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For eigenvalue problems of self-adjoint differential operators, a universal framework is
proposed to give explicit lower and upper bounds for the eigenvalues. In the case of the
Laplacian operator, by applying Crouzeix–Raviart finite elements, an efficient algorithm
is developed to bound the eigenvalues for the Laplacian defined in 1D, 2D and 3D spaces.
Moreover, for nonconvex domains, for which case there may exist singularities of eigen-
functions around re-entrant corners, the proposed algorithm can easily provide eigenvalue
bounds. By further adopting the interval arithmetic, the explicit eigenvalue bounds from
numerical computations can be mathematically correct.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

The eigenvalue problem plays an important role in both natural and engineering sciences. In this paper, we consider the
class of self-adjoint eigenvalue problems, the eigenvalues of which are real numbers, and propose a universal framework to
give lower and upper bounds for eigenvalues.

For a long time, the numerical analysis for eigenvalue problems, for example, of Laplacian eigenvalues, has been well
documented in literature. Most classical research focuses on the qualitative analysis of numerical schemes, such as conver-
gence order. But, quantitative analysis, for example, explicit eigenvalue bounds, has not drawn much interest from
researchers.

Recently, explicit eigenvalue bounds have become more indispensable, especially in adaptive computing of the finite ele-
ment method (FEM) and in the computer-assisted proof for nonlinear differential equations. For example, a good indicator
for the error of approximate solutions requires the explicit error estimation for various interpolation operators. The estima-
tion of error constants is reduced to eigenvalue problems of Laplace and biharmonic operators; see, [10,13]. In addition, ver-
ifying the solution for nonlinear differential equations requires eigenvalue bounds of the controlling differential operators;
see, e.g., [17,19,22].

Generally, we can easily obtain upper bounds for eigenvalues by using Rayleigh–Ritz’s method, but lower eigenvalue
bounds remain difficult to find. Theoretical analysis of eigenvalue bounds, which is independent of numerical scheme selec-
tion, includes the early work of Kato, Weinstein and Stenger, Lehmann, Beattie and Goerisch, Behnke and Goerisch, Goerisch
[9,23,11,1,4,7]. These theories provide nice eigenvalue bounds, assuming there are rough a priori bounds for the eigenvalues.
A good choice to provide the necessary a priori eigenvalue bounds is the homotopy method proposed by Plum [18], which
considers the connection between the base problem—with a known spectrum—to the objective problem. With a domain
transformation, this method can even deal with the domain of general shapes. However, to apply the homotopy method
in solving practical problems, we need case-by-case efforts in setting up the homotopy process.
. Math.
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In practical computation, such methods as the FEM, finite difference method, and intermediate method, can result in good
eigenvalue approximation. However, most of these methods have difficulties in dealing with domains of general shapes if
rigorous eigenvalue bounds are wanted, and the indices of eigenvalues are not easy to verify; see [15] for a review of such
methods and the reference therein. In Liu and Oishi [15], by applying the hypercircle equation technique, the authors devel-
oped an algorithm that can provide guaranteed lower and upper eigenvalue bounds for the Laplacian. By inheriting the
advantage of FEMs, such an algorithm can naturally deal with eigenvalue problem over domains of arbitrary shape.

In this paper, we extend the algorithm of Liu and Oishi [15] to more general cases defined by abstract bilinear forms.
Moreover, the proposed method enables the utility of non-conforming FEMs. For non-conforming finite elements, the
numerical results themselves can be lower bounds for eigenvalues if the mesh size is small enough from the asymptotic
analysis (see, e.g., [24,16]). But the necessary small enough condition usually cannot be verified explicitly. In our proposed
algorithm, based on the computation results of non-conforming FEMs, guaranteed lower eigenvalue bounds are possible,
even for a very raw mesh. The proposed algorithm can deal with the Laplace and Biharmonic eigenvalue problems. In this
paper, we focus on the Laplacian eigenvalue problems.

For the eigenvalue problem of Laplacian, the Crouzeix–Raviart finite element is adopted to give lower eigenvalue bounds
(see details in Section 3): Let kk be the kth eigenvalue and kh;k the kth approximate eigenvalue. A lower bound of kk is given as
Please
Comp
kh;k

1þ C2
hkh;k

6 kk;
where Ch is a constant related to error estimation for the Crouzeix–Raviart interpolation Ph; see definition in Section 3.1. Let
the diameter of an element K be h. The constant Ch is the one to make the following estimation hold:
ku�Phuk0;K 6 Chju�Phuj1;K :
Here,

� Ch ¼ h=p when K is an interval in R1, which is an already known result;
� Ch ¼ 0:1893h for a triangle element K in R2;
� Ch ¼ 0:3804h for a tetrahedron element K in R3.

Moreover, the selection of Ch for R1 is optimal and the value Ch ¼ 0:1893h for R2 is very near to optimal.
When this research was almost finished, we found independent results of Carstensen and Gallistl [5,6], which also use

non-conforming FEMs to give lower eigenvalue bounds, but a separation condition is needed. As explained in Remark 3.1,
the separation condition is in fact not needed. Also, our results give better estimation of the constant Ch for eigenvalue
problems of the Laplacian in the 2D case.

The remainder of this paper is organized as follows: In Section 2, we introduce the eigenvalue problem defined in an
abstract form along with the main theorem that provides lower eigenvalue bounds. In Section 3, the eigenvalue problem
of the Laplacian is considered in Rmðm ¼ 1;2;3Þ. In Section 4, an optimal estimation of the error constant Ch for 2D case
is given. In Section 5, the computation results are presented. Finally, in Section 6, we state our conclusions and discuss
the scope for future work.

2. Abstractly defined eigenvalue problems and lower eigenvalue bounds

Let X be a domain of Rm (m ¼ 1;2;3). We show the assumptions for function spaces to be used in the main theorem on
eigenvalue bounds.

A1 V is a Hilbert space of real function on X with the inner product Mð�; �Þ and the corresponding norm k � kM :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Mð�; �Þ

p
.

A2 Nð�; �Þ is another inner product of V. The corresponding norm k � kN :¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Nð�; �Þ

p
is compact for V with respect to k � kM ,

i.e., every sequence in V which is bounded in k � kM has a subsequence which is Cauchy in k � kN .

To deal with conforming or non-conforming finite element spaces in eigenvalue evaluations, we further take the follow-
ing assumptions.

A3 Vh is a finite dimensional space of real function over X; DimðVhÞ ¼ n (the value of n is fixed). Notice that Vh may not be

a subspace of V. Define VðhÞ :¼ V þ Vh ¼ fv þ vhjv 2 V ;vh 2 Vhg.
A4 Bilinear forms Mhð�; �Þ and Nhð�; �Þ on VðhÞ are extension of Mð�; �Þ and Nð�; �Þ to VðhÞ such that
– Mhðu;vÞ ¼ Mðu;vÞ; Nhðu;vÞ ¼ Nðu;vÞ for all u; v 2 V .
– Mhð�; �Þ and Nhð�; �Þ are symmetric and positive definite on VðhÞ.

The assumption A4 implies that Mhð�; �Þ and Nhð�; �Þ are also inner products of VðhÞ. For purpose of simplicity, the extended
bilinear forms Mhð�; �Þ and Nhð�; �Þ are still denoted by Mð�; �Þ and Nð�; �Þ and the corresponding norms are denoted by k � kM and
cite this article in press as: X. Liu, A framework of verified eigenvalue bounds for self-adjoint differential operators, Appl. Math.
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k � kN , respectively. Since DimðVhÞ <1, it is easy to see VðhÞ is also a Hilbert space along with the inner product Mð�; �Þ and the
norm k � kM . Moreover, k � kN is compact in VðhÞ with respect to k � kM .

Consider the objective eigenvalue problem defined by Mð�; �Þ and Nð�; �Þ over V: Find u 2 V and k 2 R such that,
Please
Comp
Mðu; vÞ ¼ kNðu; vÞ 8v 2 V : ð1Þ
From arguments of compactness (see, e.g., Section 8 of Babuska [8]), the eigenpair of (1) can be denoted by fkk;ukg
ðk ¼ 1;2; . . . ;1Þ with 0 < k1 6 k2 . . . and Nðui;ujÞ ¼ dij (dij: Kronecker’s delta).

Let us define the eigenvalue problem over finite dimensional space Vh: Find uh 2 Vh and kh 2 R such that,
Mðuh;vhÞ ¼ khNðuh; vhÞ 8vh 2 Vh: ð2Þ
Let fðkh;k; uh;kÞg ðk ¼ 1;2; . . . ;nÞ be the eigenpair of (2) with 0 < kh;1 6 kh;2 . . . 6 kh;n. The eigenvalues kh;k can be calculated rig-
orously by solving a matrix eigenvalue problem.

Let Rð�Þ be the Rayleigh quotient defined over VðhÞ: for v 2 VðhÞ
RðvÞ :¼ Mðv; vÞ
Nðv; vÞ :
Therefore, the stationary values and stationary points of R over V and Vh correspond to the eigenpairs of eigenvalue problems
(1) and (2), respectively. Also, the min–max principle holds for both kk and kh;k:
kk ¼min
Sk

max
v2Sk

RðvÞ; kh;k ¼min
Sh;k

max
vh2Sh;k

RðvhÞ; ð3Þ
where Sk and Sh;k are k-dimensional subspaces of V and Vh, respectively.
We show the main theorem that provides lower eigenvalue bounds.

Theorem 2.1. Let Ph : VðhÞ ! Vh be the projection with respect to inner product Mð�; �Þ, i.e., for any u 2 VðhÞ
Mðu� Phu;vhÞ ¼ 0 8vh 2 Vh: ð4Þ
Suppose the following error estimation holds for Ph: for any u 2 V,
ku� PhukN 6 Chku� PhukM: ð5Þ
Let kk and kh;k be the ones defined in (1) and (2). Then, we have
kh;k

1þ kh;kC2
h

6 kk ðk ¼ 1;2; . . . ; nÞ: ð6Þ
Proof. Since k � kN is compact in VðhÞ with respect to k � kM , resulting from the argument of compactness (see Section 8 of
Babuska [8]), there exists ð0 <Þ�k1 6

�k2 6 . . . such that
�kk ¼ min
Sk�VðhÞ

max
v2Sk

RðvÞ ¼ max
W�VðhÞ;dimðWÞ6k�1

min
v2W?

RðvÞ; ð7Þ
where Sk denotes any k-dimensional subspace of VðhÞ; W? denotes the orthogonal complement of W in VðhÞ respect to
Mð�; �Þ. Since V � VðhÞ, we have kk P �kk due to the min–max principle. Further, by choosing W in (7) as
Eh;k�1 :¼ spanfu1;h; . . . ;uh;k�1g, a lower bound for kk is obtained:
kk P �kk P min
v2E?h;k�1

RðvÞ: ð8Þ
Let E?;hh;k�1 denote the orthogonal complement of Eh;k in Vh with respect to Mð�; �Þ, i.e., Vh ¼ Eh;k�1 � E?;hh;k�1. Then VðhÞ can be
decomposed by:
VðhÞ ¼ Vh � Vh? ¼ Eh;k�1 � E?;hh;k�1 � Vh?:
Moreover, we have E?h;k�1 ¼ E?;hh;k�1 � Vh?. For any v 2 E?h;k�1, we have
v ¼ Phv þ ðI � PhÞv; Phv 2 E?;hh;k�1; ðI � PhÞv 2 Vh?:
Therefore, we have kPhvkN 6 k�1=2
h;k kPhukM by noticing that
kh;k ¼ min
v2E?;h

h;k�1

RðvÞ:
cite this article in press as: X. Liu, A framework of verified eigenvalue bounds for self-adjoint differential operators, Appl. Math.
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Further, from the condition (5) of Theorem 2.1, we have
Please
Comp
kvkN 6 kPhvkN þ kv � PhvkN 6 k�1=2
h;k kPhvkM þ Chkv � PhvkM;
which leads to
kvk2
N 6 k�1

h;k þ C2
h

� �
kPhvk2

M þ kv � Phvk2
M

� �
¼ k�1

h;k þ C2
h

� �
kvk2

M:
Hence, we obtain
RðvÞP kh;k= 1þ C2
hkh;k

� �
for any v 2 E?h;k�1:
Using (8), we can draw the conclusion in (6). h
Remark 2.1. The technique in the above proof is an extension of the one given by Liu and Oishi [14], which applies the max–
min principle to develop explicit lower eigenvalue bounds along with conforming FEM spaces. In Liu and Oishi [15], another
proof based on the min–max principle is given for conforming FEM spaces; the technique therein can also be used to give the
same result as Theorem 2.1.
Remark 2.2. The results of Carstensen and his coauthors give same lower bounds like (6), but a so-called ‘‘separation con-
dition’’ is required:
Ch 6 ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=k

q
� 1Þ=

ffiffiffiffiffi
kk

p
:

As shown in the Theorem 2.1, such a condition is not needed. Also, in solving the eigenvalue problem of the Laplacian in 2D
case, the estimation of Ch given by Carstensen and Gallistl [5] is Ch 6 0:43955h, which is refined to be Ch 6 0:2983h in
Carstensen and Gallistl [5]. Both results are rough than our estimation Ch 6 0:1893h; see Section 5.

To obtain eigenvalue bounds by using Theorem 2.1, there are two tasks.

(a) Selection of Vh. The finite element space will be adopted to construct Vh. Moreover, we prefer to a special kind of Vh:
for each K, the restriction of Phu on K, i.e., ðPhuÞjK , is an interpolation of u on K.

(b) The concrete value of Ch in the error estimation (5) for Ph. With special selection of Ph, the projection error estimation
can be reduced to the interpolation error estimation on each element, which can be easily solved.

Upper eigenvalue bounds. The upper bounds for eigenvalues can be easily obtained if the finite dimensional space Vh is a

conforming one, i.e., Vh � V . In this case, the approximate eigenvalue kh;k of (2) gives upper bound for kk in (1) from the min–
max principle.

3. Eigenvalue problems for Laplace operators

3.1. Preliminary

Let X � Rm (m ¼ 1;2;3) be a bounded polyhedron domain. In the rest of this paper, we apply Theorem 2.1 to give lower
bounds for the concrete eigenvalue problem of the Laplacian over X:
�Du ¼ ku in X; u ¼ 0 on @X: ð9Þ
Notation for function spaces. Let L2ðXÞ be the standard Lebesgue function space and HkðXÞ (k ¼ 0;1;2; . . .) the kth order
Sobolev function space, which contains all functions that have up to kth order derivatives in L2ðXÞ. The semi-norm and norm

for function in HkðXÞ are denoted by j � jk;X and k � kk;X, respectively.
We take the following settings to apply Theorem 2.1:
V ¼ fv 2 H1ðXÞjv ¼ 0 on @Xg; Mðu;vÞ ¼
Z

X
ru � rv dx; Nðu;vÞ ¼

Z
X

uv dx:
The variational form for eigenvalue problem (9) is defined as follows: Find u 2 V and k 2 R such that
Mðu;vÞ ¼ kNðu; vÞ; 8v 2 V : ð10Þ
Finite element space Vh. For an interval I � R1; Kh denotes the subdivision of I with subintervals. In Rm (m P 2), let Kh be a

regular subdivision of X with m-simplexes; that is, any two surfaces Si and Sj of elements of Kh satisfies Si \ Sj ¼ Si ¼ Sj or

lðm� 1; Si \ SjÞ ¼ 0, where lðk; �Þ is the measure in Rk ðk P 1Þ.
cite this article in press as: X. Liu, A framework of verified eigenvalue bounds for self-adjoint differential operators, Appl. Math.
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Define the finite element space Vh by
Please
Comp
Vh :¼ fvhjvh is piecewise linear on each element K of Kh;

vh is continuous on the centroid of each inter-element surface S;

vh vanishes on the centroid of boundary surfaces:g
ð11Þ
In the 2D case, such a FEM space is just the Crouzeix–Raviart FEM space. In case of 1D space, the simplex reduces to an inter-
val and the surfaces are just the ends of intervals. The extension of M and N to VðhÞ is defined by
Mhðu;vÞ :¼
X
K2Kh

Z
K
ru � rv dx; Nhðu;vÞ :¼

Z
X

uv dx:
It is easy to see that the above setting of V ; Vh; Mð�; �Þ; Nð�; �Þ; Mhð�; �Þ; Nhð�; �Þ satisfy the assumption A1–A4.

Interpolation Ph. The interpolation function Ph : H1ðXÞ ! Vh is defined element-wisely. For each K 2 Kh, the mþ 1 sur-
faces of which are denoted by Si (i ¼ 1;2; . . . ;mþ 1), PhujK is a linear function such that:
Z

Si

Phu� u ds ¼ 0; i ¼ 1;2; . . . ;mþ 1: ð12Þ
For any vh 2 Vh, noticing that @vh=@n is a constant function on surfaces Si and Dvh ¼ 0 inside K, we have
Z
K
rðPhu� uÞ � rvh dx ¼

Xmþ1

i¼1

Z
Si

ðPhu� uÞ @vh

@n
ds�

Z
K
ðPhu� uÞDvh dx ¼ 0:
Therefore, we have the following orthogonality
X
K2Kh

Z
K
rðPhu� uÞ � rvh dx ¼ MhðPhu� u;vhÞ ¼ 0 8vh 2 Vh: ð13Þ
Thus the projection Ph : VðhÞ ! Vh is nothing else but the interpolation Ph.
In the following subsection, we will consider several model eigenvalue problems and show how to estimate Ch in (5) for

1D, 2D and 3D cases. Because the projection is also an interpolation operator, we only need to evaluate the interpolation
error constant CðK; RmÞ defined on element K:
ku�Phuk0;K 6 CðK; RmÞju�Phuj1;K : ð14Þ
Thus Ch can be taken as Ch :¼maxK2Kh CðK; RmÞ.

3.2. Laplace operator in 1D

Although the eigenvalue problem in 1D space is trivial, we consider it here to show the efficiency of Theorem 2.1. Let
X :¼ I ¼ ð0;1Þ. Let
V :¼ fv 2 H1ðIÞjvð0Þ ¼ vð1Þ ¼ 0g; Mðu;vÞ ¼
Z

I
uð1Þv ð1Þdx; Nðu;vÞ ¼

Z
I

uvdx:
Denote by Ih the subdivision of I with the nodes fxign
i¼0 : x0ð¼ 0Þ < x1 < . . . < xnð¼ 1Þ. Vh is the space of all continuous

piece-wise linear functions that vanish at x ¼ 0 and x ¼ 1. Since Vh � V , we take Mh :¼ M; Nh :¼ N. The interpolation defined

by (12) is merely the Lagrange interpolation Ph : V ! Vh,
ðPhuÞðxiÞ ¼ uðxiÞ; i ¼ 0;1; . . . ; n:
Error estimation for projection operator. On each sub-interval Ii ¼ ðxi; xiþ1Þ (i ¼ 0;1; . . . ;n� 1), let hi :¼ xiþ1 � xi. Define

Rayleigh quotient RðvÞ :¼
R

Ii
v ð1Þ2ds

.R
Ii
v2ds. Notice that,
min
v2H1ðIiÞ

RðPhv � vÞ ¼ min
w2H1ðIiÞ;wð0Þ¼wð1Þ¼0

RðwÞ ¼ R sin
pðx� xiÞ

h

� �
¼ p2=h2

i :
Thus, we have
kPhu� uk0;Ii
6 hi=pjPhu� uj1;Ii

: ð15Þ
Therefore, the optimal constant Ch for (5) is Ch :¼ h=p with h ¼maxihi.
cite this article in press as: X. Liu, A framework of verified eigenvalue bounds for self-adjoint differential operators, Appl. Math.
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3.3. Laplace operator in 2D

Let us consider the Laplace operator over a 2D polygonal domain X. The subdivision Kh for X is now a regular triangula-

tion of X. The FEM space Vh here is the Crouzeix–Raviart FEM space with the boundary condition:
Please
Comp
Vh :¼fvhjvhis piecewise linear and continuous on mid-points of interior edges;vh vanishes on the mid-point of boundary edges of Kh:g
Notice that Vh is a non-conforming FEM space because Vh: � H1ðXÞ. Except for the above Vh, we also introduce the results

based on the piecewise linear conforming FEM space Vh
conf ð� VÞ. The projections that project VðhÞ to Vh and Vh

conf are denoted
by Ph and Ph;conf , respectively.

Conforming FEM space Vh
conf . The projection operator Ph;conf : V ! Vh

conf cannot be an interpolation operator anymore. Also,
if the domain has a re-entrant corner, there may exist singularities of the eigenfunction ui, which makes the a priori estima-
tion not easy to obtain. Liu and Oishi [15] considers the following boundary value problem over a polygonal domain X of
arbitrary shape
�Du ¼ f in X; u ¼ 0 on C1;
@u
@n
¼ 0 on C2: ðC1 [ C2 ¼ @X;C1 \ C2 ¼ ;Þ
By adopting the hyper-circle equation method, [15] gives the explicit value of Ch for the a priori error estimation:
ku� Ph;conf uk0;X 6 Chju� Ph;conf uj1;X 6 C2
hkfk0;X:
The calculation of Ch is reduced to solving a matrix eigenvalue problem. An example based on Vh
conf along with explicit values

of Ch is displayed in Section 5.

Non-conforming FEM space Vh. The projection operator Ph : VðhÞ ! Vh is just the Crouzeix–Raviart interpolation

Ph : V ! Vh: On each element K, the edges of which are denoted by e1; e2; e3, for u 2 V
ðPhuÞjK 2 P1ðKÞ;
Z

ei

Phu� uds ¼ 0 ði ¼ 1;2;3Þ:
The constant CðK; R2Þ in (14) is given by
CðK; R2Þ ¼ sup
v2H1ðKÞ

kv �Phvk0;K

jv �Phv j1;K
¼ sup

v2VeðKÞ

kvk0;K

jv j1;K
;

where
VeðKÞ :¼ v 2 H1ðKÞ
n ��� Z

ei

vds ¼ 0; i ¼ 1;2;3

)
: ð16Þ
To give an estimation of CðK; R2Þ, u is decomposed as follows.
u ¼ ðu� AvgðuÞÞ þ AvgðuÞ ðAvgðuÞ : average of u over KÞ:
From the result of Payne and Weinberger [12], it is known that over triangle K, the longest edge length denoted by h, for
u 2 H1ðKÞ,
ku� AvgðuÞk0;K 6
h

3:8317
juj1;K : ð17Þ
The following Lemma 3.1 and Theorem 3.2 provide an estimation for CðK; R2Þ.

Lemma 3.1. Let the three vertices of triangle K be ABC. Given u 2 H1ðKÞ;
R

AB uds ¼ 0, we have
Z
K

udxdy 6 0:443
ffiffiffiffiffiffi
jKj

p
maxðjACj; jBCjÞkruk0;K :
Proof. Suppose that AB is on the x-axis and A ¼ ð0;0Þ. The coordinates of B and C are denoted by ðxB;0Þ; ðxC ; yCÞ. Particularly,
let H :¼ yC .

For a point x ¼ ðx; yÞ in K, suppose the line passing through C and x intersects AB at x̂ ¼ ðx̂;0Þ; see Fig. 1. Then, the point
x ¼ ðx; yÞ can be represented by new parameters ðx̂; sÞ, that is:
x ¼ ðx; yÞ ¼ x̂þ sðC � x̂Þ ¼ ðx̂þ ðxC � x̂Þs; sHÞ x̂ 2 ½0; xB�; s 2 ½0;1�ð Þ:
cite this article in press as: X. Liu, A framework of verified eigenvalue bounds for self-adjoint differential operators, Appl. Math.
ut. (2015), http://dx.doi.org/10.1016/j.amc.2015.03.048
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Therefore, the integration of uðxÞ can be represented by
Please
Comp
Z
K

uðxÞdxdy ¼
Z xB

0

Z 1

0
uðxÞ � ð1� sÞH ds dx̂: ð18Þ
Let ~a be the unit vector from x̂ to x. Consider the line integral on x̂x.
uðxÞ ¼ uðx̂Þ þ
Z 1

0

@uðx̂þ tðx� x̂ÞÞ
@~a

dt � jx̂� xj
Notice that
R xB

0 uðx̂Þdx̂ ¼ 0. Substitute (3.3) into (18); we have:
Z
K

u dx dy ¼
Z xB

0

Z 1

0

Z 1

0

@uðx̂þ tðx� x̂ÞÞ
@~a

dt � jx̂� xj � ð1� sÞH ds dx̂:
Notice that jx� x̂j ¼ sjC � x̂j 6 s �maxðjACj; jBCjÞ. Let ~t ¼ s � t, then
Z
K

u dx dy 6 maxðjACj; jBCjÞ
Z xB

0

Z 1

0

Z s

0

@uðx̂þ ~tðC � x̂ÞÞ
@~a

d~t � ð1� sÞH ds dx̂: ð19Þ
Denote by ~x :¼ x̂þ ~tðC � x̂Þ. Apply the Cauchy–Schwarz inequality,
Z s

0

@uð~xÞ
@~a

d~t 6
Z s

0

@uð~xÞ
@~a

� �2

H � ð1� ~tÞ d~t

( )1=2 Z s

0

d~t
H � ð1� ~tÞ

� 	1=2

6

Z 1

0

@uð~xÞ
@~a

� �2

H � ð1� ~tÞ d~t

( )1=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� logð1� sÞ

H

r
:

Thus,
 Z 1

0

Z s

0

@uð~xÞ
@~a

d~tð1� sÞH ds 6
Z 1

0

Z 1

0

@uð~xÞ
@~a

� �2

H � ð1� ~tÞ d~t

( )1=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� logð1� sÞ

H

r
ð1� sÞH ds

¼
Z 1

0

@uð~xÞ
@~a

� �2

H � ð1� ~tÞ d~t

( )1=2

� G0 �
ffiffiffiffi
H
p

; ð20Þ
where G0 ¼
R 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð1� sÞ

p
ð1� sÞ ds � 0:3133.

Substitute (20) into (19),
Z
K

u dx dy 6 maxðjACj; jBCjÞ
Z xB

0

Z 1

0

@uð~xÞ
@~a

� �2

H � ð1� ~tÞ d~t

( )1=2

G0

ffiffiffiffi
H
p

dx̂

6 maxðjACj; jBCjÞ
Z xB

0

Z 1

0

@uð~xÞ
@~a

� �2

H � ð1� ~tÞ d~t dx̂

( )1=2

G0

ffiffiffiffi
H
p ffiffiffiffiffiffiffiffiffi

jABj
p

¼
ffiffiffi
2
p

G0

ffiffiffiffiffiffi
jKj

p
maxðjACj; jBCjÞ � juj1;K :
Therefore,
Z
K

u dx dy 6 0:443
ffiffiffiffiffiffi
jKj

p
maxðjACj; jBCjÞjuj1;K : �
Theorem 3.2. Given u 2 VeðKÞ, the following error estimation holds
kuk0;K 6 0:346hjuj1;K :
Thus, we have CðK; R2Þ 6 0:346h.
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Proof. From Lemma 6.1 in the appendix, we can select a P 2 K such thatffiffiffip
Please
Comp
maxðjPAj; jPBj; jPCjÞ 6 3
3

h:
Denote by K1; K2, and K3 the three sub-triangles of K. Apply Lemma 3.1 to the integration of u on each sub-triangle Ki. Then,
Z
K

u dx dy 6 0:4431

ffiffiffi
3
p

3
h
X3

i¼1

ffiffiffiffiffiffiffiffi
jKij

p
� kruk0;Ki

6 0:25582h
ffiffiffiffiffiffi
jKj

p
� juj1;K :
Therefore, by further using the estimation in (17), we have
kuk2
0;K ¼ ku� AvgðuÞk2

0 þ kAvgðuÞk2
0 6

1
3:83172 þ 0:225822
� �

h2juj21;K < ð0:346hjuj1;KÞ
2
: �
Remark 3.1. The estimation for CðK; R2Þ is also found in Carstensen and Gedicke [6], where the bound is
CðK; R2Þ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1932
p

h � 0:4396h and [5], where the bound is CðK; R2Þ 6 0:2983h.
Remark 3.2. Both the projection Ph and Ph;conf introduced here have explicit projection error estimation, which does not
involve the second derivatives of the eigenfunction. Therefore, even for the eigenvalue problem with singularities, explicit
lower bounds and upper bounds for the eigenvalues are possible.
3.4. Laplace operator in 3D

Given a domain X in R3, we consider the tetrahedra mesh of X. The FEM space Vh is here the 3D version of
Crouzeix–Raviart FEM space. To give a rough bound for CðK; R3Þ, we first provide a similar result to Lemma 3.1.

Lemma 3.3. Given a tetrahedron K with vertices as ABCD. Suppose on the boundary triangle ABC; u 2 H1ðKÞ satisfies
R

ABC uds ¼ 0.
Then,
 Z

K
udx 6

ffiffiffi
3
p

p
16

maxðjDAj; jDBj; jDCjÞ �
ffiffiffiffiffiffi
jKj

p
� juj1;K :
Proof. The technique we use is almost the same as the one in Lemma 3.1. We only show the sketch. Let consider one surface
S ¼ ABC and its opposite vertex D. Suppose S is on the xy-plane. Let H be the height of D. Given a point x ¼ ðx; y; zÞ 2 K , define
x̂ ¼ ðx̂; ŷÞ by the intersection of S and the line passing x and D. Then x can be reparameterized by x ¼ x̂þ sðD� x̂Þ. We have
Z
K

u dx dy dz ¼
Z

S

Z 1

0
uð1� sÞ2HdsdS;
where dS is an infinitesimal integration on surface S.
Then, by analogous arguments as Lemma 3.1, we can show that
AvgðuÞ :¼
Z

K
udxdydz 6

ffiffiffi
3
p ffiffiffiffi

K
p

G1 maxðjDAj; jDBj; jDCjÞkruk0;K ;
where
G1 ¼
Z 1

0

Z s

0

1

ð1� tÞ2
dt

( )1=2

ð1� sÞ2ds ¼
Z 1

0
s1=2ð1� sÞ3=2ds ¼ p

16
: �
Theorem 3.4. Let the maximum edge length of tetrahedron K be h, then CðK; R3Þ 6 0:3804h, that is,
kPhu� uk0;K 6 0:3804hjPhu� uj1;K :
Proof. Let v ¼ Phu� u, then on each surface of K, we have
R

S vdS ¼ 0. From Lemma 6.2 in Appendix, we can choose P 2 K
such that
maxðjPAj; jPBj; jPCj; jPDjÞ 6
ffiffiffi
6
p

4
h:
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For the sub-tetrahedrons K1 :¼ PABC; K2 :¼ PABD; K3 :¼ PACD; K4 :¼ PBCD, apply Lemma 3.3 to each Ki then we have:
Please
Comp
Z
K

udx ¼
X4

i¼1

Z
Ki

udx 6

ffiffiffi
3
p

p
16

ffiffiffi
6
p

4
h
X4

i¼1

ffiffiffiffiffiffiffiffi
jKij

p
juj1;Ki

6
3
ffiffiffi
2
p

p
64

h
ffiffiffiffiffiffi
jKj

p
juj1;K :
The result of Payne and Weinberger, Bebendorf [12,2] shows that ku� AvgðuÞk0;K 6 1=phjuj1;K . Thus,
kuk2
0;K ¼ ku� AvgðuÞk2

0;K þ kAvgðuÞk2
0;K 6

1
p2 þ

9p2

2048

� �
h2juj21;K 6 ð0:3804hjuj1;KÞ

2
: �
4. Optimal estimation of CðKÞ for 2D case

The constant CðKÞ is determined by solving eigenvalue problems. In this section, we apply the lower bound provided by
Theorem 2.1 to give a sharp bound for constant CðKÞ. For the 2D case, an optimal bound for CðKÞ is obtained as
CðKÞ 6 0:1893h.

The optimal estimation is done in two steps. First, we evaluate CðKÞ for several reference elements by verified computa-
tion. Second, the variation of constant CðKÞ corresponding to the perturbation of reference elements is estimated by theo-
retical analysis.

4.1. Evaluation of CðKÞ for reference elements

Given an element K, the edges of which are denoted by e1; e2 and e3, recall the definition of VeðKÞ in (16). Define the
eigenvalue problem for CðKÞ: Find u 2 VeðKÞ and k > 0 such that
Z

K
ru � rv dx ¼ k

Z
K

uv dx 8v 2 VeðKÞ: ð21Þ
Let k1 6 k2 . . . be the eigenvalues of (21). Then CðKÞ is given by k�1=2
1 . Define a Raviart–Thomas FEM space Vh

e over a regular

triangulation Th of K:
Vh
e :¼ fvhjvh is linear on each element T of Th; vh is continuous on mid-points of interior edges;

Z
ei

vhds

¼ 0; i ¼ 1;2;3g ð22Þ
The eigenvalue problem in Vh
e is: Find uh 2 Vh

e and kh > 0 such that
X
T2Th

Z
T
ruh � rvh dx ¼ kh

Z
K

uhvh dx 8vh 2 Vh
e : ð23Þ
From Theorems 2.1 and 3.2, it is known that the first eigenvalue k1 of (21) and the first eigenvalue k1;h of (23) have the
relation:
k1 P k1;h= 1þ ð0:346hÞ2k1;h

� �
:

4.2. Variation of CðKÞ on perturbation of elements

Suppose the three vertices of a triangle element K are O ¼ ð0;0Þ; A ¼ ð1;0Þ, and B ¼ ða; bÞ. We will find the maximum
value of CðKÞ for all possible B such that jOBj 6 1 and jABj 6 1. Due to the symmetry of the parameters a and b, we only con-

sider the case that a P 1=2 and a2 þ b2
6 1; see Fig. 2.

First, we consider the dependency of CðKÞ on the y-coordinate of B.

Theorem 4.1. For fixed x-coordinate of B, the constant CðKÞ is a monotonically increasing on the y-coordinate of vertex B.
Therefore, the maximum value of CðKÞ must be taken when B is on the arc such that r ¼ 1; h 2 ½0;p=3�.
Proof. Denote by ~K the triangle with three vertices O ¼ ð0;0Þ; A ¼ ð1;0Þ, and ~B ¼ ða; bþ �Þ (� > 0). Consider the transform
from K to ~K: ðx; yÞ 2 K ! ð~x; ~yÞ ¼ ðx; ðbþ �Þ=byÞ 2 ~K. Let a ¼ ðbþ �Þ=bð> 1Þ. Notice that for v over ~K ,
kvk2
0;~K ¼ a2kvk2

0;K ; krvk2
0;~K ¼ a2 @v

@x












2

0;K
þ 1

a2

@v
@y












2

0;K

 !
6 a2krvk2

0;K :
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Thus,
Please
Comp
Cð~KÞ ¼ sup
v2Veð~KÞ

kvk0;~K

krvk0;~K
P sup

v2VeðKÞ

kvk0;K

krvk0;K
¼ CðKÞ:
Therefore, CðKÞ is monotonically increasing on the y-coordinate of B. h

From Theorem 4.1, we only need to consider the case B ¼ ðcos h; sin hÞ; 0 < h 6 p=3. Next, we consider the perturbation of
CðKÞ along h direction.

Theorem 4.2. For 0 < h < p=3, let ~B ¼ ðcosðhþ sÞ; sinðhþ sÞÞ be a perturbation of B ¼ ðcos h; sin hÞ. Then, for s < 0 and
hþ s P 0,
Cð~KÞ 6 cosðh=2þ s=2Þ
cosðh=2Þ CðKÞ:
For s > 0 and hþ s 6 p=3, we have
Cð~KÞ 6 sinðh=2þ s=2Þ
sinðh=2Þ CðKÞ:
Proof. The transform that maps ðx; yÞ in K ¼ OAB to ð~x; ~yÞ in ~K ¼ OA~B is
~x
~y

� �
¼ Q

x

y

� �
; with Q ¼

1 cosðhþ sÞ � cos hð Þ= sin h

0 sinðhþ sÞ= sin h

� �
:

Thus, ðux;uyÞ ¼ ðu~x;u~yÞQ and
kminðQQTÞ � v2
~x þ v2

~y

� �
6 v2

x þ v2
y

� �
6 kmaxðQQTÞ � v2

~x þ v2
~y

� �
;

where kminðQQTÞ and kmaxðQQTÞ denote the minimum and maximum eigenvalues of QQT , respectively. For s < 0, we have
kminðQQTÞ ¼ sin2ðh=2þ s=2Þ
sin2ðh=2Þ

; kmaxðQQ TÞ ¼ cos2ðh=2þ s=2Þ
cos2ðh=2Þ :
Notice that dx dy ¼ sin h= sinðhþ sÞ d~x d~y. Thus, for s < 0,
Cð~KÞ ¼ sup
v2Veð~KÞ

kvk0;~K

krvk0;~K
6

cosðh=2þ s=2Þ
cosðh=2Þ sup

v2VeðKÞ

kvk0;K

krvk0;K
:

Similarly, if s > 0 and hþ s 6 p=3,
Cð~KÞ 6 sinðh=2þ s=2Þ
sinðh=2Þ CðKÞ: �
4.3. Verification of upper bound for CðKÞ

The approximate computation results imply that CðKÞ is not monotone for h 2 ð0;p=3� and the maximum value is taken at
h ¼ p=3. In this sub-section, we prove that CðKÞ 6 0:1893 for all h 2 ð0;p=3�.
cite this article in press as: X. Liu, A framework of verified eigenvalue bounds for self-adjoint differential operators, Appl. Math.
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Define hi and the perturbation si as follows:
Please
Comp
hi ¼ p=3 	
i 	 0:02 i ¼ 1; . . . ;48
0:95þ 0:05ð1� 2i�50Þ; i ¼ 49; . . . ;59
1 i ¼ 60

8><
>: ð24Þ
The perturbation si is selected as follows
s1 ¼ h1; si ¼ hi � hi�1; i ¼ 2; . . . ;60: ð25Þ
Then, we have, ð0;p=3� � [60
i¼1ðhi � si; hi�. Next, we bound CðKÞ in two steps.

(a) Evaluate the constants for each hi defined in (24) by using a non-conforming FEM with a rough bound for Ch as
Ch 6 0:384h.

(b) For each hi, calculate the range of constant CðKÞ for ðhi � si; hi� by Theorem 4.2.

The computation is executed with a triangulation h ¼ 1=64; see Fig. 3 for a sample mesh with h ¼ 1=8. To bound the
rounding error in the floating number computation, we use INTLAB library developed by Rump [21], a MATLAB toolbox
for interval arithmetic computation. The method of Behnke [3] is adopted to give verified bounds for eigenvalues of the
generalized matrix eigenvalue problem. Thus the computation bounds for the constants are guaranteed results.

Fig. 4 displays the upper bound of CðKÞ for each ðhi � si; hi�. The x-coordinate is the angle size of \AOB, which varies in
ð0;p=3�, and the y-coordinate is the value or upper bounds of CðKÞ. Verified computation results show that for each
ðhi � si; hi�;CðKÞ has an upper bound as CðKÞ 6 0:18928. For h ¼ p=3, by using conforming FEMs, we have CðKÞP 0:1890.
Also, on ð0; 0:02p�; CðKÞ has an upper bound to be CðKÞ 6 0:1888.

5. Computation results over an L-shaped domain

In this section, we apply Theorem 2.1 to the eigenvalue problem of Laplacian over an L-shaped domain. Both the uniform
mesh and the non-uniform mesh are used for eigenvalue bounds computation. Note that the mesh size h is defined by the
longest edge length of a triangulation. The left one in Fig. 5 is a sample uniform mesh with h ¼

ffiffiffi
2
p

=4. The non-uniform mesh
is a geometrically graded one: near the re-entrant corner of domain, the diameter of K, denoted by hðKÞ, is about
hðKÞ ¼ Oðr1=3Þ, where r is the distance of the element K to the corner.
Fig. 3. Triangulation of triangle OAB (B ¼ ðcos p=6; sin p=6Þ) with h ¼ 1=8.

Fig. 4. Point-wise evaluation of CðKÞ for each hi and the upper bound of CðKÞ for h 2 ðhi � si; hi�.
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The lower bounds for the leading 5 eigenvalues are obtained by using Theorem 2.1, along with the value of Ch taken as
Ch ¼ 0:1893h.

We also display the lower bounds by using conforming linear FEMs from [15]. For a uniform mesh with h ¼
ffiffiffi
2
p

=4, [15]
shows that the constant Ch for the projection error estimation is Ch ¼ 0:00348; for the same non-uniform mesh as in Liu and
Oishi [15], Ch ¼ 0:0337 is used for the results in Table 3.

By comparing the results of non-conforming FEMs and conforming FEMs in Tables 1–3, we can see that the lower bounds
based on non-conforming FEMs give better results. Moreover, to give explicit value of Ch for the conforming FEM, we need to
solve an eigenvalue problem with dense matrices, which is quite time-consuming work. But, for the Crouzeix–Raviart FEM,
the value of constant Ch ¼ 0:1829h is available only if the mesh size h is known.
Fig. 5. Uniform and non-uniform meshes for an L-shaped domain.

Table 1
Results of nonconforming FEM (uniform mesh with h ¼

ffiffiffi
2
p

=32; Ch ¼ 0:00837).

ki Lower bound Approx. Exact. ReErr

1 9.6090 9.6155 9.63972 0.0032
2 15.1753 15.1915 15.1973 0.0014
3 19.7067 19.7339 19.7392 0.0016
4 29.4395 29.5003 29.5215 0.0028
5 31.7618 31.8326 31.9126 0.0047

Table 2
Results of conforming FEM (uniform mesh with h ¼

ffiffiffi
2
p

=32; Ch ¼ 0:0348).

ki Lower bound Exact Upper bound ReErr

1 9.5578 9.63972 9.6699 0.008
2 14.949 15.1973 15.225 0.016
3 19.323 19.7392 19.787 0.021
4 28.599 29.5215 29.626 0.031
5 30.859 31.9126 32.058 0.033

Table 3
Results of FEMs on non-uniform mesh (total 3748 elements).

ki Non-conforming FEM (Ch ¼ 0:0163) Conforming FEM (Ch ¼ 0:0337)

Lower Approx. ReErr Lower Upper ReErr

1 9.6033 9.6277 0.0038 9.5284 9.6592 0.0116
2 15.1204 15.1811 0.0051 14.9107 15.2335 0.0189
3 19.6091 19.7113 0.0066 19.2619 19.8041 0.0242
4 29.2378 29.4656 0.0096 28.4643 29.6645 0.0358
5 31.5741 31.8398 0.0106 30.6863 32.0856 0.0384
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6. Summary

In this paper, we propose a universal framework that provides lower eigenvalue bounds for the self-adjoint eigenvalue
problems. By adopting the non-conforming finite element, the eigenvalue bounds of Laplacian over domain of general shapes
can be easily obtained. A disadvantage about the usage of non-conforming FEM is that, the good property that the projection
operator Ph is just a locally defined interpolation operator Ph cannot be expected for general elliptic differential operators.
Thus, one need to pay more efforts to the explicit error estimation of Ph. Another choice is to apply the homotopy method
and take the eigenvalue problem of �D as the base problem.

In the future work, we will also apply the framework in Theorem 2.1 to discuss the eigenvalue problems of the
Biharmonic operator, Stoke’s operator and Maxwell’s operators.
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Appendix A

In this appendix, we give two lemmas that have been used in the proof for Theorem 3.2 and Theorem 3.4.

Lemma 6.1. Let the nodes of a triangle K be A; B and C, and the longest edge length of K be h. Then, the following inequality holds
(see Fig. 6)
1 The
without

Please
Comp
min
P2K

maxðjPAj; jPBj; jPCjÞ 6
ffiffiffi
3
p

3
h:
Moreover, the equality holds only for a regular triangle with P being the circumcenter of K.
Proof. To give a concise expression, define f ðK; PÞ :¼maxðjPAj; jPBj; jPCjÞ. The proof is given in two steps.
Step 1: Given a triangle K. Suppose P0 minimizes f ðK; PÞ, i.e.,
min
P2K

maxðjPAj; jPBj; jPCjÞ ¼ f ðK; P0Þ: ð26Þ
Next, by using the method of reduction to absurdity, we show that1

(a) If P0 is an interior point, then P0 is the circumcenter of K.
(b) If P0 is on the boundary of K, then P0 is the midpoint of the longest edge.

Let us consider the case that P0 is an interior point. Without loss of generality, we assume jP0AjP jP0BjP jP0Cj. Suppose
jP0Aj > maxðjP0Bj; jP0CjÞ. Move P0 toward A along the direction perpendicular to BC. Then, we can have P0 2 K such that
jP0Aj > jP0Aj > maxðjP0Bj; jP0CjÞ > maxðjP0Bj; jP0CjÞ;
point P0 is called by proximity point of A; B and C in Rademacher and Schoenberg [20], and properties like (a) and (b) of P0 are stated therein but
a proof.
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which implies f ðK; P0Þ gives a smaller value than f ðK; P0Þ, leading to a contradiction to the definition of P0. Similarly, suppose
jP0Aj ¼ jP0Bj > jP0Cj. Then f ðK; PÞ can be smaller by moving P toward edge AB along the direction perpendicular to AB, which
is also a contradiction. Thus jP0Aj ¼ jP0Bj ¼ jP0Cj.

For the case P0 2 @K , without loss of generality, suppose P0 2 AB. First, we declare jP0Cj 6 maxðjP0Aj; jP0BjÞ. If not so, then
f ðK; P0Þ ¼ jP0Cj. Move P0 toward to C along the direction perpendicular to AB, and a smaller value f ðK; PÞ is possible, which is
a contradiction. Next, the equality jP0Aj ¼ jP0Bj holds from analogous argument using perturbation. Notice that
jP0Aj ¼ jP0BjP jP0Cj implies that K is an obtuse-angle triangle or a right triangle and AB is the longest edge.

Step 2: We show that among all triangles of arbitrary shapes, a regular triangle K gives the maximum value for
Please
Comp
gðKÞ :¼min
P2K

maxðjPAj; jPBj; jPCjÞ=h: ð27Þ
For the triangle that has P0 on boundary, it is easy see the value of (27) is 1=2. Next, we only consider the case that P0 is an
interior point of K. Moreover, K should be an acute triangle. Let the triangle K0 be the one optimizing gðKÞ. If jABj > jACj, then
we can keep the length of BC and move C to C0 such that jAC0 j > jACj while jAC0j 6 jABj; see Fig. 7. For the new triangle
K 0 ¼ ABC 0, it is easy to see gðK 0Þ > gðK0Þ, which also leads to a contradiction. Thus, jABj ¼ jBCj ¼ jACj. For such a K0, we have

gðK0Þ ¼
ffiffi
3
p

3 h. h

With analogous argument, we can have a similar result as Lemma 6.1 in the 3D case, for which only the sketch of the
proof is given.

Lemma 6.2. For any tetrahedron K, the vertices of which are denoted by A; B; C; D, let h be the longest edge length. Then,
min
P2K

maxðjPAj; jPBj; jPCj; jPDjÞ 6
ffiffiffi
6
p

4
h:
Moreover, the equality holds only for a regular tetrahedron K with P selected as the circumcenter of K; see Fig. 8.
Proof. Let us introduce the function f ðK; PÞ ¼maxðjPAj; jPBj; jPCj; jPDjÞ. The proof is given in two steps.
Fig. 7. Perturbation of vertex C for K.

Fig. 8. Tetrahedron element K.
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Step 1: For any tetrahedron K, let P0 be the point that minimizes f ðK; PÞ. Then there are two possibilities of P0:

(a) P0 is an interior point of K. (b) P0 is on one of the surfaces of K.

For case (a), P0 must be the circumcenter of K, i.e., jP0Aj ¼ jP0Bj ¼ jP0Cj ¼ jP0Dj. Otherwise, we can take a perturbation of
P0 to have a smaller value of f ðK; PÞ, which will lead to a contradiction with the assumption of P0. Without loss of generality,
assume jP0AjP jP0BjP jP0CjP jP0Dj. The perturbation of P0 can be done by considering three cases.

1. jP0Aj > maxðjP0Bj; jP0Cj; jP0DjÞ: move P0 toward BCD along the direction perpendicular to BCD.
2. jP0Aj ¼ jP0Bj > maxðjP0Cj; jP0DjÞ: move P0 toward segment CD along the direction perpendicular to AB and CD.
3. jP0Aj ¼ jP0Bj ¼ jP0Cj > jP0Dj: move P0 toward D along the direction perpendicular to ABC.

For case (b), suppose P0 2 ABC. By using the technique of perturbation, we can show that jP0Dj 6 maxðjP0Aj; jP0Bj; jP0CjÞ
and P0 also gives the minimal value of maxðjPAj; jPBj; jPCjÞ, i.e.,
Please
Comp
jP0Dj 6 min
P2ABC

maxðjPAj; jPBj; jPCjÞ ¼ maxðjP0Aj; jP0Bj; jP0CjÞ:
Step 2: We show that a regular tetrahedron gives the maximal value of
min
P2K

f ðK; PÞ: ð28Þ
For tetrahedra in case (b), the value of (28) is as maximal as
ffiffi
3
p

3 hð<
ffiffi
6
p

4 hÞ. Therefore, we only need to consider the tetrahedron
in case ðaÞ. Suppose K0 maximizes the value of minP2K f ðK; PÞ among all kinds of tetrahedra, while K0 is not a regular tetra-
hedron. Suppose edge e of K0 has its length less than h. Then we can make a perturbation of K0 to make e longer while keep-
ing the length for all other edges. This way, we can obtain a new simplex K 0 such that minP2K 0 f ðK 0; PÞ > minP2K0 f ðK0; PÞ, which
is a contradiction to the assumption of K0. For a regular tetrahedron K, it is easy to calculate the distance of the circumcenter

to each vertex is
ffiffi
6
p

4 h. h
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