the trace sense. The variational formulation of the problem (1) is given as:

Find u ∈ V satisfying (∇u,∇v) = (f, v), ∀v ∈ V. (2)

Let T h be a proper triangulation of Ω. The Lagrange finite element space Vh,k (⊂ V ) will be used
to find the approximate solution of (1). The function in Vh,k is continuous over the domain and
its restriction to each element is a polynomial of degree ≤ k. The Ritz-Galerkin method solves the
variational problem (2) in Vh,k,

Find uh ∈ Vh,k satisfying (∇uh,∇vh) = (f, vh), ∀vh ∈ Vh,k.
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Riesz’s representation theorem assures the existence and uniqueness of solutions u ∈ V and uh ∈ Vh,k.
Let Ph be the orthogonal projection operator from V onto Vh,k with respect to the inner product

(∇·,∇·). Then, setting uh := Phu, we have

(∇(u− uh),∇vh) = 0, ∀vh ∈ Vh,k.

If the solution u of (1) is regular enough, classical error estimation theory through interpolation
function error estimation implies

|u− uh|Hm ≤ Chk+1−m|u|Hk+1 , for m = 0, 1; k ≥ 1 .

For a solution with lower regularity, such as u ∈ Hσ(Ω) (σ ∈ [1, 2)), the convergence order is lower;
see, e.g., Chapter 8.3 of [4], from which we have

|u− uh|H1 ≤ Chσ−1|u|Hσ , ‖u− uh‖L2 ≤ Ch2(σ−1)|u|Hσ ,

One can introduce singular functions as trial functions to recover the convergence order; see, e.g., [4].
In particular, for a polygonal domain with re-entrant right corners, e.g., the L-shaped domain, K.
Kobayashi gives an explicit a priori estimate along with the use of singular functions [5].

In this paper, we consider an a prior error estimate for the Poisson problem with a solution of lower
regularity, without using singular functions, as follows:

|u− uh|H1 ≤Mh‖f‖L2 , ‖u− uh‖L2 ≤M2
h‖f‖L2 , (3)

where the quantity Mh, having an explicit value, is independent of f . The dependency of Mh on k,
h and the solution regularity is examined in the numerical computations found in Section 4.

3. FEM error analysis for Poisson’s equation

Denote by τ : L2(Ω) → H1
0 (Ω) the linear operator that maps f to the solution u of (2). The optimal

value of the quantity Mh in (3) is characterized by

Mh = sup
f∈L2(Ω),f �=0

|(I − Ph)τf |H1

‖f‖L2
.

In what follows, we provide an algorithm that gives the concrete value of Mh for a higher degree finite
element scheme.

3.1 The finite element spaces
We begin by introducing the Raviart-Thomas finite element space [6, 7]. For each triangular element
K, define by Pk(K) the space of polynomials of degree less than or equal to k on K. The Raviart-
Thomas finite element space RTk is given by

RTk :=
{
ph ∈ (L2(Ω))2 : ph|K =

(
ak
bk

)
+ ck ·

(
x

y

)
, ak, bk, ck ∈ Pk(K),

ph · n is continuous on the inter-element boundaries.
}

The Raviart-Thomas finite element space is a finite dimensional subspace of H(div,Ω). Furthermore,
we define the space of piecewise polynomial functions on K whose degree is less than or equal to k:

Xh,k := {g ∈ L2(Ω) : g|K ∈ Pk(K)}.

Classical analysis shows that div(RTk) = Xh,k (cf. Chapter IV.1 of [7]). For each fh ∈ Xh,k, we define
a subset of RTk by

Wfh
:= {ph ∈ RTk : div ph + fh = 0 on each K ∈ T h}.
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Define the orthogonal projection Πh,k : L2(Ω) → Xh,k by

(u− Πh,ku, gh) = 0, ∀gh ∈ Xh,k.

The property of the orthogonality implies that

‖u‖2
L2 = ‖Πh,ku‖2

L2 + ‖u− Πh,ku‖2
L2 , ∀u ∈ L2(Ω). (4)

To give an error estimate for ‖u − Πh,ku‖L2 , let us consider the restriction of Πh,k to the triangular
element K of T h. Let ΠK,k be the orthogonal L2 projection that projects u ∈ L2(K) onto Pk(K).
Define the constant Ck(K) over a triangular element K as follows:

Ck(K) := sup
u∈H1(K),|u|H1(K) �=0

‖u− ΠK,ku‖L2

|u|H1

Define Ch,k by Ch,k := maxK∈T h Ck(K). Then, the error estimate for (u− Πh,ku) is given by

‖u− Πh,ku‖L2 ≤ Ch,k|u|H1 if u ∈ H1(Ω). (5)

From the definition of the projection Πh,k, we know ‖u − Πh,k+1u‖L2(K) ≤ ‖u − Πh,ku‖L2(K) for
k ≥ 0; thus, Ck+1(K) ≤ Ck(K). In the case k = 0, the inverse of C0(K) is just the square root of the
minimal positive eigenvalue of the Laplacian over K with Neumann boundary condition [8, 9].

3.2 A computable a priori error estimate
We now turn to the main result of the paper: the calculation of the quantity Mh. We will apply
the framework of [1] to high degree finite elements to give a sharp estimate for Mh. For the sake of
simplicity, we denote RTk−1 by Wh, Xh,k−1 by Xh, and Vh,k by Vh for FEM spaces sharing the same
degree k, k ≥ 1.

We extend the definition of κh in [1] to one over general finite element spaces:

κh := max
0 �=fh∈Xh

min
{vh,ph}∈Vh×Wfh

‖ph −∇vh‖L2

‖fh‖L2
. (6)

We denote by κh,k the quantity κh in the case of FEM spaces of degree k. This quantity was first
introduced by X. Liu et al in [1], where the piecewise linear conforming finite element space and lowest
order Raviart-Thomas mixed finite element are considered.

The quantity κh is used to construct a computable a priori error estimate. The following proofs
in Lemma 1 and Theorem 1 are analogous to proofs given in [1]; here, however, more general finite
element spaces are considered.

Lemma 1. Given fh ∈ Xh, let ū ∈ H1
0 (Ω) and ūh ∈ Vh be the solutions of problems,

(∇ū,∇v) = (fh, v), ∀v ∈ V and (∇ūh,∇vh) = (fh, vh), ∀vh ∈ Vh,

respectively. Then we have the following error estimate in terms of the quantity κh:

|ū− ūh|H1 ≤ κh‖fh‖L2 . (7)

Proof. From Prager-Synge’s theorem [10], for any vh ∈ Vh and any ph ∈Wfh
, we have

‖∇ū−∇vh‖2
L2 + ‖∇ū− ph‖2

L2 = ‖ph −∇vh‖2
L2 .

This is called the hypercircle equation, and it implies the inequality

‖∇ū−∇vh‖L2 ≤ ‖ph −∇vh‖L2 , ∀vh ∈ Vh, ∀ph ∈Wfh
.

From the minimization principle, we obtain the error estimate,
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‖∇ū−∇ūh‖L2 ≤ min
vh∈Vh

‖∇ū−∇vh‖L2 ≤ min
{vh,ph}∈Vh×Wfh

‖ph −∇vh‖L2 .

By the definition of κh, we then have

‖∇(ū− ūh)‖L2 ≤ κh‖fh‖L2 .

Theorem 1. Given f ∈ L2(Ω), let u ∈ V be the solution of

(∇u,∇v) = (f, v), ∀v ∈ V

and Phu is the projection of u onto Vh. Let

Mh :=
√

(Ch,k−1)2 + κ2
h.

We have the following error estimate:

|u− Phu|H1 ≤Mh‖f‖L2 , ‖u− Phu‖L2 ≤Mh|u− Phu|H1 ≤Mh
2‖f‖L2 .

Proof. Let ū and ūh be as defined in Lemma 1, where fh is chosen to be fh := Πh,k−1f ∈ Xh. The
minimization principle yields |u−Phu|H1 ≤ |u− ūh|H1 . Re-writing u− ūh as (u− ū) + (ū− ūh), we
find that

|u− Phu|H1 ≤ |u− ūh|H1 ≤ |u− ū|H1 + |ū− ūh|H1 .

First, we consider the estimate for |u − ū|H1 . From the definitions of u and ū, it follows that, for
∀v ∈ V ,

(∇(u− ū),∇v) = (f − Πh,k−1f, v) = ((I − Πh,k−1)f, (I − Πh,k−1)v) .

Putting v := u− ū and applying the error estimate for the projection Πh,k−1 in (5), we have

|u− ū|2H1 ≤ ‖(I − Πh,k−1)f‖L2 ‖(I − Πh,k−1)(u− ū)‖L2

≤ ‖(I − Πh,k−1)f‖L2 · Ch,k−1|u− ū|H1 .

Hence, we obtain
|u− ū|H1 ≤ Ch,k−1 ‖(I − Πh,k−1)f‖L2 . (8)

From (4), (7) and (8), |u− Phu|H1 satisfies

|u− Phu|H1 ≤ |u− ū|H1 + |ū− ūh|H1

≤ κh‖Πh,k−1f‖L2 + Ch,k−1 ‖(I − Πh,k−1)f‖L2

≤
√

(Ch,k−1)2 + κ2
h ‖f‖L2 .

Finally, the estimate for ‖u− Phu‖L2 easily follows from Aubin-Nitsche’s method.

3.3 Computation of κh

Next, we turn to evaluating the quantity κh defined in (6). The computation of κh is accomplished
in two steps. First, for a fixed fh ∈ Xh, letting ū be the solution corresponding to fh, we find the
functions ūh and ph that solve the optimization problem:

min
{ūh,ph}∈Vh×Wfh

‖ph −∇ūh‖2
L2 = min

{ūh,ph}∈Vh×Wfh

‖∇ū− ph‖2
L2 + ‖∇ū−∇ūh‖2

L2 .

Since ūh and ph can be selected independently, solving the above optimization problem is equivalent
to solving the following two optimization problems:

min
ph∈Wfh

‖∇ū− ph‖2
L2 , min

ūh∈Vh

‖∇ū−∇ūh‖2
L2 . (9)

Classical FEM error analysis implies that the minimizers are given by the solutions of the following
two problems:
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a) Find ph ∈Wh and ρh ∈ Xh such that
{

(ph, qh) + (ρh,div qh) = 0, ∀qh ∈Wh,

(div ph, gh) + (fh, gh) = 0, ∀gh ∈ Xh.

b) Find ūh ∈ Vh such that

(∇ūh,∇vh) = (fh, vh), ∀vh ∈ Vh.

Second, since the optimizers of (9) are uniquely determined for each fh, the maximum of ‖ph −
∇ūh‖L2/‖fh‖L2 can be obtained by solving an eigenvalue problem in a finite dimensional space.
Observe that the optimizer {ph, uh} for (9) satisfies

(∇ūh,∇ūh) = (fh, ūh), (∇ūh, ph) = −(ūh,divph) = (ūh, fh) ,

and

(ph, ph) = −(ρh,divph) = (ρh, fh) .

Thus, we have

‖ph −∇ūh‖2
L2 = (ph, ph) − 2(∇ūh, ph) + (∇ūh,∇ūh)

= (fh, ρh − ūh) .

Defining ūh, ρh via ūh = Kfh and ρh = Hfh, we then have

κ2
h = max

fh∈Xh

(fh, (H −K)fh)
(fh, fh)

. (10)

We note that the matrix expression of the numerator of (10) is a full-matrix, which makes solving the
matrix eigenvalue problem extremely computationally intensive if verified bound of κh is required.
However, for purpose of approximate computation of κh, the explicit form of matrices corresponding
to H and K is not needed. Thus, both computer memory and computing time can be dramatically
saved. For a detailed description of the computation of κh, we refer the reader to [1].

4. Computational results of a priori error estimate

In this section, we give illustrative numerical examples of computable a priori error estimates for
Poisson’s equation. The dependence of the quantity Mh on the mesh size, FEM degree and the
solution regularity is discussed within these numerical results.

4.1 FEM of varying mesh sizes and degrees
First, we investigate error estimates for FEM of different mesh sizes and degrees. The degree of FEM
spaces varies from k = 1 to k = 6. The DOLFIN package of the FEniCS [11] project is used to
implement these higher degree FEM spaces. As interval arithmetic is not supported by the DOLFIN
package, the computational results obtained exhibit some rounding error.

We fix our domain as the L-shaped region (−1, 1) × (−1, 1) \ [0, 1] × [−1, 0]. Since explicit compu-
tations of Ch,k (k = 1, 2, 3) are not currently known, we focus on the evaluation of quantity Ch,0. In
fact, Ch,0 has the optimal convergence order and converges to 0 faster than κh,k.

In Fig. 1, we display the values of κh,k versus the square root of the degrees of freedom of the FEM
spaces Vh,k. The data on the same solid lines is from the computation of the same FEM degree using
different mesh sizes. It is evident that the value of κh,k converges to zero rapidly if we vary both the
mesh size and the FEM degree. However, for a fixed degree of FEM spaces, the convergence order
of κh,k, denoted by γ, is substantially smaller than 1, even if higher degree FEMs are adopted; see
Fig. 2.
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Fig. 1. Convergence of κh,k v.s. degree of freedom(DOF) of Vh,k.

Fig. 2. Convergence of κh,k versus mesh size h and FEM degree k.

4.2 Boundary value problems of varying singularity
We define Ωm (m = 1, 2, 3, 4), domains corresponding to re-entrant corners of different angles (see
Fig. 3 and Fig. 4), as follows:

Ωm = (−1, 1)2 ∩
{

(r cos θ, r sin θ) : 0 ≤ θ ≤ 3 +m

4
π, 0 < r <

√
2
}

(m = 1, 2, 3, 4) .

Evidently, only the rectangle Ω1 is a convex domain. For Poisson’s problem over the above domains,
we implement the Raviart-Thomas element spaces RT0 and RT1 with interval computation. All
computations in this subsection are carried out using MATLAB 2013a with a toolbox for verified
numerical computations, INTLAB ver.7 [12].

First, we consider the a priori error estimate in the case of the domain Ω1. For the FEM spaces
of degree k = 1, it is well known that an explicit a priori estimate can be given by applying the
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Fig. 3. Domains Ω1 & Ω2 with triangular meshes.

Fig. 4. Domains Ω3 & Ω4 with triangular meshes.

Table I. A priori estimation for k = 1, 2 on Ω1.

h Mh,1 order Mh,1(f) order Mh,2 order Mh,2(f) order
1/2 2.61E-1 - 1.81E-1 - 1.90E-1 - 4.19E-2 -
1/4 1.37E-1 0.93 9.8E-2 0.89 9.63E-2 0.98 1.26E-2 1.73
1/8 7.08E-2 0.95 5.0E-2 0.96 4.84E-2 0.99 3.60E-3 1.81
1/16 3.65E-3 0.96 2.5E-2 0.99 2.43E-2 1.00 9.96E-4 1.85
1/32 1.85E-4 0.98 1.3E-2 1.00 1.21E-2 1.00 2.72E-4 1.88

interpolation error estimate for the solution u ∈ H2(Ω); the explicit interpolation error estimate can
be found in F. Kikuchi and X. Liu [8] and K. Kobayashi [13]. We use the value of κh,k to construct
the a priori estimate in this subsection. Since the quantity Mh,k is defined using the supremum over
all f ∈ L2(Ω), the convergence order of Mh,k is at most one, even if a higher degree FEM is employed.
Thus, the convergence order of Mh,k is precisely one, a fact that is confirmed by the computed results
in Table I and Figs. 5 and 6.

For a concrete f , we can define the a priori estimate as

|u− uh|H1 ≤Mh,k(f)‖f‖L2 ,

where Mh,k(f) =
√
C2
h,k + κ2

h,k(f); κh,k(f) is defined by,

κh,k(f) = min
{vh,ph}∈Vh,k×Wfh

|∇vh − ph|L2

‖fh‖L2
(fh := Πh,k−1f) .

Thus, Mh,k(f) can be smaller in value than Mh,k, and a better convergence order is expected. The
minimizer {vh, ph} in the definition of κh,k(f) is just given by the solutions of problem a) and b) in
Section 3.3. In Table I, for f ≡ 1, we show the a priori estimates for FEM spaces of high degree; the
convergence orders tend to 1.0 and 2.0 for k = 1, 2, respectively.
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Fig. 5. Mh,1 on Ωm, (m = 1, ..., 4).

Fig. 6. Mh,2 on Ωm, (m = 1, ..., 4).

Next, we consider the cases of the domains Ωm (m = 1, ..., 4). In Figs. 5 and 6, using double
logarithmic plots, we display the values of Mh,k for the FEM spaces of degree k = 1, 2 on Ωm (m =
1, ..., 4) versus the mesh size h. It is well-known that the solutions over the domains Ωm, (m = 2, 3, 4)
may include parts with singularities:

u = us + u0 ,

where u0 is a function in H2(Ω) and us may have a singularity as bad as

us = rwi sinwiθ,

with wi = 4/5, 2/3, 4/7 for Ω2, Ω3 and Ω4, respectively (cf. Chapter 8 of [4]). From the computational
results in Fig. 5 and Fig. 6, it may be observed that a worse singularity leads to a lower convergence
order, and a higher degree FEM method can help improve the convergence order.
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Fig. 7. A sketch of û ∈ Vh,2.

Table II. Verification computation for (11).

hmax hmin Mh,2 β δh β2δhη ρ

9.088×10−2 2.052×10−3 2.589×10−2 6.002 1.501×10−1 0.613 Failed
4.333×10−2 2.024×10−3 1.246×10−2 5.395 1.457×10−1 0.481 1.309
8.539×10−2 1.017×10−3 2.452×10−2 5.914 1.101×10−1 0.437 9.594×10−1

5. Applications to semilinear elliptic problems

As an application of our computable a priori error estimates, we consider a semilinear elliptic problem.
For such problems, a verified computation method has been developed to give a proof for the existence
and local uniqueness of a solution based on Newton-Kantorovich’s theorem; see, e.g., [14, 15] for the
detailed procedure. The computable a priori error estimate plays an important role in implementing
the verified computation.

In what follows, we study a semilinear elliptic problem. Let Ω = {(x1, x2) : (−1, 1)2\ [−1, 0]2} ⊂ R2

be an L-shaped domain with boundary ∂Ω. We consider the following nonlinear equation:

−Δu = u2 in Ω, u|∂Ω = 0. (11)

An approximate solution û ∈ Vh,2 is given by quadratic conforming finite elements on a non-uniform
triangulation. The shape of û is displayed in Fig. 7. As the lack of H2-regularity occurs at the
re-entrant corner of the L-shaped domain, we refine the mesh around that corner.

In Table II, we present the quantities needed to construct the proof for (11). Here, hmax and
hmin denote, respectively, the maximum and minimum edge length of the triangulation. The quantity
Mh,2 is obtained by our proposed method introduced in Section 3. The sufficient condition in Newton-
Kantorovich’s theorem to ensure the existence of a solution is: β2δhη ≤ 1/2, where η is the Lipschitz
constant of the Fréchet derivative of the nonlinear term, β is a norm estimate of the linearized inverse
discussed in [15], and δh denotes a residual estimate described in [14]. If the condition β2δhη ≤ 1/2
holds, then the existence and local uniqueness of an exact solution u is assured in the ball centered
at û with radius ρ, that is, |u − û|H1 ≤ ρ. Our computations show that, around the approximate
solution û shown in Fig. 7, there exists an exact solution of (11).
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