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Abstract

As a well-known alternative to the conforming linear triangular finite element for approximation of the first-order
Sobolev space, the non-conforming linear element is considered a classical discontinuous Galerkin finite element
and has various interesting and attractive properties from both theoretical and practical standpoints. In particular, its a
priori error analysis was performed in fairly early stage of mathematical analysis of FEM, and recently a posteriori
error analysis is rapidly developing as well. For accurate error estimation of such an FEM, various error constants
must be evaluated quantitatively. Based on our preceding works on the constant and conforming linear triangles, we
here give some results for error constants required for analysis of the non-conforming linear triangle.

More specifically, we first summarize a priori error estimation of the present non-conforming FEM, where several
error constants appear. In this process, we use the lowest-order Raviart-Thomas triangular element to deal with the
inter-element discontinuity of the approximate functions. Then we introduce some constants related to a reference
triangle, some of which are popular in the constant and conforming linear cases. We give some theoretical results for
the upper bounds of such constants. In some very special cases, exact values of constants can be obtained. In
particular, a kind of maximum angle condition is required as in the case of the conforming linear triangle. Finally, we
illustrate some numerical results to support the validity of such upper bounds. Our results can be effectively used in
the quantitative a priori and a posteriori error estimates for the non-conforming linear triangular FEM.
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Abstract The non-conforming lineatP; ) triangular FEM can be viewed as a kind of the discontinuous
Galerkin method, and is attractive in both theoretical and practical senses. Since various error constants
must be quantitatively evaluated for its accurate a priori and a posteriori error estimates, we derive their
theoretical upper bounds and some computational results. In particular, th&k&alziz maximum angle
condition is required just as in the case of the confornfiadriangle. Some applications and numerical
results are also illustrated to see the validity and effectiveness of our analysis.
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INTRODUCTION

As a well-known alternative to the conforming lingd, ) triangular finite element for approximation of

the first-order Sobolev spa¢&), the non-conforming”, elementis considered a classical discontinuous
Galerkin finite element[4] and has various interesting properties from both theoretical and practical stand-
points [10, 22]. In particular, its a priori error analysis was performed in fairly early stage of mathematical
analysis of FEM (Finite Element Method), and recently a posteriori error analysis is rapidly develop-
ing as well. For accurate error estimation of such an FEM, various error constants must be evaluated
quantitatively [2, 6, 8, 17, 20, 21].

Based on our preceding works on the constép} and the conforming?, triangles [14, 15], we here give

some results for error constants required for analysis of the non-confofningngle. More specifically,

we first summarize a priori error estimation of the present non-conforming FEM, where several error
constants appear. In this process, we use the lowest-order Raviart-Thomas trighgiilgrelement to

deal with the inter-element discontinuity of the approximate functions[9, 16]. Then we introduce some
constants related to a reference triangle, some of which are popular i, thed the conforming®;

cases. We give some theoretical results for the upper bounds of such constants. Finally, we illustrate some
numerical results to support the validity of such upper bounds. Our results can be effectively used in the
guantitative a priori and a posteriori error estimates for the non-conforiitigangular FEM.

A PRIORI ERROR ESTIMATION

We here summarize a priori error estimation of the non-confornitngriangular FEM. Let() be a
bounded convex polygonal domain R? with boundaryd(, and let us consider a weak formulation
of the Dirichlet boundary value problem for the Poisson equati@ivenf € Ly(Q2), findu € Hj(2) s.t.

(Vu, Vo) = (f,v); Yve HyQ). Q)

Here, L,(Q2) and H} (Q2) are the usual Hilbertian Sobolev spaces associatéd 0 is the gradient oper-
ator, and(-, -) stands for the inner products of bath(Q2) and L,(2)%. It is well known that the solution
exists uniquely i} () and also belongs t&/?(92) for the considerefb.



Let us consider a regular family of triangulatiofi6" } .. of 2, to which we associate the non-conforming
P finite element spaced/"},~¢. EachV" is constructed over a certaifi*, and the functions ifv" are
linear in eachi’ € 7" with continuity only at midpoints of edges, and also vanish at the midpoinf$Xn
to approximate the homogeneous Dirichlet condition [10, 22]. Then the finite element salyton "

is determined by, for a givefi € L,(€2),

(Viun, Vo) = (f,on); Yo, €V, (2)

whereV,, is the “non-conforming” or discrete gradient defined as thé?)?-valued operator by the
element-wise relation&v,v)| K = V(v|K) for Vv € V" + H*(Q) andvVK € T".

Eqg. (2) is formally of the same form as in the conforming case, so that, for error analysis, it is natural to
consider an appropriate interpolation operatgifrom Hj () (or its intersection with some other spaces)

to V. However, the situation is not so simple. That is, using the Green formula, we have

ou
Viun, Vion) = (Vu, Vo) — /v—
(Vhun, Vi) = ( hUn) Z axhé‘naK

KeTh

d77 ‘v’thVh, (3)

where %\M denotes the trace of the derivative ofin the outward normal direction @ik, andd~y

does the infinitesimal element 0. Conventional efforts of error analysis have been focused on the
estimation of the second term in the right-hand side of (3), which is absent in the conforming case. To
cope with such difficulty, we introduce the lowest-order Raviart-Thomas triangl(iv) finite element
spacdV" associated to each” [9, 16]. Then, noting that the normal componentgf € W" is constant

and continuous along each inter-element edge, we can defive€ ,v,) + (div s, v) = 0, and hence

(thh — Vu, thh) = (qh — Vu, thh) + (diV gn + f, Uh) ; A gn € Wh, Yy, € Vh . (4)

Then by Lemma 6 of [12], a refinement of Strang’s second lemma [10], we have

(qn — Vu, Vywy) + (div g, + f, wh):|2’ (5)

IVu — Vyup|* = inf [|[Vu — Viyou||* + { sup
vpEVH w, €VI\{0} IV hw|
where|| - || stands for the norms of both, () and L,(£2)2. Using the Fortin operatdi? : H(div; ) N
H2t5(0)2 — W (6 > 0) (cf.[9]) and the orthogonal projection o, : L, (€2) — X" := space of step
functions overT", we obtain a priori error estimate:

(f B tha Wy — Qhwh>‘| : (6)

Vu — Viyu|* < inf ||[Vu — Viyou|]* + {HVu — I}/ Vul| + sup
v eV wpeVI\{0} thwhH

whereg;, in (5) is taken agl! Vu.
We can obtain a more concrete error estimate in terms of the mesh paramet@r(h will be used in a
different meaning later) by deriving estimates such asyfoe H{(Q2) N H?(Q2) andvg € HY(Q) + V",

lv = ol < yohilvl2, Vo = Vallpl] < yihudols,
IV =1, Vol| < qhafvls, lg = @ngll < 2shl[Vagll ()
where| - |, denotes the standard seminormif(Q2) (k € N) [10], andyo, 71, 72 andy; are positive error

constants dependent only ¢&"},.
Then we obtain, for the solutiome Hj (2) N H?(L),

B2 B + (aluls + 26l 22 for f € La(©),
Vu—-V < 8
Ve huhH_{h*{ﬁIUI%(VzIU|2+v§h*\f|1)2}”2 for [ € H1(5), (®)

where the ternfu|, can be bounded as|, < || f|| for the presenf).
We can also use Nitsche’s trick to evaluate a priogierror of uy, [10, 17]. That is, let us defing €
H(Q) (NH?(Q)) for e := u — uy, by

(Vah, V) = (e, v) ; Yo € HY(Q). 9)



Then, forvu, € V* andvg,, g, € W", we have
||eh|]2:(c'jh— Vion, Vheh) + (Vpup — VU, Vu — qn) + (¥ — vy, divgp+ f) + (div g, + el eh) . (10)
Substitutingv, = 11,9, g, = I}’ Vu andg, = 11X’V above, we find

]2 = (TTE' VY — Vb + Vo) — Villy, Vie) + (Vallpy — Vib, Vu — 115 V)
+ (¢ =, f — Quf) + (€" — Que”, e" — Que™) (11)

sincediv q;, = divII'Vu = —Q,f anddiv g, = div III'Vi = —Qpe”. Then we have, by (7) as well as
the relationgul, < || f|| and|¢], < |l€”,

"1 < [(n + 22k Ve[| + (o + ) BEIFI] e |+ 32V ae |12, (12)

where the termoh?2|| f]|-||€”|| can be replaced withyysh3| |1 ||e”|| if f € H*(2). This may be considered
a quadratic inequality fdfe" ||, and solving it gives an expected order estimate uy, || = ||e"|| = O(h?):

h.
< (A 02 )5 A1 = () 90+ o+ b1 A2 =T 1)

RELATION TO RAVIART-THOMAS MIXED FEM

We have already introduced the Raviart-Thomas spédor auxiliary purposes. But it is well known

that the present non-conforming FEM is closely related to the Raviart-Thomas mixed FEM [3, 18]. Here
we will summarize the implementation of such a mixed FEM by slightly modifying the original non-
conforming P, scheme described by (2). The original idea in [3, 18] is based on the enrichment by the
conforming cubic bubble functions with thie, projection intol¥’*, but we here adopt non-conforming
guadratic bubble ones to make the modification procedure a little simpler.

Firstly, we replacef in (2) by Q.. f. Thenu,, is modified tou} € V" defined by

(Vhup, Viop) = (Qnfovn); Yo, € V. (14)

Secondly, we introduce the spalég of non-conforming quadratic bubble functions by defining its basis
functionpx associated to eadi € 7": ¢ vanishes outsid&” and its value at € K is given by

1 .
pr(r) = sle =297 = = |2 =29, (15)

where| - | is the Euclidean norm dR?, 2 the barycenter ofC, andz® for i = 1,2, 3 thei-th vertex of
K. ltis easy to see that the line integrationgf for each edge of K vanishes:

/6 ¢ dy=0. (16)
Now the enriched non-conforming finite element sptéds defined by the following linear sum:
Vh=V"4+ V. (17)
By (16) and the Green formula, we find the following orthogonality relatior(Yor-, V.- ):
(Vaon, VaBh) =0 ; Vo, € VI VB, e V. (18)
Then the modified finite element solutiap € V" is defined by

(Vaiin, Vi) = (Qnf,on); Vo, € V. (19)



Thanks to (18), the preseinyf, can be obtained as the sum
Up, = uy, + ap , (20)
whereu} € V" is the solution of (14), and,, € V}: is determined by

(Vhon, ViB) = (Quf,Br); VB € VI, (21)

i.e., completely independently of . Moreover,«;, can be decided by element-by-element computations.
More specifically, denoting,| K asax ¢k | K, EQ. (21) leads to

ax(Vor, Vor)k = (Qunf, ox)x; YK € T", (22)

where(-, -)x denotes the inner products of bath( K') and L, ( K)?.
Define{ps,un} € L2(2)? x X" by

ph= Vilp, Uy = Qply, . (23)

By applying the Green formula to (19), we can show that 1", and also that the present péir,, u;, }
satisfies the determination equations of the lowest-order Raviart-Thomas mixed FEM:

(Ph,an) + (Tp,divag,) =0 5 Vg, € Wh, (24)
(divph,@h) = _(Qh,ﬂ@h) ; \V/@h - Xh.

By the uniqueness of the solutior($y,, ., } is nothing but the unique solution of (24).
In conclusion, denoting the constant valuedff|K by f (= [, fdxz/meas(K)), we have foiv K €
7" andvz € K that

1- . N X 1 1 i
= =5 s n(e) = uh(e) + i) = (@) = Faello = 2P = £ 37 o) —2%P)

pula) = Vui (o) = 3Tx(o =), mle) = wia®) - Tk (09 - 5 3 ROF),  (@9)

which coincide with those in [18] and are easy to compute by post-processing.

A POSTERIORI ERROR ESTIMATION

The consideration in the preceding section suggests the a posteriori error estimation based on the hyper:
circle method[11, 16].

Taking notice of the fact that;, € W" obtained in the preceding section belongsHediv; ) with

div p;, = —Q" f, we find that, foivv € H} (),

1 1
IV = pul* = [V (0 = ") ]* + V" = pul*, [[Vu" ~ sVt =SIVe—pull,  (26)

whereu” € HZ(Q) is the solution of (1) withf replaced by, f:
(Vu", Vo) = (Qnf,v); Yve Hy(Q). (27)

Eqg. (26) implies that the three pointu”, Vv andp;, in L,(2)? make a hypercircle, the first having a
right inscribed angle. Noting thalf — Q.f,v) = (f — Qunf,v — Quov) for Yo € Hj(Q) C La(Q), we
have by (7) that

u—u"l = [V(u—u")[| < whllf = Qufll (SHERFLfe HY(Q) . (28)

Taking an appropriate € H}(€2), we obtain a posteriori error estimates relategite= V'



1 1
IVu=pull < [IVo=pill + IV (@@=, [Va—5(Votp)ll < 51V =pal + [V (w—u")]. (29)

A typical example ot is the conforming?; finite element solution$ € V%, whereV/% is the conforming

P, space oveff . Another example is a functiorf’ € V/* obtained by appropriate post-processing of
uy, Or u}, such as nodal averaging or smoothing. A cheap method of constructing & ninay be an
interesting subject. Again we need the constartb evaluate the teriV(u — u")|| above.

If we useV ,u;, based on the original, € V" in (2), instead ofi;, € V., we must evaluate some additional
terms. Fortunately, such evaluation can be done explicithstand some constants related{toy } <7
The error||Vu — V,u, || thus evaluated can be also used to give a postdrioeistimate based on (13).

ERROR CONSTANTS

To analyze the error constants in (7), let us consider their elementwise counterpars.alatded be
positive constants such that

h>0,0<a§1,(g§)005_1%§9<7r. (30)

Then we define the trianglg, 4 , by AO A B with three vertice®) (0, 0), A(h, 0) andB(ah cos 6, ahsin 0).

From (30), AB is shown to be the edge of maximum length, i.48 > h > ah, so thath = OA

here denotes the medium edge length, unlike the usual usage as the largest one [10]. A point on the
cIosureTaM of T, is denoted byr = {z1,2,}, and the three edges’s (i=1,2,3) are defined by
{e1,e2,e3} = {OA, OB, AB}. By an appropriate congruent transformatiorRif, we can configure any
triangle asl’, »». As the usage in [5], we will use abbreviated notatidhg = 70 6,1, T, = Ty x/2 and

T = Ty (Fig.1). We will also use the notatiorjs- ||z, ,, and| - |x1, ,, as the norm ofL,(7, ) and
seminorms of7*(T,, 4,) (k € N), where the subscrifk, 4, will be usually omitted.

B(0,1)
B(ahcosf,ahsinb) B(acosf, asinb)
\; > \\\‘ - S
A(h,0) A(1,0) 0 f A(1,0)
Figure 1: Notations for trianglesll, g = T, 91, Tt = Tt 5/2, T = T4
Let us define the following closed linear spaces for functions dygr, :
Vion= {0 € H'(Tans)| [ vla)de =0}, (3D
a 0,h
L= e o)l [o(s)ds =0} (1=1,2.3), (32)
Vi = {ve H\(T, |/ ds_/ (s)ds = 0} (33)
o,0.h C‘f 0,h ’
V= {v e HY(Tapn |/ ds =0 (i =12,3)}, (34)
Vf,e,h ={v e H*(Tpps)l /v(s) ds=0 (i =123)}. (35)
For the above, we will again use abbreviated notationslifke=V_,,, V) =V ., V? =1 etc.

Let us consider the (elementwisE) interpolation operatoll; , , and non-conforming? oneﬂiﬁh for
functions onT., 45 [8, 10] : TI° v forvo € HY(T,on)isa constant function such that

(10 5 o) (2) = dy/ / dy (Vo € Togn), (36)
a 0,h a 6,h



while H;ﬁhv for Vv € H'(T, ) is a linear function such that

/(Hi’ﬁhv)(s) ds = / v(s)ds for i =1,2,3. (37)
To analyze these interpolation operators, let us estimate the positive constants defined by
Cola0.n) = sup A (01,23, 41,20, 11,2,3)), (38)
veV  \{0} 01
04(04, 07 h) = sSup ﬂ ) 05(04, 07 h) = sup HUH : (39)
UEV(;{@_’,L\{O} "Ulg Uevi@JL\{o} ‘Ulg

We will again use abbreviated notatiofig(«, ) = Cj(«, 0,1), Cj(a) = Cy(a, 7/2), andC; = C;(1).
By a simple scale change, we find thaf(a, 6, h) = hC;(a,0) (J # 5) andCs(a, 8, h) = h*Cs(a, 6).
Now, by notingv — 119, ,v € V2, for v € H'(Tap) andv — Iy v € Vi, forv € HA(T, ), we
can easily have the popular type of interpolation error estimatés, gn [8, 10]:

HU - Hga,e,h’UH < CQ(O(,@)hh}‘]_ 5 Vv € Hl(Taﬁ,h)> (40)
v — Hi’ﬁhvll < Cyla,O)hlvly; Yve H*(Toop), (41)
lo — T3 vl < Cs(e, 0)h%|v]o; Vo€ H*(Topon). (42)

We can show that the following relations hold for the above constants:
04(@, 9) S C()(Oé, 9) y 05(06, 9) S Co(Ck, 6)0{1’273}(&, 9) S Co(Oé, 9)0{172}(04, 0) . (43)

An estimation rougher than the latter of (43)G$(a, 8) < Cy(a, 8) min;—; 23 Ci(a, 0). To show the
former of (43), we first derivnga eav/axi dr = 0 for Vv € V}, (i = 1, 2) by using (35) and the Gauss
formula. Then we can easily obtain the desired result by noting the definitioh(af 6). To derive the

latter of (43), we should evaluate||/|v|, and|v],/|v|, for Yo € Vi, (i = 1, 2). The former quotient

can be evaluated by usirg » 3 (v, ), while the latter can be done ldy,(«, #) and the former of (43).
Clearly,Cpy 2.3 (r,0) < Cpy93(c, 0), and we have the latter of (43).

Thus we can give quantitative interpolation estimates from (40) through (42), if we succeed in evaluating
or bounding the constan€s; («, 0)'s explicitly for all possibleJ. Among themC(c, 6) andCyy 9y (v, 0)

are important as may be seen from (43). Notice that each of such constants can be characterized by
minimization of a kind of Rayleigh quotient[5, 20, 21]. Then it is equivalent to finding the minimum
eigenvalue of a certain eigenvalue problem expressed by a weak formulation for a partial differential
eguation with some auxiliary conditions.

Moreover, we already derived some results@pfa, 0) for i = 0, 1, 2 [14, 15]. In particularCy = 1/,
andCy(= () is equal to the maximum positive solution of the equatigp + tan (1/4) = 0 for p.

The constants’;(«, 0)'s for J = 0,1,2,3,4,5,{1,2}, {1, 2,3} are bounded uniformly fofa, }. More
specifically, their explicit upper bounds are given in termaof and their values af«, 0} = {1, 7/2}.
Furthermore(;(«)’s except forJ = 4 are monotonically increasing . Asymptotic behaviors of the
constant€’;(«)’'s for « | 0 can be also analyzed [15]. As a result, the interpolation by the non-conforming
P, triangle is robust to the distortion @f, . This fact does not necessarily imply the robustness of the
final error estimates far — wy,, since analysis of the Fortin interpolation has not been performed yet.

Remark 1. Instead oin’feV’h, it is also possible to consider an interpolation operator using the function
values at midpoints of edges. Such an operator is definable for continuous functions,gyeibut not
so for functions inH* (7,4 ). Moreover, its analysis would be different from that fibi(gh



DETERMINATION OF Cy 9
From the preceding observations, we can give explicit upper bounds of various interpolation constants as-

sociated to the non-conforminfg triangle, provided that the value 0f;, 5, is determined. This becomes
indeed possible by adopting essentially the same idea and techniques to det@ym; (= C,):

Theorem 1. C 0y = Crigy(1,7/2,1) is equal to the maximum positive solution of the transcendental
equation foryu :

1 1

— +tan— =0. 44

o + tan 2 (44)
The above implies thafty, 5, = %Cl(: %(JQ), and hence is bounded as, with numerical verification,

0.24641 < Cpy 2y < 0.24647 . (45)
Remark 2. Thus 1/4 is a simple but nice upper bound. Numerically, we liaye, = 0.2464562258 - - - .

Proof. By the use of the techniques for determinationCgfand C; = Cs in [14, 15], we obtain the
following equation fon : . . )
14+ —sin — —cos— =0,
2 p 1

whose maximum positive solution is the desit€g 5. By the double-angle formulas, the above is
transformed into

1 1 1. .1

(2sin — + — cos — ) sin — = 0.
2 o 2p 21

It is now easy to derive (44), and also to draw other conclusions by using the results in [14, 15][]

ANALYSIS OF FORTIN'S INTERPOLATION

This section is devoted to analysis of the Fortin interpolation opeﬂa@grfor eachT, ¢ [9]. First, let us
introduce the following transformation betweenr= {1, 22} € T, andz = {&1, T2 }:

illesine—xgcosg, JA,’Q:J]lCOS@—'—ZEQSiHQ. (46)
For eachy = {q1, 2} € H(div;T,»), we also consider the (contravariant) expresgion{q;, g }:
g1 = q18inf — qacosf, Ga = q1cos + qa8in 6, 47)

for which we loosely use both and z as variables. The Raviart-Thomas type approximate function
qn = {qm, qn2} are given, together with the expression §@r= {gu1, Gna }, by

qn1 = o + sy Gn1 = apsint — o cos 0 + asdy (48)
Gho = Qig + Q3T9 Gno = a1 cos 0 + g sin 6 + azZy

The Fortin interpolationy; = {q},. q;,} = 1L yq for ¢ € H(div;Tag) N H2*(T,0)? (5 > 0) is of the
form of ¢;, in (48) and characterized by the conditions:

/ (@l — ) ds = / (G — ) ds =0, / div(g, —q)dz =0, (49)
Ta,H

€1 €2

whereq for ¢ andg;, for g;; are defined by the relations in (47) and (48), respectively.

Let us now introduce another interpolatiti}’;”’ ¢ = ¢} = {4}, q},} for the samey, which is a constant
vector function that satisfies only the former two conditions of (49). Then we have,testimate

[|div ¢l

1+acosf+a?
o = el < llg = 1% + 5 7 [ fapda =% — gl + J Idivall. (50
2 |T0419| Ta,G 24

To bound]|q — Hi:f}qH, let us evaluatég, — ¢/, || and||g2— ¢/, || by usingC; (o, §) andCy(a, 6):



Theorem 2. It holds forq = {q1, ¢} € H'(T,4)? that

1
V2sin 6

1/2
+ (Cras + C200) \/Chag + Cag + 2C100Canpc0s 20}, (51)

|| H{l 2}qH < O@'(Oé 6)|Q|1 ) Cﬁ(a 9) {012,&,0 + 022,04,9 + 201,0&7902701,9 COS2 0

whereC; . o = Ci(a,0) (i = 1,2), and|q|; = v/|¢1|3 + |¢a]? .

Remark 3. From (50) and (51), it is easy to derive the following estimate for the Fortin interpolation
operatorI} , , for Ty, g5

1+a cosO+a?
24
Because of the factaiin 6 in (51), the maximum angle condition applies to estimate (51), and hence to

(52)[1, 5, 17]. On the other hand, the estimatesﬁ@,@’h andH;’f@V’h are free from such conditions as may
be seen from (43) and the comments there.

,VQEH( a@h) (52)

lg—T1Z 5 4]l < Co(cx, 6) gl + Cr(a, ) hldiv g 07<a,9>:=\/

GLOBAL INTERPOLATION OPERATORS

So far, we have introduced and analyzed local interpolation operafgys, s o, andIll, ;. For each
K € T", we can find an appropriafg, 4, congruent tok” under a mapplng)K K — T,on. Then

it is natural to define theé®, non-conforming interpolation operatdl, : Hi(Q) — V" by Iu|K =
1} o, h( v|K o ®1)] o @ for Vo € H(Q) andVK € T". Similarly, the orthogonal projection operator
Qn 1 Ly(Q) — Xh is related tdT;, , ,, while the global Fortin operatdi;; is defined throughi’ , ,, ®

and the Piola transformation for 2D contravariant vector fields [9].

For eachK € 7", define{ak, 0k, hx} as{«,d, h} of the associated, 4 ,. Then, our analysis shows
that the estimates in (7) can be concretely given byyfoe H}(Q2) N H?(Q2) andvg € HY(Q) + V",

|v — Iyl < CERZ|vly < ChC{l 2}h2|fu\2, Vv — VIl < CFh,|vly < Clh,|vls,
Vo — I, Vo < Cghlvls + CFha[Av] lg — Qugll < Coh.|[Vagll, (53)
where
h, = = max hg, Ch= max Cilak,0x) (J=0,4,56,7{1,2}). (54)

Remark 4. Relations such as (20), (23) and (25) may suggest the possibility of finding interpolations for
Vu in W" better than that by the Fortin operator, which are free from the maximum angle condition [5].
However,V,,(Il,u + a4,), for example, is not shown to belong ", because we cannot prove the inter-
element continuity of normal components unlieu,. Our numerical results show that such a condition

is probably essential for the non-conformifgtriangle. See also [1] for related topics.

NUMERICAL RESULTS

Firstly, we performed numerical computations to see the actual dependence of various congtaard on

6 by adopting the conforming’; element and a kind of discrete Kirchhoff plate bending element [13], the
latter of which is used to deal with directly the 4-th order partial differential eigenvalue problems related
to Cy(a, 8) andCs(«, 0). That is, we obtained some numerical results@afa) andC;s(a) (6 = 7/2)
together with their upper bounds. We used the uniform triangulations of the entire d@maif, is
subdivided into small triangles, all being congruentg, » , with e.g.h = 1/20.

The left-hand side of Fig. 2 illustrates the graphs of approxiréate) andCy(«) versusxy €10, 1], while

the right-hand side does similar graphsd@a) andCy(a)Cy 23 (o). In both cases, the theoretical upper
bounds based on (43) give fairly good approximations to the considered conStantsand C5(«).
Asymptotic behaviors of the constants ter] 0 observed in the figures can be analyzed as in [15].
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Figure 2: Numerical results f@ry (o) & Cy(a) (left), and forCs (a) & Co(a)Ci 23 () (right) ; 0 < e < 1

We also tested numerically the validity of our a priori error estimate||fér. — V,uy||. That is, we
choose(? as the unit squaréxr = {z1,22}; 0 < x1, 9 < 1}and f as f(z1,z5) = sinwz sinwas,
and consider théV x N Friedrichs-Keller type uniform triangulationsV € N). In such situation,

1 . . . .
u(xy, z9) = 73 sin 7z, sin mx, , and all the triangles are congruent to a right isosceles triahglg 1 /v,

i.e.,h. = h =1/N. Moreover, we can use the following values or upper bounds for necessary constants:
Ch=Co=1/m, Cliy=CnayS1/4, Ct=Ci=Cr51/2, C}=Cr=1/V12.  (55)

Figure 3 illustrates the comparison of the actli&lu — V,u,|| and its a priori estimate based on our
analysis. The difference is still large, but anyway our analysis appears to give correct upper bounds and
order of errors. Probably, a posteriori estimation mentioned previously would give more realistic results.
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Figure 3: Numerical results fdfVu — V,u,|| and its a priori estimate versas

CONCLUDING REMARKS

We have obtained some theoretical and numerical results for several error constants associated to the
non-conformingP; triangle, which we hope to be effectively used in quantitative error estimates, which
are necessary for adaptive mesh refinements[7] and numerical verifications. Especially for numerical
verification of partial differential equations by Nakao’s method [19], accurate bounding of various error
constants is essential. Moreover, we are planning to extend our analysis to its 3D counterpart, i. e., the
non-conformingpP; tetrahedron with face DOF’s.
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