
Proceedings of the Twenty-Eighth RAMP Symposium
Niigata University, Niigata, October 13–14, 2016

ネットワークフローのモデルで論文査読者割当の問題を考える

Paper review assignment problem under the
minimum cost flow network model

Xuefeng LIU1∗, Yuan LIU2†, and Zhouwang Yang2‡

Abstract For the paper review assignment problem, i.e., to assign papers to proper review-
ers, most of the existing algorithms regard it as an integer programming problem, which is
however a class of NP -hard problem. In this paper, the paper review assignment problem is
considered under the minimum cost flow network model. The running time of network simplex
algorithm to solve the review assignment is no worse than O(nm(n + m)2 log(n + m)) (n:paper
number, m:reviewer number). Thus the problem can be solved in strongly polynomial time.
The efficiency of our proposed algorithm is demonstrated by computation results.

1. Introduction

In this paper, we are considering a practical problem of paper review assignment for aca-
demic conferences. The scenario of such a problem can be described as follows. Papers are
submitted to a conference and there are reviewers to review these papers. To find proper
reviewers from the reviewer database for each paper, the conference chair will first ask the
reviewers to do a bidding for the papers, i.e., each reviewer selects the papers that he wants
to review, the ones he may agree to review and the ones he does not want to review. By also
taking into account other factors, for example, the interest conflict between reviewers and
papers, the conference chair decides how to assign papers to reviewers.

For the paper review assignment problem, the existing algorithms usually deal with it in
an integer programming model with properly selected objective function. However, since the
integer programming problems is a NP-hard class. The computing time will dramatically
increase as the scale of the problem increases. In this paper, we consider the paper review
assignment problem in the min-cost flow (MCF) network model, which is a model problem in
the field of operations research. The theoretical analysis shows that a MCF network problem
can be solved in strongly polynomial runtime; see the survey in, e.g., [4]. Besides theoret-

1 Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2 no-cho, Nishi-ku, Niigata City,
Niigata, 950-2181, JAPAN

2 School of Mathematical Sciences, University of Science and Technology of China, No.96, Jinzhai Road, Hefei,
Anhui, 230026, China

∗ E-mail address: xfliu@math.sc.niigata-u.ac.jp
† E-mail address: liuyzz@mail.ustc.edu.cn
‡ E-mail address: yangzw@ustc.edu.cn



The Twenty-Eighth RAMP Symposium

ical aspects, there have been efficient implementations of the MCF algorithms. One of the
popular algorithms is the network simplex algorithm, for which one of the estimations for
the worst-case runtime is O(N2M log(NC)), where N , M are numbers of nodes and edges
of a network, and C is the maximum cost of any edges. For MCF problem corresponding to
paper review assignment problem with n papers and m reviewers, we have N = n + m + 2,
M ≤ nm + n + m, and C is chosen to be a constant of small value. This implies that, the
paper review assignment problem requires at most strongly polynomial runtime and it will be
more efficient to apply the MCF model than the integer programming one. Such a theoretical
prediction is in fact verified by our simulation results. For example, for 800 papers and 640
reviewers, our simulation results show that the running time is reduced from 7.0 seconds by
integer programming algorithm to only 0.25 seconds by network simplex algorithm.

The construction of this paper is as follows. In §2, we introduce the problem of paper re-
view assignment and the exiting algorithms. In §3, we show the min-cost flow network model
and explain how to formulate the paper review assignment problem as a min-cost flow net-
work model. In §4, the efficiency of our proposed methods is demonstrated by computation
results.

2. Problem of paper review assignment

The reviewer assignment problem can be described as follows: Given m reviewers and n

papers to review, assign the papers to the reviewers under the conditions that

• For each paper, there should be q reviewers.
• For each reviewer, there should be at most p papers to review.

When solving the review assignment problem, the bidding results, presented by matrix Bn,m,
should be taken into account.

• For paper i, reviewer j has a decision as “Want”, “Maybe”, “Don’t want”. Let us take
– Bij = 2 in case of “Want”;
– Bij = 1 in case of “Maybe”;
– Bij = 0 in case of “Don’t want”.

• Reviewer cannot review a paper if there exists conflict of interest, for example, the re-
viewer is also the author of the paper. In this case, take Bij = −1.

Denote the final assignment result by 0-1 matrix Sn×m. The case Sij = 1 means paper i

is assigned to reviewer j.

2.1. Existing approaches for review assignment problem
A natural idea to solve the assignment problem is to set up the problem as below.

Propblem A: max
n∑

i=1

m∑
j=1

Sijcij (1)



The Twenty-Eighth RAMP Symposium

subject to
Sij ∈ {0, 1},

∑
j

Sij = q,
∑

i

Sij ≤ p . (2)

Here cn×m is the weight matrix that evaluates the relation between reviewers and papers.
For paper i and reviewer j, we can, for example, take

• cij = 2 in case of “Want”,
• cij = 1 in case of “Maybe”,
• cij = 0 in case of “Don’t want”,
• cij = −∞ in case of interest conflict.

To solve the problem A, a simple try is to apply the dynamic programming algorithm,
which is be regarded as a universal algorithm but the computing time will dramatically in-
crease for larger m and n. For a simple model such that each reviewer can review any paper,
there are total

(pm
nq

)
combinations for the papers and the reviewers.

The model (1) can also be classified by integer linear programming problem, which is
however a class of NP-hard problem. As we know, the integer linear programming problems
are in general very difficult to solve. In §4, a comparison between integer programming al-
gorithm from MATLAB Optimization Toolbox and our proposed method is performed.

In [9], the author reformulate Problem A as follows,

Problem A∗: Maximize aT b, subject to Kb ≤ d (3)

where b is the 0 − 1 vector denoting the relations between reviewers and papers, K is a 0 − 1
matrix describing the the constraint conditions. In the worst case, there are mn relations and
the constraint number is (m + n) + 2mn, noticing that Problem A∗ is just a reformulation
of (2). By taking advantage of the so called “totally unimodular” property of K, it is proved
that there is one optimal solution as binary solution.

Problem A∗ can be solved by applying the simplex method or the interior point method,
which is usually remarkably efficient in practice. For the problem with proper scale of papers
and reviewers (for example, n = 1100, m ≈ 500), the problem can be solved in several sec-
onds[9]. However, as noted in [6], for the worst-case, for example, the case of the Klee-Minty
cube, the complexity of simplex method is exponential time on the number of variables and
constraint number.

In this paper, we consider a simlar model as Problem A as follows.

Propblem B: min
n∑

i=1

m∑
j=1

Sijcij (4)

subject to
Sij ∈ {0, 1},

∑
j

Sij = q,
∑

i

Sij ≤ p . (5)

The cost function is decided upon the bidding results. For the bidding result between reviewer



The Twenty-Eighth RAMP Symposium

j and paper i, take

• cij = 0 in case of “Want”;
• cij = CostRef(> 0) in case of “Maybe”;
• cij = CostScale(> CostRef) in case of “Don’t want”;
• cij = ∞ in case of interest conflict.

In next section, instead of using integer programming algorithm, we will solve Problem B by
regarding it as a minimum cost flow network problem.

3. Minimum cost flow network model

Let us introduce the standard minimum cost flow problem. Let G = (V, E) be a directed
graph with associated integral cost cij(≥ 0) and capacity uij(∈ N+) for each (i, j) ∈ E.
Associate each node in V an integer number b which indicates the supply (or demand) of the
node if b(i) > 0 (or b(i) < 0). The minimum cost flow problem is stated as follows

min
∑

(i,j)∈E

cijxij (6)

subject to

xij ∈ N+ ∪ {0}, 0 ≤ xij ≤ uij ,
∑

j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xij = b(i) . (7)

A graph showing the minimum cost flow network is given in Figure 1.

v1

v2

v3

v4

v5

v6

v7

v8

(capacity, cost)

edge

Figure 1 Minimum cost flow network

For the above model problem, there have been many literatures in the history. From
theoretical analysis, it is shown that the min-cost flow network problem can be solved in
strongly polynomial runtime. Here, the strongly polynomial runtime means the runtime is a
polynomial of |V | and |E| and is independent on the magnitude of cost and capacity. For
the implementation of MCF algorithms, one of the estimations shows that the worst runtime
of network simplex algorithm is O(N2M log(NC)), where N = |V |, M = |E| and C is the
maximum cost of any edges [7, 8]. For a comprehensive study of the theories, algorithms,
and applications of network flows, refer to the book of Ahuja, Magnanti, and Orlin [4].

Remark 3.1. Algorithm Runtime Terminology Take the number of inputs to our algo-



The Twenty-Eighth RAMP Symposium

rithm to be n integers in the range 0, 1, ..., U . Assume that we are working in the Word-RAM
model, where standard arithmetic operations can be computed in constant time. The runtime
of algorithms is classified into the types as follows.

1. An algorithm is strongly polynomial if its runtime is poly(n).
2. An algorithm is weakly polynomial if its runtime is poly(n, log U).
3. An algorithm is pseudopolynomial if its runtime is poly(n, U).

3.1. Review assignment problem v.s. min-cost flow problem
We describe how to formulate Problem B to a min-cost flow problem.

Nodes and edges Define the paper set Vp := {p1, · · · , pn} and the reviewer set
Vr := {r1, · · · , rm}. Introduce a source node nin and the target node nout. Let V =
Vr ∪ Vp ∪ {nin, nout}. The edge set E can be divided into 3 groups:

1) Source edges: all edges from the source node nin to each node of Vp.
2) Target edges: all edges from each node of Vr to the target node nout.
3) Paper-reviewer edges: the edge (pi, ej) from pi ∈ Vp to rj ∈ Vr if Bij ≥ 0.

In Figure 2, we show the graph for the network of paper review problem.

Remark 3.2. Notice that if a reviewer rj has interest conflict with a paper pi, then there is
no edge between pi and rj.

Figure 2 Minimum cost flow network for paper review

Supply/demand and capacity The supply/demand function b is defined by
b(nin) = −nq;
b(nout) = nq;
b(v) = 0, ∀v ∈ Vr ∪ Vp.

(8)

The capacity u for edges of E is defined by

1) u = q for each edge from nin to Vp;
2) u = p for each edge from node of Vr to nout;



The Twenty-Eighth RAMP Symposium

3) u = 1 for each edge from node of Vp to node of Vr;

Remark 3.3. For a solution of the min-cost flow problem, the flow on Paper-reviewer edges
will be taken 0 or 1, the later of which means that one paper is assigned to a reviewer. The
above setting of supply/demand and capacity makes sure that for each paper there should be
q reviewers and for each reviewer, the number of assigned paper will not be larger than p.

Cost of flow Define cost c for each edge of E. For edge (pi, ej) of Paper-reviewer edges
from pi(∈ Vp) to rj(∈ Vr),

cij := 0 if Bij = 2;
cij := CostRef (> 0) if Bij = 1;
cij := CostScale (CostScale > CostRef) if Bij = 0.

(9)

Here, CostRef and CostScale are both positive integers. For other edge of Source edges and
Target edges, take c = 0.

Remark 3.4. The rationality of the above selection of edge set and the associated cost can
be understood as follows. If a reviewer “Want” to review a paper, the cost for such a job(=
a route in a flow network) is regarded as 0, thus such a route will have the highest priority.
For the bidding result as “Maybe”, a reference cost as c = 1 is assigned. If a reviewer “Don’t
want” to review a paper, we can adjust the value of CostScale to respect reviewer’s will. A
larger value of CostScale will drop the possibility that a reviewer is assigned a paper that he
don’t want to review.

Remark 3.5. One should pay more efforts to the cost setting for “Don’t want” bidding result
in practical review assigning system. For a conference with many papers, the default bidding
result is often taken as “Don’t want” to save the time of reviewers. Thus, it is not too bad to
assign a paper to a reviewer who “Don’t” want to review. As a response in the flow network
model, the value of CostScale can be given a relatively small value.

Another scheme for defining the cost of “Don’t want” is to consider the research
field matching for paper and reviewers. Define a category list (i.e., research field list)
G = {1, 2, · · · , ℓ}. The research field information for a reviewer can be presented by a 0 − 1
matrix R with dimension m × ℓ, the (j, k)th element of which is denoted by Rjk. Rj,k = 1
means that reviewer rj belongs to field k. Similarly, we define the n × ℓ matrix P for the
category information of papers. Now, we can define matching score, for example, by

MatchScoreij :=
ℓ∑

k=1
PikRjk/ max{

ℓ∑
k=1

Pik,
ℓ∑

k=1
Rjk} (0 ≤ MatchScoreij ≤ 1)

For a high-score matching, one should take smaller value of cost, for example,

cij := CostScale · (2 − MatchScoreij) if Bij = 0 .

Flow solution For a solution of minimum cost flow problem, the flow x on an edge
(pi, rj) ∈ E will be 0 or 1. Such a result can be saved into the 0-1 review assignment matrix
S, i.e., Si,j = x.



The Twenty-Eighth RAMP Symposium

Noticing the theoretical analysis for the runtime of MCF algorithm, the MCF problem
considered here for paper review assignment problem can be solved in O(nm(n+m)2 log(n+
m)) time.

3.2. Other related operation models
The paper review assignment problem is related to the Assignment Problem and the Gener-
alized Assignment Problem. Here we show the difference between each other.

Assignment Problem (AP) The assignment problem is described as follows. Given
two equally sized sets N1 and N2 (i.e., |N1| = |N2|), a collection of pairs A ⊂ N1 × N2 rep-
resenting possible assignments, and a cost cij associated with each element (i, j) ∈ A. The
corresponding min-cost flow network is G = (N1 ∪ N2, A) with b(i) = 1 for i ∈ N1, b(j) = −1
for j ∈ N2 and the capacity being 1 for all edges. The application of min-cost flow network
to assignment problem is also mentioned in Chapter 1 of [4]. However, since each reviewer
can have multiple review tasks, the assignment problem along with its algorithm cannot be
applied to the paper review assignment problem here.

Generalized Assignment Problem (GAP) The GAP is also a standard problem in
operations research; see, e.g., [5]. Given n items and m knapsacks with

pij = profit of item j if assigned to knapsack i , (10)
wij = weight of item j if assigned to knapsack i , (11)

ci = capacity of knapsack i , (12)
(13)

assign the items to knapsacks so as to minimize or maximize
n∑

i=1

m∑
j=1

pijxij

subject to
m∑

i=1
wijxij ≤ cj ,

n∑
j=1

xij = 1, xij = 0 or 1, ∀i = 1, · · · n, ∀j = 1, · · · m .

It is not difficult to transform the paper review assignment problem into the above GAP
by the following operations.

1) take wij = 1;
2) regard the nq reviewing tasks as nq items and the m reviewers as m knapsacks;
3) for each paper, take only one pij to be postivie finite value for the q review tasks (items)

and others to be negative value or even −∞, in case it is a maxmization problem.

The operation 3) is to make sure that a paper is not assigned to the same reviewer more than
one time.



The Twenty-Eighth RAMP Symposium

The GAP with wij = 1 can also be tranformed to a min-cost flow network. However,
GAP itself is an NP-hard problem. Thus it cannot be expected that the algorithm for GAP
gives better efficiency than the one for MCF.

From the above analysis we can see that the reviewer assignment problem discussed here is
between the AP and GAP and to select a proper model for such a problem is very important.

4. Optimization library and simulation results

The optimization problems have been well explored in the history along with the development
of computing technologies. In these days, there are many optimization libraries provided in
various programming languages. In our computing experiments, to compare the efficiency
of different models, we adopt three libraries as listed in Table 1. Notice that for different
libraries, the computing environment is little different from each other.

Table 1 Libraries and computing environment
Library Language Environment(OS, Memory, CPU)
Optimization Toolbox TM of MATLAB MATLAB Windows 7, 16GB, 2.80GHz*4
LEMON[2] C++ Ubuntu 16.04, 16GB, 2.80GHz*4
Google Optimization Tools (or-tools)[1] Python Ubuntu 16.04, 16GB, 2.80GHz*4

Below, we give a short introduction to LEMON and or-tools.

1) LEMON stands for Library for Efficient Modeling and Optimization in Networks. It
is an open C++ template library providing efficient algorithms for combinatorial opti-
mization tasks connected mainly with graphs and networks. It provides easy-to-use and
highly efficient implementations of graph algorithms and related data structures, which
help solving complex real-life optimization problems.

2) The or-tools is one of Google’s software suite for combinatorial optimization. As an open
source and free software, the suite contains constraint programming solver, a simple and
unified interface to several linear programming and mixed integer programming solvers,
Knapsack algorithms and Graph algorithms.

In the comparison of the efficiency of optimization models used in paper review assign-
ment problem, the testing data of different scales, i.e., the bidding result matrices, is created
randomly by using the MATLAB code in Appendix A.

To give an estimation of the assignment results from different viewpoints, we pay atten-
tion to how the “Want” bidding results are dealt with in the min-cost flow network model.
For an assignment result, define two estimation scores by

ScoreP =
n∑

i=1
(min(q, #{reviewer who wants to review paper i})

−#{reviewer assigned to paper i who wants to review the paper }) (14)

ScoreR =
m∑

j=1
(min(p, #{paper that reviewer j wants to review})



The Twenty-Eighth RAMP Symposium

−#{paper assigned to reviewer j that is wanted by reviewer j}) (15)

Here, #{·} means the number of the elements of a given set.
In Table 2, the computing time (unit: second) and the estimation scores (ScoreP , ScoreR)

of three libraries are displayed. For LEMON library, the network simplex algorithm is
adopted. The parameters in the simulations are takes as follows.

q = 3, p = 5, CostScale = 1, CostScale = 2 .

Table 2 Comparison of models and libraries (unit of time: second)

(n,m) Integer programming (MATLAB)
(time, ScoreP, ScoreR)

Min-cost flow (LEMON)
(time, ScoreP, ScoreR)

Min-cost flow (or-tools)
(time, ScoreP, ScoreR)

(100, 80) (0.032, 0, 0) (0.002, 0, 0) (0.003, 0, 0)
(200, 160) (0.101, 1, 20) (0.009, 2, 21) (0.010, 2, 21)
(400, 320) (0.462, 2, 200) (0.051, 2, 200) (0.057, 2, 200)
(800, 640) (6.993, 3, 118) (0.164, 3, 118) (0.246, 3, 118)
(1600, 1240) (43.08, 1, 917) (0.670, 1, 917) (1.070, 1, 917)

From the simulation results we can see that the min-cost flow network model gives signif-
icant improvement of running time, compared with the integer programming model. For the
two min-cost flow network libraries, LEMON and or-tools give almost the same performance,
while the minor difference may be up to the programming language selected for each library.
Also, notice for each of the scores ScoreP and ScoreR, the values are not all the time same
to each other for three libraries; for example, see the case (n, m) = (200, 160).

To confirm the effect of parameter CostScale, we perform simulation with different values
of CostScale and display the results in Table 3. The data is taken from a conference hosted
at SmartChair[3]. The parameters for this computation are n = 123, m = 86, CostRef = 10.

Table 3 Effect of parameter CostScale (or-tools)
CostScale 15 20 25 30
ScoreP 31 34 37 39
ScoreR 5 8 11 13

From the computation result we can see that a larger CostScale gives worse ScoreR and
ScoreP (i.e., larger values), which means the model has put more weight on “Don’t want”
than “Want”. In practical applications, by adjudging the value of CostScale, we can give
a proper respect to “Don’t want” upon whether “Don’t want” is a default bidding result or
not.

5. Summary

The research in optimization theories has provided us powerful tools to solve the practical
problems. However, the selection of models will give quite different performance even for the



The Twenty-Eighth RAMP Symposium

same problem. In this paper, we novelly formulate the paper review assignment problem as
a min-cost flow network problem and the computing time is greatly cut, compared with the
existing algorithms based on integer programming model.

For a paper review assignment problem with scale as about n = 800, less than 0.3 second
is needed. This makes it possible to give real response to the adjustment of input and param-
eters. That is, one can dynamically set the matching between certain papers and reviewers
upon his experience and then check the corresponding result of from automatic assignment.

References
[1] Google Optimzation Tools. https://developers.google.com/optimization/. Accessed: 2016-

09-01.
[2] LEMON, Library for Efficient Modeling and Optimization in Networks. http://lemon.cs.elte.

hu/trac/lemon. Accessed: 2016-09-01.
[3] SmartChair conference system. http://www.smartchair.org. Accessed: 2016-09-01.
[4] Ravindra K Ahuja, Thomas L Magnanti, and James B Orlin. Network flows: theory, algorithms,

and applications. 1993.
[5] Silvano Martello and Paolo Toth. Knapsack problems: algorithms and computer implementations.

John Wiley & Sons, Inc., 1990.
[6] GJ Minty and V Klee. How good is the simplex algorithm. Inequalities, 3:159–175, 1972.
[7] James B Orlin. A polynomial time primal network simplex algorithm for minimum cost flows. Math.

Program., 78(2):109–129, 1997.
[8] Robert E Tarjan. Dynamic trees as search trees via euler tours, applied to the network simplex

algorithm. Math. Program., 78(2):169–177, 1997.
[9] Camillo J Taylor. On the optimal assignment of conference papers to reviewers. Technical Report

MSCIS-08-30, University of Pennsylvania, 2008.



The Twenty-Eighth RAMP Symposium

A. A MATLAB code to create random bidding results

The code in Table 4 gives a random bidding result matrix. For each reviewer, the bidding
result to papers are decided by the following possibilities.

“Want”: 0.3%, “Maybe”: 1.7%; “Don’t want”: 97.5%; “Intrest conflict”: 0.5% .

Table 4 A MATLAB code to create random bidding results

1 n= 800; m= 640; B=zeros (n ,m) ;
f o r k = 1 :m

bidding_var = rand (n , 1 ) ;
idx_2 = f ind ( bidding_var >=0.997) ;
idx_1 = in t e r s e c t ( f ind ( bidding_var >=0.98) , f ind ( bidding_var <0.997) ) ;

6 idx_0 = in t e r s e c t ( f ind ( bidding_var >=0.005) , f ind ( bidding_var <0.98) ) ;
idx_negtive = f ind ( bidding_var <0.005) ;
B( idx_2 , k ) = 2 ;
B( idx_1 , k ) = 1 ;
B( idx_negtive , k ) = −1;

11 end
save ( ’B.mat ’ , ’B ’ ) ;
B=int32 (B) ;
save ( ’−a s c i i ’ , ’B. txt ’ , ’B ’ ) ;

B. Sample code for solving the paper review assignment problem

In Table 5, we provide a Python code for solving the paper review assignment problem.
Such a code is using the min-cost flow network algorithm of Google Optimization Tools
(https://developers.google.com/optimization/). To show a complete code, a sample bidding
matrix B is also given in the code.

Below is the running result from the sample code.

Total 3 papers , 6 reviewers.
Minimum cost : 6
Paper 1 : reviewer [2 3 6]
Paper 2 : reviewer [1 2 5]
Paper 3 : reviewer [3 5 6]



The Twenty-Eighth RAMP Symposium

Table 5 The code using Google Optimization Tools for paper review assignment problem

from or t oo l s . graph import pywrapgraph
import numpy as np
#A sample bidding r e s u l t
B=np . array ( [ [ 0 , 1 , 2 , −1, 1 , 0 ] ,

5 [ 1 , 2 , 0 , 0 , 1 , 0 ] ,
[ 0 , 1 , 2 , 1 , 2 , 1 ] ] )

(n ,m) = B. shape # n : number o f papers ; m: number o f rev iewers
pr int ( ”Total %d papers , %d rev iewers . ”%(n ,m) )
q = 3 ; #The number o f rev iewer needed f o r each paper

10 p = 2 ; #The maximum number o f papers f o r each reviewer

def node_idx_of_paper ( i ) : return 1+i #Paper nodes : 1~n
def node_idx_of_reviewer ( i ) : return 1+n+i #Reviewer nodes : (n+1)~(n+1+m)
def node_idx_of_source ( ) : return 0 ; #Source node : the 0th node

15 def node_idx_of_target ( ) : return 1+m+n ; #Target node : the l a s t node

start_nodes = [ ] ; end_nodes = [ ] ; c apa c i t i e s = [ ] ; unit_costs = [ ]
# Source edges
f o r i in range (0 ,n) : #The edge from source to each paper

20 start_nodes . append ( node_idx_of_source ( ) )
end_nodes . append ( node_idx_of_paper ( i ) )
c apa c i t i e s . append (q) ; unit_costs . append (0)

# Target edges
f o r j in range (0 ,m) : #The edge from source to each paper

25 start_nodes . append ( node_idx_of_reviewer ( j ) )
end_nodes . append ( node_idx_of_target ( ) )
c apa c i t i e s . append (p) ; unit_costs . append (0)

# Paper−rev iewer edges
f o r i in range (0 ,n) :

30 f o r j in range (0 ,m) :
i f B[ i , j ] >= 0 :

start_nodes . append (node_idx_of_paper ( i ) )
end_nodes . append ( node_idx_of_reviewer ( j ) )
c apa c i t i e s . append (1) ; unit_costs . append ( (2 − B[ i , j ] ) )

35 # Define an array of supp l i e s at each node
supp l i e s = np . zeros (2+m+n , dtype=int )
supp l i e s [ node_idx_of_source ( ) ] = n*q ; supp l i e s [ node_idx_of_target ( ) ]= −n*q
# Ins tan t i a t e a SimpleMinCostFlow so l v e r
min_cost_flow = pywrapgraph . SimpleMinCostFlow ()

40 Solut ion = np . zeros ( (n , 3 ) , dtype=int ) #Assignment r e s u l t
# Add each arc
f o r i in range (0 , l en ( start_nodes ) ) :

min_cost_flow . AddArcWithCapacityAndUnitCost ( start_nodes [ i ] , end_nodes [ i ] , c apa c i t i e s
[ i ] , unit_costs [ i ] )

# Add node supp l i e s
45 f o r i in range (0 , l en ( supp l i e s ) ) : min_cost_flow . SetNodeSupply ( i , supp l i e s [ i ] )

# Find the minimum cost f low
i f min_cost_flow . Solve ( ) == min_cost_flow .OPTIMAL:

pr int ’Minimum cost : %d ’%min_cost_flow . OptimalCost ( )
f o r i in range (min_cost_flow .NumArcs( ) ) :

50 i f min_cost_flow . Flow( i ) > 0 :
p_idx=min_cost_flow . Tai l ( i )−1; r_idx=min_cost_flow .Head( i )−1−n
i f p_idx >= 0 and r_idx < m: Solut ion [ p_idx , sum( Solut ion [ p_idx , : ] >0) ]=r_idx+1

fo r i in range (0 ,n) : pr int ( ”Paper %d : rev iewer %s ”%( i +1, So lut ion [ i ] ) )
e l s e : pr int ( ’No so lu t i on found ’ )


