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Abstract An algorithm is proposed to give explicit lower bounds of the Stokes eigen-
values by utilizing twononconformingfinite elementmethods:Crouzeix–Raviart (CR)
element and enriched Crouzeix–Raviart (ECR) element. Compared with the existing
literatures which give lower eigenvalue bounds under the asymptotic condition that the
mesh size is “small enough”, the proposed algorithm in this paper drops the asymp-
totic condition and provide explicit lower bounds even for a rough mesh. Numerical
experiments are also performed to validate the theoretical results.
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1 Introduction

We are concerned with the explicit lower bounds of the eigenvalues for the Stokes
eigenvalue problem by utilizing the finite element methods. The Stokes eigenvalue
problem plays an important role in investigating the stabilities of the Navier–Stokes
equations. For the aspect of numerical approach to Stokes eigenvalue problems, there
have been many literatures in the history; see [3,8,11,12].

Recently, the verified computing has become a new approach to study nonlinear
partial differential equations; see, e.g., [23–25,27]. Such an approach estimates all
the error involved in the numerical computation and provides rigorous computation
results, which can been even used for mathematical proof. For the eigenvalue prob-
lems of differential operators, rather than approximate eigenvalue evaluation with
qualitative error estimation, quantitative error estimation along with explicit bound
for eigenvalues are greatly wanted.

In this paper, wewill consider the following Stokes eigenvalue problem and propose
an algorithm to obtain explicit eigenvalue bounds: Find (λ,u) s.t.

⎧
⎪⎪⎨

⎪⎪⎩

−Δu + ∇ p = λu, in Ω,

∇ · u = 0, in Ω,

u = 0, on ∂Ω,∫

Ω
u2dΩ = 1,

(1)

where Ω ⊂ R
2 denotes the computing domain with the Lipschiz boundary ∂Ω;

u = (u1(x), u2(x))T is the velocity vector and p = p(x) is the pressure. In addi-
tion, symbols Δ, ∇ and ∇· denote the Laplacian, gradient and divergence operators,
respectively.

So far, there have existed many results discussing the numerical methods for the
eigenvalue problems. Chatelin [5], Babuška and Osborn [1,2] give an abstract con-
vergence analysis for the eigenvalue problems by the finite element method (FEM).
The error estimates for the mixed/hybrid FEM to the eigenvalue problems have been
given by Osborn and Mercier et al. [22]. The a posteriori error estimators for the
Stokes eigenvalue problem have been analyzed in [20] for conforming FEM and in
[10] for nonconforming FEM. The asymptotic lower bounds for the elliptic and Stokes
eigenvalues have been given in [14,15,17] and the two-sided bounds of the elliptic
eigenvalues have already been discussed in [21].

The above mentioned methods only concern the qualitative error estimation for
computable eigenvalues and it is difficult to obtain rigorous bound for the eigenvalue.
For example, many nonconforming FEMs can provide lower eigenvalue bounds in the

123

Author's personal copy



Explicit Lower Bounds for Stokes Eigenvalue Problems 337

asymptotic meaning, i.e., the mesh size is small enough. However, it is not an easy
work to verify the condition of “small enough” for the mesh size.

Recently, Liu [19] proposes a novel framework to give explicit lower bounds for
the eigenvalues, which drops the conditions on mesh size. The object of this paper is
to apply Liu’s framework to obtain explicit lower bounds for the Stokes eigenvalue
problem (1). For this purpose, two nonconforming FEMs, i.e., Crouzeix–Raviart (CR)
[7] element and enriched Crouzeix–Raviart (ECR) [9,18] element, will be considered
along with explicit error estimation. As the main result summarized in Theorem 4, we
show that

λi ≥ λ
(�)
i,h

1 + (αl h)2λ
(�)
i,h

(α1 = 0.1893, α2 = 0.1490) (2)

where λi denotes the i th eigenvalue of (1); λ
(�)
i,h denotes the approximation to λi by

applying CR element (� = 1) and ECR element (� = 2); h is the mesh size.
An outline of the paper goes as follows. In Sect. 2, we introduce the nonconforming

FEMs alongwith explicit error estimation constants, for the Stokes eigenvalue problem
(1). We present an explicit lower bounds of Stokes eigenvalues in Sect. 3. Some
numerical examples are provided in Sect. 4 to validate our theoretical analysis. Some
concluding remarks are given in the last section.

2 Preliminaries and nonconforming elements

In this section, we introduce the notation and the nonconforming FEMs to be used in
discussing the Stokes eigenvalue problem (1).

2.1 Notation and weak form of Stokes eigenvalue problem

We shall use the standard notation for Sobolev spaces Ws,p(Ω) and their associated
norms ‖·‖s,p,Ω and seminorms |·|s,p,Ω (see, e.g., Chapter 1 of [4] andChapter 1 of [6]).
For p = 2, we denote Hs(Ω) = Ws,2(Ω) and H1

0 (Ω) = {v ∈ H1(Ω) : v|∂Ω = 0},
where v|∂Ω = 0 is in the sense of trace, ‖ · ‖s,Ω = ‖ · ‖s,2,Ω . In this paper, we
set

V = (H1
0 (Ω))2 and Q = L2

0(Ω) =
{

q ∈ L2(Ω) :
∫

Ω

qdΩ = 0

}

.

For the aim of finite element discretization, we define the corresponding weak form
for (1) as follows: Find (λ,u, p) ∈ R × V × Q such that r(u,u) = 1 and

{
a(u, v) − b(v, p) = λr(u, v), ∀v ∈ V,

b(u, q) = 0, ∀q ∈ Q,
(3)
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338 M. Xie et al.

where

a(u, v) :=
∫

Ω

∇u : ∇vdΩ, b(v, p) :=
∫

Ω

p∇ · vdΩ,

r(u, v) :=
∫

Ω

u · vdΩ,

and ∇u : ∇v = ∑2
i=1

∑2
j=1

∂ui
∂x j

∂vi
∂x j

.
We define

V0 := {
v ∈ V : b(v, q) = 0, ∀q ∈ Q

}
. (4)

Then the eigenvalue problem has an equivalent formulation as follows: Find (λ,u) ∈
R × V0 such that r(u,u) = 1 and

a(u, v) = λr(u, v), ∀v ∈ V0. (5)

From Section 8 of [2], we know the eigenvalue problem (3) and (5) have the same
eigenvalue series {λi }∞i=1 such as

0 < λ1 ≤ · · · ≤ λi ≤ · · · , lim
i→∞ λi = ∞,

and the corresponding eigenfunctions for (3)

(u1, p1), . . . , (ui , pi ), . . . ,

with r(ui ,u j ) = δi j , where δi j is the Kronecker symbol.
Meanwhile, the following minimum–maximum and maximum–minimum princi-

ples hold:

λi = a(ui ,ui )
r(ui ,ui )

= min
Si⊂V0

dim(Si )=i

max
v∈Si

a(v, v)
r(v, v)

= max
X⊂V0

dim(X)≤i−1

min
v∈X⊥

a(v, v)
r(v, v)

, (6)

where X⊥ denotes the complementary space of X in V0 respect to the inner product
a(·, ·).

2.2 Nonconforming finite element methods

In this subsection, we will introduce two kinds of nonconforming finite elements: CR
[7] element and ECR [9,18] element. Throughout the paper, the index l is used to
distinguish the terms related the two element: � = 1 for CR element; � = 2 for ECR
element.
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Explicit Lower Bounds for Stokes Eigenvalue Problems 339

First, we introduce a regular triangular partition Th to the domain Ω such that

Ω =
⋃

K∈Th
K .

The diameter of a cell K ∈ Th is denoted by hK and the mesh size h describes the
maximum value of hK among all K of Th . Denote the set of all interior edges of Th
as Eh , the set of the edges on the boundary as E∂Ω and E = Eh

⋃
E∂Ω .

The CR and ECR finite element spaces are defined as follows:

– CR element [7]

P1 = span
{
1, x, y

}
, V(1)

h = (V (1)
h (Ω))2,

Qh = {
q ∈ L2

0(Ω) : q|K ∈ P0,∀K ∈ Th
}
,

where

V 1
h (Ω) =

{

v ∈ L2(Ω) : v|K ∈ P1,∀K ∈ Th;
∫

e
v|K1 ds

=
∫

e
v|K2 ds,∀e ∈ ∂K1 ∩ ∂K2 ∈ Eh;

∫

e
vds = 0 for e ∈ E∂Ω

}

. (7)

– ECR element [9,18]

EP1 = span
{
1, x, y, x2 + y2

}
, V(2)

h = (V (2)
h (Ω))2,

Qh = {
q ∈ L2

0(Ω) : q|K ∈ P0,∀K ∈ Th
}
,

where

V 2
h (Ω) =

{

v ∈ L2(Ω) : v|K ∈ EP1,∀K ∈ Th;
∫

e
v|K1 ds

=
∫

e
v|K2 ds, ∀e ∈ ∂K1 ∩ ∂K2 ∈ Eh;

∫

e
vds = 0 for e ∈ E∂Ω

}

. (8)

Due to the discontinuity of functions on edges, we know V(�)
h � V, � = 1, 2.

Define the following bilinear forms for both CR and ECR finite element spaces, for
all uh, vh ∈ V(�)

h (� = 1, 2) and qh ∈ Qh ,

ah(uh, vh) :=
∑

K∈Th

∫

K
∇uh : ∇vhdK , bh(vh, qh) :=

∑

K∈Th

∫

K
qh∇ · vhdK .

Corresponding to V0, define the subspace of V
(�)
h (� = 1, 2)

V(�)
0,h = {

vh ∈ V(�)
h : bh(vh, qh) = 0, ∀qh ∈ Qh

}
, (� = 1, 2). (9)
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340 M. Xie et al.

For v ∈ V + V(�)
h (� = 1, 2), introduce the piecewise type norm and semi-norm:

‖v‖1,h =
⎛

⎝
∑

K∈Th

2∑

i=1

‖vi‖21,K
⎞

⎠

1
2

, |v|1,h =
⎛

⎝
∑

K∈Th

2∑

i=1

|vi |21,K
⎞

⎠

1
2

.

In order to deduce the error estimates, we define the interpolation operators for CR
and ECR elements as follows:

– For CR element, the interpolation operator 	1
h : H1(Ω) → V 1

h is defined by, for
any v ∈ H1(Ω) ∫

e
(v − 	1

hv)ds = 0, ∀e ∈ E . (10)

– For ECR element, the interpolation operator 	2
h : H1(Ω) → V 2

h is defined by,
for any v ∈ H1(Ω)

∫

e
(v − 	2

hv)ds = 0, ∀e ∈ E , (11)
∫

K
(v − 	2

hv)dK = 0, ∀K ∈ Th . (12)

Define interpolation operator �
(�)
h : V → V(�)

h (� = 1, 2) as follows:

	
(�)
h v := (	

(�)
h v1,	

(�)
h v2) ∈ V(�)

h , ∀v = (v1, v2) ∈ V. (13)

Proposition 1 Interpolation operator �
(�)
h (� = 1, 2) has the following properties.

1. �
(�)
h u ∈ V(�)

0,h for all u ∈ V(�)
0 .

2. �
(�)
h is an orthogonal projection that maps V to V(�)

h , i.e., for any u ∈ V,

ah(u − �
(�)
h u, vh) = 0, ∀vh ∈ V(�)

h . (14)

3. �
(�)
h is an orthogonal projection that maps V0 to V0,h, i.e., for any u ∈ V0,

ah(u − �
(�)
h u, vh) = 0, ∀vh ∈ V(�)

0,h . (15)

Proof 1. From the definition of interpolation �
(�)
h , for any qh ∈ Qh , noticing that

for all K ∈ Th , ∇(qh |K ) = 0, we have

bh(�
(�)
h u, qh) =

∑

K∈Th

∫

K
qh∇ · (�

(�)
h u)dK =

∑

K∈Th

∫

∂K
qhn · �

(�)
h uds

=
∑

K∈Th

∫

∂K
qhn · uds =

∑

K∈Th

∫

K
qh∇ · udK = bh(u, qh),
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Explicit Lower Bounds for Stokes Eigenvalue Problems 341

where n is the outer normal vector of ∂K .
Since u ∈ V0, we have

bh(�
(�)
h u, qh) = bh(u, qh) = 0, ∀qh ∈ Qh .

Thus, �(�)
h u ∈ V(�)

0,h .

2. The orthogonality of �
(�)
h inherits from the one of 	

(�)
h . It is easy to check that for

u ∈ H1(Ω) (see, e.g., [18,21]),

∫

K
∇(	

(�)
h u − u) · ∇vhdK = 0, ∀vh ∈ V (�)

h . (16)

Thus, the proof for property 2 can be easily done by summation of equation (16)
for each K of triangulation and each component of u ∈ V.

3. Property 3 is an analogous result of property 2.

Now, we state the following lemmas and theorems for the interpolation error esti-
mation of �

(�)
h .

Lemma 1 [19] For any K ∈ Th, let e1, e2, e3 be the edges of K . The following
inequality holds for all ϕ ∈ V 1

e (K )

‖ϕ‖0,K ≤ α1hK |ϕ|1,K , (17)

where V 1
e (K ) = {

ϕ ∈ H1(K ) : ∫

ei
ϕds = 0, i = 1, 2, 3} and α1 = 0.1893.

Based on Lemma 1, an interpolation error estimate for the interpolation operator
�1

h is easy to obtain.

Theorem 1 For any u ∈ (H1(Ω))2, the following inequality holds for the interpola-
tion operator �1

h defined by (13)

‖u − �1
hu‖0 ≤ α1h|u − �1

hu|1,h, (18)

where h is the mesh size.

Remark 1 It is easy to see the inequality (18), as a raw estimation, also holds by
replacing �1

h with �2
h , i.e.,

‖u − �2
hu‖0 ≤ α1h|u − �2

hu|1,h . (19)

2.3 The optimal constant of ECR interpolation operator

In this subsection, we derive the optimal constant for the ECR interpolation �2
h . The

main discussion is performed on just one triangle element K .
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342 M. Xie et al.

Given K ∈ Th with the edges denoted by e1, e2, e3, define a linear function space
over domain K ,

V 2
e (K ) :=

{

ϕ ∈ H1(K ) :
∫

ei
ϕds = 0, i = 1, 2, 3,

∫

K
ϕdK = 0

}

,

and introduce the constant

C(K ) := sup
w∈V 2

e (K )

‖w‖0
|w|1 .

Noticing that V 2
e (K ) = {v − 	2

hv | v ∈ H1(K )}, we have

C(K ) = sup
v∈H1(K )

‖v − 	2
hv‖0

|v − 	2
hv|1

.

The constant C(K ) is given by C(K ) = λ̄
−1/2
1 and λ̄1 is the first eigenvalue of the

following eigenvalue problem: Find (λ̄, ū) ∈ R × V 2
e (K ) such that

∫

K
∇ū · ∇v̄dK = λ̄

∫

K
ūv̄dK , ∀v̄ ∈ V 2

e (K ). (20)

To estimate λ̄1, we take a regular triangulation T h of K and introduce the enriched
Crouzeix–Raviart FEM space V 2

e,h(K ) over T h to approximate V 2
e (K ). The member

function vh of V 2
e,h(K ) has the following properties,

(a) the restriction of vh on each element is spanned by {1, x, y, x2 + y2};
(b)

∫

e vh |T1ds = ∫

e vh |T2ds, in case e is the common edge shared by two elements T1
and T2 of T h ;

(c)
∫

ei
vhds = 0, i = 1, 2, 3;

(d)
∫

K vhdK = 0.

The variational equation (20) is solved approximately in FEM space as follows:
Find (λ̄h, ūh) ∈ R × V 2

e,h(K ) such that

∑

T∈T h

∫

T
∇ūh · ∇v̄hdT = λ̄h

∫

K
ūh v̄hdK , ∀v̄h ∈ V 2

e,h(K ). (21)

From [19] (see also the quotation in §3.2) and estimation of �2
h in (19), we know that

λ̄1 of (20) has a lower bound as follows,

λ̄1 ≥ λ̄1,h

1 + (0.1893h)2λ̄1,h
,

where λ̄1,h is the first eigenvalue of (21).
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Explicit Lower Bounds for Stokes Eigenvalue Problems 343

Fig. 1 Possible shapes of
triangle OAB

In summary, for an element K , the constant C(K ) can be estimated by

C(K ) ≤
(

λ̄1,h

1 + (0.1893h)2λ̄1,h

)−1/2

. (22)

Since we cannot evaluate C(K ) for all possible K . In the following, we show that
the maximum of C(K ) can be estimated by considering several selected shapes of K .

As in Fig. 1, assume the three vertices of a triangle element K to be O = (0, 0),
A = (1, 0) and B = (a, b). Here vertex B is restricted by the conditions: a ≥ 1/2, b >

0, a2+b2 ≤ 1. Notice that for any triangle element, it can be congruently transformed
to a K considered here.

The following two lemmas about C(K ) can be obtained by applying the same
arguments as in [19].

Lemma 2 (Theorem 4.1 of [19]) For fixed x-coordinate of vertex B, the constant
C(K ) is a monotonically increasing on the y-coordinate of vertex B. Therefore, the
maximum value of C(K ) must be taken when B is on the arc such that |OB| =
1,  AOB ∈ (0, π/3].

The following lemma is discussing the variation ofC(K ) respect to the perturbation
of B along the arc r = 1.

Lemma 3 (Theorem 4.2 of [19]) For 0 < θ < π/3, let B̃ = (cos(θ + τ), sin(θ + τ))

be a perturbation of B = (cos θ, sin θ). Then, for τ < 0 and θ + τ > 0, we have

C(K̃ ) ≤ cos(θ/2 + τ/2)

cos(θ/2)
C(K ),

and for τ > 0 and θ + τ ≤ π/3, we have

C(K̃ ) ≤ sin(θ/2 + τ/2)

sin(θ/2)
C(K ),

where K̃ = triangle OAB̃.
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344 M. Xie et al.

To apply the Lemmas 2 and 3, we define θi by

θi = π

3
×

⎧
⎨

⎩

i × 0.02, i = 1, . . . , 48,
0.95 + 0.05(1 − 0.8 × 248−i ), i = 49, . . . , 59,
1, i = 60.

(23)

Choose the perturbation τi as follows:

τ1 = θ1, τi = θi − θi−1, i = 2, . . . , 60.

Then we have (0, π/3] = ∪60
i=1(θi − τi , θi ].

We take two steps to bound all C(K ) for K with B located on the arc r = 1, θ =
 AOB ∈ (0, π/3].
Step 1 For each θi defined in (23), choose K with B = (cos θi , sin θi ) and perform a
uniform triangulation T h for K with mesh size being h = 1/96. In Fig. 2, we display
a sample triangulation with θi = π/6 and h = 1/8. Then we construct ECR finite
element space V 2

e,h based on T h and solve eigenvalue problem (21). A sharp upper
bound of C(K ) is given by (22). In Fig. 3, we display the estimation of C(K ); the
x-coordinate is taken as the angle size of  AOB = θ . The estimation ofC(K ) at each
θi is denoted by a point.
Step 2 For each interval (θi − τi , θi ], the upper bound of C(K ) is given by Lemma 3.
In Fig. 3, the upper bound of C(K ) for each θ ∈ (θi − τi , θi ) is denoted by a short
bar. The computation results show that for θ ∈ (0, π/3], C(K ) has an upper bound
as C(K ) ≤ 0.14899. Also, a simple computation with conforming Lagrange FEM
implies C(K ) > 0.14895 for K being a unit regular triangle.

We draw the conclusion in the following theorem.

Theorem 2 For any K ∈ Th and any ϕ ∈ V 2
e (K ), the following inequality holds

‖ϕ‖0,K ≤ α2hK |ϕ|1,K , (24)

where α2 = 0.1490.

The following theorem is a direct consequence of Theorem 2.

0 0.2 0.4 0.6 0.8 10

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Fig. 2 Triangulation of K = triangle OAB with θ = π/6 and h̄ = 1/8
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)
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C
(K̃
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Fig. 3 Point-wise evaluation of C(K ) for each θi and the upper bound of C(K ) for θ ∈ (θi − τi , θi )

Theorem 3 For any u ∈ (H1(Ω))2, the interpolation operator �2
h defined by (13)

has the following estimate

‖u − �2
hu‖0 ≤ α2h|u − �2

hu|1,h . (25)

3 Nonconforming FEM and lower bound of Stokes eigenvalue

In this section, we show how to obtain explicit lower bounds for Stokes eigenvalues
by using nonconforming FEMs.

3.1 Nonconforming FEM for Stokes eigenvalue problem

The Stokes eigenvalue problem (5) can be solved approximately by applying both
CR and ECR nonconforming FEM: Find (λh,uh, ph) ∈ R × Vh × Qh such that
r(uh,uh) = 1 and

{
ah(uh, vh) − bh(vh, ph) = λhr(uh, vh), ∀vh ∈ Vh,

bh(uh, qh) = 0, ∀qh ∈ Qh .
(26)

Here, the FEM space can be taken asV(1)
h for EC element orV(2)

h for ECR element. The
eigenvalue problem has another kind formulation as follows: Find (λh,uh) ∈ R×V0,h
such that r(uh,uh) = 1 and

ah(uh, vh) = λhr(uh, vh), ∀vh ∈ V0,h, (27)

where V0,h is selected to be V(1)
0,h or V

(2)
0,h .
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The discrete Stokes eigenvalue problem (26) and (27) have the same finite eigen-
value series {λ j,h}Nj=1

0 < λ1,h ≤ · · · ≤ λi,h ≤ · · · ≤ λN ,h < ∞,

and the corresponding eigenfunctions for (26)

(u1,h, p1,h), . . . , (ui,h, pi,h), . . . , (uN ,h, pN ,h),

with r(ui,h,u j,h) = δi j , 1 ≤ i, j ≤ N , where N = dimV0,h .
The inf-sup condition for the spaceVh×Qh has beenwell investigated (cf. [7,18]):

sup
0 =vh∈Vh

bh(vh, qh)
‖vh‖1,h ≥ Ĉ‖qh‖0, ∀qh ∈ Qh, (28)

where Ĉ > 0 is a constant independent of the mesh size h.
To confirm the convergence order of the lower bounds of eigenvalues to be explained

in next sub-section, we recall the existing theoretical results. Assume that the eigen-
function (ui , pi ) has the following regularity

ui ∈ (H1+γ (Ω))2, pi ∈ Hγ (Ω),

where γ depends on the shape of domainΩ (γ = 1 whenΩ is convex). The following
priori error estimates for approximate eigenpairs hold (see, e.g., [20]).

Lemma 4 [20, Theorem 2.1] For any eigenpair approximation (λi,h,ui,h, pi,h) of
(27) (i = 1, 2, . . . , N), there exists an exact eigenpair (λi ,ui , pi ) of (5) such that

‖ui − ui,h‖1,h + ‖pi − pi,h‖0 ≤ Chγ (‖u‖1+γ + ‖p‖γ ), (29)

‖ui − ui,h‖0 ≤ Chγ ‖ui − ui,h‖1,h, (30)

|λi − λi,h | ≤ C‖ui − ui,h‖21,h, (31)

where C is a constant independent of mesh sizes h but dependent on the eigenvalue
λi .

3.2 Lower bound of Stokes eigenvalue

In [19], a framework to bound eigenvalue for self-adjoint differential operators is
proposed. In this section, we will verify the condition of the framework and apply it
to obtain lower bound for Stokes eigenvalues.

Let Ω be a domain of R
m (m = 1, 2, 3). The framework proposed in [19] takes the

following assumptions.

A1 V is a Hilbert space of real function on Ω with the inner product M(·, ·) and
the corresponding norm ‖ · ‖M := √

M(·, ·).
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A2 N (·, ·) is another inner product of V . The corresponding norm ‖ · ‖N :=√
N (·, ·) is compact for V with respect to ‖ · ‖M , i.e., every sequence in V which

is bounded in ‖ · ‖M has a subsequence which is Cauchy in ‖ · ‖N .
A3 V h is a finite dimensional space of real function overΩ , Dim(V h) = n. Define
V (h) := V + V h = {v + vh |v ∈ V, vh ∈ V h}.
A4Bilinear formsMh(·, ·) and Nh(·, ·) on V (h) are extension ofM(·, ·) and N (·, ·)
to V (h) such that
– Mh(u, v) = M(u, v), Nh(u, v) = N (u, v) for all u, v ∈ V .
– Mh(·, ·) and Nh(·, ·) are symmetric and positive definite on V (h).

The assumption A4 implies that Mh(·, ·) and Nh(·, ·) are also inner products of
V (h). For purpose of simplicity, the extended bilinear forms Mh(·, ·) and Nh(·, ·) are
still denoted by M(·, ·) and N (·, ·) and the corresponding norms are denoted by ‖ · ‖M
and ‖ · ‖N , respectively.

Consider the eigenvalue problem defined in V and V h :
(P1) Find u ∈ V and λ ∈ R such that,

M(u, v) = λN (u, v) ∀v ∈ V . (32)

The eigenvalues are denoted by 0 < λ1 ≤ λ2 ≤ . . .

(P2) Find uh ∈ V h and λh ∈ R such that,

M(uh, vh) = λhN (uh, vh) ∀vh ∈ V h . (33)

The eigenvalues are denoted by 0 < λh,1 ≤ λh,2 ≤ · · · ≤ λh,n .
With the above assumptionA1–A4, the lower eigenvalue bounds for (32) are given

as follows.

Lemma 5 [19, Theorem 2.1] Let Ph : V (h) → V h be the projection with respect to
inner product M(·, ·), i.e., for any u ∈ V (h)

M(u − Phu, vh) = 0 ∀vh ∈ V h . (34)

Suppose the following error estimation holds for Ph: for any u ∈ V ,

‖u − Phu‖N ≤ Ch‖u − Phu‖M . (35)

Then, we have
λh,i

1 + λh,iC2
h

≤ λi (i = 1, 2, . . . , n). (36)

To apply the above theorem to obtain lower eigenvalue bounds for Stokes eigenvalue
problem, we take the following settings.

V := V0 (see (4)), M(·, ·) := ah(·, ·), N (·, ·) := r(·, ·).
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The function space V h , projection Ph and constant Ch are taken as below:

{
V h := V(1)

0,h, Ph := �1
h, Ch = α1h for CR element;

V h := V(2)
0,h, Ph := �2

h, Ch = α2h for ECR element.

Now, we reach the main result of this paper.

Theorem 4 Let λi be the i th eigenvalue of the Stokes eigenvalue problem (5), and
λ

(�)
i,h (� = 1, 2) be the i th eigenvalue approximation of the discrete problem (27) by

using CR element (� = 1) and ECR element (� = 2). Then the following explicit lower
bound holds

λ
(�)
i,h ≤ λi , (1 ≤ i ≤ dim(V �

0,h)) (37)

where

λ
(1)
i,h = λ

(1)
i,h

1 + (0.1893h)2λ
(1)
i,h

and λ
(2)
i,h = λ

(2)
i,h

1 + (0.1490h)2λ
(2)
i,h

. (38)

Corollary 1 The lower bounds λ
(�)
i,h (� = 1, 2) defined by (38) has the following error

estimate
λi − λ

(�)
i,h ≤ C̃h2γ , (39)

where C̃ is a constant independent of mesh sizes h but dependent on the eigenvalue
λi .

Proof According to Lemma 4 and Theorem 4, for � = 1, 2, we have

λi − λ
(�)
i,h ≤ |λi − λ

(�)
i,h | + |λ(�)

i,h − λ
(�)
i,h |

≤ Ch2γ (‖u‖1+γ + ‖p‖γ )2 +
∣
∣
∣
∣
∣
λ

(�)
i,h − λ

(�)
i,h

1 + (α�h)2λ
(�)
i,h

∣
∣
∣
∣
∣

≤
(

C(‖u‖1+γ + ‖p‖γ )2 + α�
2

(λ
(�)
i,h)

2

1 + (α�h)2λ
(�)
i,h

)

h2γ

≤ C̃h2γ .

4 Numerical results

In this section, we provide two numerical examples to demonstrate the efficiency of the
proposed lower eigenvalue bounds (37) and confirm the convergence order as given
in (39).

The lower bound in formula (37) holds for elements of arbitrary shapes. Since we
adopt the uniform mesh with only isosceles triangle elements in the following FEM
computation (see a sample element in Fig. 4), a better estimation for the interpolation
error in Theorems 1 and 3 is possible. By adopting the method in Sect. 2.3, we have
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Fig. 4 Isosceles right triangle element K with hK = 1

a sharper bound for the interpolation constants and the following interpolation error
estimation is obtained

‖w − �
(�)
h w‖0 ≤ α̃�h|w − �

(�)
h w|1,h ∀w ∈ (H1(Ω))2, (40)

where

α̃1 = 0.1761, α̃2 = 0.1349.

We will apply the formula (37) in the following computing with α� replaced by α̃�

(� = 1, 2).

Example 1 In the first example, we solve the Stokes eigenvalue problem (5) with the
CR element and ECR element on the unit domain Ω = (0, 1) × (0, 1).

An uniform mesh is adopted for FEM computation. In Fig. 5, we display an initial
triangulation of unit square (0, 1) × (0, 1) with the subdivision number n = 2 and
mesh size h = √

2/2. Then using the regular refinement (connecting three midpoints
on the three edges for each element), we obtain a nested sequence of meshes with the
subdivision number n = 4, 8, . . . , 128 andmesh size h = √

2/4,
√
2/8, . . . ,

√
2/128,

as is shown in Fig. 5.
Since the exact eigenvalues of Stokes eigenvalue problem (5) are unknown, we use

the extrapolationmethod (cf. Chapter 3, [13]) to obtain high-precision approximations,
denoted by λ̃i , for the exact eigenvalues. Such high-precision approximations are
regarded as the “exact” value of eigenvalues in investigating the convergence order.

Once approximate eigenvalues are obtained by using the CR element and ECR
element, we use the formula (38) to produce the explicit lower bounds for exact eigen-
values. Tables 1 and 2 shows the numerical results for the first 6 eigenvalues. From
Tables 1 and 2, we see that λ(�)

i,h (� = 1, 2) provide lower bounds of the exact eigenval-

ues λi (i = 1, . . . , 6). Figure 6 presents the error estimates of λ(�)
1,h, . . . , λ

(�)
6,h (� = 1, 2)

which shows that the eigenvalue approximation λ
(�)
i,h(� = 1, 2) has the optimal second

order convergence rate.
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Fig. 5 The initial triangulation with n = 2 and a nested mesh with n = 4

Table 1 Numerical results of the CR element (square domain)

n λ
(1)
1,h λ

(1)
2,h λ

(1)
3,h λ

(1)
4,h λ

(1)
5,h λ

(1)
6,h

2 20.6752 20.6752 23.9345 24.0689 27.5186 38.5768

4 39.1567 48.5983 52.4052 62.5675 64.3435 67.4304

8 48.2522 77.4791 78.4128 104.4749 115.3565 130.4061

16 51.2334 88.1092 88.3322 121.3679 142.9868 156.5350

32 52.0595 91.0916 91.1478 126.4196 151.2339 164.2943

64 52.2728 91.8641 91.8783 127.7563 153.3954 166.3377

128 52.3267 92.0592 92.0627 128.0959 153.9425 166.8558

λ̃i 52.3447 92.1244 92.1244 128.2095 154.1254 167.0291

Table 2 Numerical results of the ECR element (square domain)

n λ
(2)
1,h λ

(2)
2,h λ

(2)
3,h λ

(2)
4,h λ

(2)
5,h λ

(2)
6,h

2 21.3389 21.6893 24.7780 24.7855 28.5041 42.2255

4 39.2354 48.8589 53.1444 63.7816 65.2758 69.4798

8 48.2015 77.3689 78.3737 104.3997 115.4010 130.5313

16 51.2133 88.0513 88.2801 121.2694 142.8627 156.3912

32 52.0539 91.0747 91.1313 126.3877 151.1892 164.2419

64 52.2714 91.8597 91.8739 127.7479 153.3833 166.3234

128 52.3263 92.0581 92.0616 128.0937 153.9394 166.8521

λ̃i 52.3447 92.1244 92.1244 128.2095 154.1254 167.0291
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Fig. 6 The errors for the

eigenvalue approximations λ
(�)
i,h

on the unit square by the CR and
ECR elements, where
Err1 = ∑6

i=1(λ̃i − λ
(1)
i,h ) and

Err2 = ∑6
i=1(λ̃i − λ

(2)
i,h )
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Fig. 7 The triangulations for the L-shaped domain (n = 2 and n = 8)

Example 2 In this example, we solve the Stokes eigenvalue problem (5) with the CR
element and ECR element on the L-shape domain Ω = (−1, 1) × (−1, 1)/[0, 1) ×
(−1, 0].

Figure 7 shows the initial triangulation with the mesh subdivision number n = 2.
By using the same refinement in Example 1, we obtain a nested sequence meshes with
the mesh subdivision number n = 4, 8, . . . , 128 such as in Fig. 7.

Using the samemethod in Example 1, we obtain high-precision approximations for
the first 5 exact eigenvalues. From the numerical results in Tables 3 and 4, we see that
the formula (37) gives lower bounds for the first 5 eigenvalues even the domain is not
convex, in which case, the eigenfunction may has singularities around the reentrant
corner.

Due to the singularities of eigenfunctions, the convergence order for both the eigen-
value approximations obtained by the CR and ECR methods and the obtained explicit

123

Author's personal copy



352 M. Xie et al.

Table 3 Numerical results of
the CR element (the L-shaped
domain)

n λ
(1)
1,h λ

(1)
2,h λ

(1)
3,h λ

(1)
4,h λ

(1)
5,h

2 14.4695 14.7928 16.7622 18.7119 20.0988

4 24.5191 27.1142 31.7683 36.1125 39.3904

8 29.3292 33.8631 38.9161 45.0319 50.1740

16 31.1295 36.1243 41.1275 47.9096 53.8933

32 31.7564 36.7728 41.7249 48.7053 54.9773

64 31.9817 36.9512 41.8813 48.9125 55.2817

128 32.0685 36.9999 41.9229 48.9655 55.3707

λ̃i 32.1397 37.0185 41.9404 48.9836 55.4184

Table 4 Numerical results of
the ECR element (the L-shaped
domain)

n λ
(2)
1,h λ

(2)
2,h λ

(2)
3,h λ

(2)
4,h λ

(2)
5,h

2 14.6024 15.0780 17.0872 19.1793 20.6885

4 24.4854 27.1196 31.7749 36.1692 39.4366

8 29.3046 33.8348 38.8798 44.9883 50.1138

16 31.1217 36.1141 41.1143 47.8921 53.8707

32 31.7543 36.7700 41.7213 48.7004 54.9710

64 31.9812 36.9505 41.8804 48.9113 55.2802

128 32.0684 36.9997 41.9226 48.9651 55.3703

λ̃i 32.1397 37.0185 41.9404 48.9836 55.4184

Fig. 8 The errors for the

eigenvalue approximations λ
(�)
i,h

on the L-shape domain by the
CR and ECR elements, where
Err3 = ∑5

i=1(λ̃i − λ
(1)
i,h ) and

Err4 = ∑5
i=1(λ̃i − λ

(2)
i,h )

lower bound is less than 2, as is confirmed in Fig. 8 where numerical errors of
λ

(�)
1,h, . . . , λ

(�)
6,h (� = 1, 2) are displayed. We see that the eigenvalue approximation

λ
(�)
i,h(� = 1, 2) has the optimal convergence rate as 2γ (γ = 3/4) .
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5 Concluding remarks

In this paper, we give an explicit upper bound for constant C(K ) in ECR interpolation
error estimation. Then by using the concrete value of C(K ), we provide an explicit
lower bound for the exact Stokes eigenvalues by the CR and ECR elements. As the
main feature of the proposed algorithm, the lower eigenvalue bounds in (37) holds
even for very rough mesh (see the computation with subdivision number as n = 2).
Also, such a lower bound has the optimal convergence order when mesh size tends to
zero.

We would like to say the results and methods in this paper can be extended to the
nonconforming FEMs Qrot

1 [26] and EQrot
1 [16] since the framework in Sect. 3.2 can

be easily verified.
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