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Abstract We consider an explicit estimation for error constants from two basic con-
stant interpolations on triangular finite elements. The problem of estimating the inter-
polation constants is related to the eigenvalue problems of the Laplacian with certain
boundary conditions. By adopting the Lehmann–Goerisch theorem and finite element
spaces with a variable mesh size and polynomial degree, we succeed in bounding
the leading eigenvalues of the Laplacian and the error constants with high precision.
An online demo for the constant estimation is also available at http://www.xfliu.org/
onlinelab/.
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Finite element method · Lehmann–Goerisch theorem · hp-FEM
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1 Introduction

The finite element method (FEM) has received considerable attention from both math-
ematicians and engineers in the past decades. This is due to its sound mathematical
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Fig. 1 Triangle K

foundations, such as a priori and a posteriori error estimations, as well as its practicality
in solving problems in industry.

In the classical error analysis of FEM, besides the discretization parameter h, various
interpolation constants appear in the final error estimation. Usually, the boundedness of
such constants is enough for a qualitative error analysis. However, in many cases, such
as adaptive FEM and the associated computations, such constants must be evaluated as
precisely as possible [1,20]. In this paper, we propose an algorithm that gives a high-
precision bound for the interpolation constants appearing in two constant interpolations
over a triangular finite element. The algorithm has the potential to be extended to
interpolations of higher order.

Let K be any triangle with vertices p1, p2, and p3. The edges of K are denoted by
e1, e2, and e3 (see Fig.1). Let L2(K ) and H1(K ) be the standard Lebesgue and Sobolev
function spaces over K . We consider two constant interpolations �

(0)
1 and �

(0)
2 :

�
(0)
1 : For u in L2(K ), �

(0)
1 u is a constant such that

�
(0)
1 u =

∫

K

udx/|K | (|K | : area of K) ;

�
(0)
2 : For u in H1(K ), �

(0)
2 u is a constant such that

�
(0)
2 u =

∫

e1

uds/|e1| (|e1| : length of e1).

The following interpolation error estimation is well-known. For u ∈ H1(K ),

‖u − �
(0)
1 u‖0 ≤ C1(K )|u|1, ‖u − �

(0)
2 u‖0 ≤ C2(K )|u|1, (1)

where ‖ · ‖0 and | · |1 are the L2 norm and H1 semi-norm, respectively; C1(K ) and
C2(K ) are constants depending only on the shape of triangle K . The boundedness
of constants C1 and C2 is assured by the embedding theorem of Sobolev spaces; see,
e.g., [3]. In particular, the constant C1(K ), as one kind of Poincaré constant, has been
rigorously investigated. The constant C2(K ) was proposed by Babuška and Aziz [3]
to discuss the maximum inner angle condition for the P1 interpolation. When K is a
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Guaranteed high-precision estimation for P0 interpolation constants

unit isosceles right triangle and e1 is the leg of the right angle, the constant C2(K ) is
called the Babuška–Aziz constant [13,18].

There are several formulas that give upper bounds for these constants over an
arbitrary triangle. In [18], an upper bound is given as follows:

C1(K ) ≤ L

π

√
1 + | cos θ |, C2(K ) ≤ 0.493L

√
1 + | cos θ |,

where L is the second-longest edge length and θ is the maximum inner angle. Another
formula for a bound on C1 was given by Laugesen and Siudeja [16]:

C1(K ) ≤ Diam(K )/ j1,1 (Diam(K ) : the diameter of K ),

where j1,1 ≈ 3.8317 denotes the first positive root of the Bessel function J1. In
[15], Kobayashi reports a new formula for bounding several interpolation constants,
although a full paper is not yet available. Kobayashi’s result for C1 is

C1(K ) ≤
√

|e1|2 + |e2|2 + |e3|2
28

− |K |4
|e1|2 |e2|2 |e3|2 ,

where |ei | is the length of edge ei .
Recently, there have been several results on the concrete bounds for these constants.

For the constant C2(K ), Nakao and Yamamoto [20,21] developed a slightly complex
algorithm to verify the existence of a solution for a related boundary value problem,
and then enclosed the Babuška–Aziz constant in the interval [0.492, 0.493]. In [13],
Kikuchi and Liu proved that the Babuška–Aziz constant is equal to the maximum
positive zero point of 1/c + tan 1/c = 0; their numerical computations show that
this value is 0.4929124517549 · · · . However, the reflection technique used in [13]
cannot be extended to triangles of general shape. In [18], Liu and Kikuchi develop an
algorithm based on the finite element method to find bounds for the constants C1(K )

and C2(K ) on a general triangle. Although a refined mesh will improve these bounds,
the huge matrices produced by the dense mesh are not easy to process.

The problem of estimating the interpolation error constants C1 and C2 is equivalent
to solving the eigenvalue problem of the Laplacian with certain boundary conditions.
In this paper, by assembling several known theorems and methods, we provide a new
framework to give high-precision bounds for the eigenvalues related to the interpola-
tion constants:

– Firstly, in Sect.3 and Sect.4, by adopting linear finite element methods, we obtain
rough bounds for the leading eigenvalues of the Laplacian, with particular emphasis
on the a priori error estimation of the projection operator associated with non-
homogeneous boundary conditions. Specifically, a condition required to obtain the
rough eigenvalue bounds in [19] is removed here by means of a new proof; see
Theorem 4 and Remark 2.

– Secondly, in Sect.5, based on the rough bounds for the leading eigenvalues, we use
the mixed FEM and the conforming FEM of high degree, along with the Lehmann–
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Goerisch theorem, to obtain high-precision bounds for the interpolation constants.
Only very light computation is needed.

The features of our proposed algorithm can be summarized as follows.

– An FEM that employs elements of variable mesh size (h) and polynomial degree
(p) (hp-FEM) (see, e.g., [12]) is adopted to rapidly approximate the eigenfunction.
The high-precision upper bound for the eigenvalues can be obtained directly from
the Rayleigh–Ritz method for a suitable choice of (p, h).

– Although it is not easy to give an explicit error estimation for the eigenvalue approx-
imation using hp-FEM, adopting the Lehmann–Goerisch theorem overcomes this
difficulty, and makes it possible to give accurate lower bounds for the eigenvalues.

The paper is constructed as follows: In Sect.2, we provide some preliminary back-
ground and introduce finite element spaces. In Sect.3, an explicit a priori error estimate
is derived for the projection operator. In Sect.4, we present the theorem that gives rough
bounds for the eigenvalues related to the interpolation constants. In Sect.5, by applying
the Lehmann–Goerisch theorem, we propose an algorithm for high-precision bounds
for the interpolation constants. The final section gives some computational results.

2 Preliminaries

This discussion assumes the framework of Sobolev spaces. The space L2(K ) contains
the real square integrable functions over K , and Hn(K ) (n = 1, 2, . . .) are the n-th
order Sobolev spaces of a function in L2(K ) up to its nth derivative. We denote the
L2 norm of v ∈ L2(K ) as ‖v‖0, and denote by |v|k and ‖v‖k the semi-norm and norm
of Hk(K ), respectively. Integration (·, ·) is the inner product in L2(K ) or (L2(K ))2.
The subspace H1

0 (K ) of H1(K ) contains all functions of H1(K ) that vanish on the
boundary of K .

Note that
∫

K (u −�
(0)
1 u)dx = 0 and

∫
e1

(u −�
(0)
2 u)ds = 0. The optimal constants

in (1) are characterized by the infimums of the Rayleigh quotient R over spaces V1
and V2,

C−2
i (K ) = inf

v∈Vi
R(v) (i = 1, 2), R(v) := |v|21

‖v‖2
0

, (2)

where

V1 :=
⎧⎨
⎩v ∈ H1(K )|

∫

K

vdx = 0

⎫⎬
⎭ , V2 :=

⎧⎨
⎩v ∈ H1(K )|

∫

e1

vds = 0

⎫⎬
⎭ . (3)

Therefore, the determination of C1(K ) and C2(K ) is equivalent to solving the
following eigenvalue problem:

Find u ∈ V and λ ∈ R s.t. (∇u,∇v) = λ(u, v) ∀v ∈ V, (4)
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Guaranteed high-precision estimation for P0 interpolation constants

where V is taken as V := V1 for C1(K ) and V := V2 for C2(K ). The eigenpair (u, λ)

of the above problem, after scaling u, satisfies the following differential equations:

− �u = λu in K ;
{

∂u/∂n = c, on e1

∂u/∂n = 0, on e2, e3
, (5)

where c = 0 for V := V1 and c = 1 for V := V2 in the weak formula (4).

Remark 1 The eigenvalue problem for i = 1 is the classical Laplacian problem with
the Neumann condition. As the eigenvalue problem in the case i = 2 is not so well
known, we describe in detail how to obtain the boundary condition of the eigenfunc-
tions. By taking v ∈ H1

0 (K )(⊂ V2), we have −�u = λu in the sense of a distribution.

Further, for any v ∈ H1(K ), we have (I − �
(0)
2 )v ∈ V2. Thus,

(∇u,∇(I − �
(0)
2 )v) = (λu, (I − �

(0)
2 )v).

By applying Green’s theorem to the left-hand side of the above equation, we have

∫

e1∪e2∪e3

∂u

∂n
(I − �

(0)
2 )vds = 0.

By selecting v ∈ H1(K ) that vanishes on e1 and e2, the arbitrariness of v on e3 forces
∂u/∂n = 0 on e3. Similarly, we have ∂u/∂n = 0 on e2. Thus,

0 =
∫

e1

∂u

∂n
(I − �

(0)
2 )vds =

∫

e1

(I − �
(0)
2 )

∂u

∂n
vds ∀v ∈ H1(K ).

Due to the arbitrariness of v on e1, we see (I − �
(0)
2 )∂u/∂n = 0 on e1, i.e., ∂u/∂n is

a constant on e1. Moreover, the integration of −�u = λu on K gives

∫

K

λu dx =
∫

K

−�udx =
∫

e1∪e2∪e3

∂u

∂n
ds = ∂u

∂n
|e1|.

Consider the boundary value problem:

Given f ∈ L2(K ), find u ∈ V s.t. (∇u,∇v) = ( f, v) ∀v ∈ V .

The existence and uniqueness of the solution is assured by the Lax–Milgram theorem.
The operator that maps f ∈ L2(K ) to the solution u ∈ H1(K ) is a self-adjoint
compact operator. Thus, from the spectral theorem, we know that (4) has a spectrum
of infinitely many eigenvalues (see, e.g., [9])

0 < λ1 ≤ λ2 ≤ λ3 · · · .
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It is easy to see that, for each i = 1, 2, the interpolation constants Ci (K ) are simply
the inverse of the square root of the first eigenvalue of (4) or (5).

The estimation for the first eigenvalue of (4), based on FEM, has already been
proposed in [18], where only a rough bound of C1 and C2 is available. As we will see
in Sect. 5, the lower bound of the second eigenvalue can help to improve the bound
for the first eigenvalue. Therefore, we extend the technique in [18] to consider the
estimation of the leading eigenvalues of (4).

We now introduce several finite element spaces that will be used. Let T h be the
triangulation of the polygonal domain �. In this paper, � is nothing but a triangle K .
We denote by Pn(T ) the set of polynomials over element T whose order is not greater
than n.

– Ld
h (d > 0): The C0 Lagrange finite element space of order d.

Ld
h := { v ∈ H1(�) | v|T ∈ Pd(T ), T ∈ T h}

– Xd
h (d ≥ 0): The piecewise polynomial functions of order up to d.

Xd
h := { v ∈ L2(�) | v|T ∈ Pd(T ), T ∈ T h}

– 	d
h (d ≥ 0): The Brezzi–Douglas–Marini finite element of order d ([8]).

	d
h := { ph ∈ (L2(�))2 | ph |T ∈ (Pd(T ))2, T ∈ T h;

ph · ne is continuous across interior edges e.}

Recall that div(	d
h ) = Xd−1

h (refer to Chapter IV.1 of [7]).
The Lagrange element of order 1, i.e., L1

h , contains all the continuous piecewise
linear functions whose degree of freedom is the function value on each vertex of the
mesh.

The eigenvalue problem (4) can be solved approximately by applying the Lagrange
element Ld

h : For i = 1, 2, find uh ∈ Ld
h ∩ Vi and λh ∈ R s.t.

(∇uh,∇vh) = λh(uh, vh) ∀vh ∈ Ld
h ∩ Vi . (6)

The above problem is just a generalized matrix eigenvalue problem, the solution of
which can be exactly enclosed by an interval vector using interval arithmetic compu-
tation (see, e.g., [5]).

The Lagrange element space Ld
h with high order d can accurately approximate the

exact eigenvalues, although it will be more difficult to give an explicit error estimation.
In our proposed framework, we will first apply the Lagrange element L1

h to obtain a
rough lower bound for the eigenvalues. Second, we solve the eigenvalue problem (6)
in Ld

h for an appropriate d and mesh size h. With the help of Lehmann–Goerisch’s
theorem, a high-precision bound on these eigenvalues is then achieved. The finite ele-
ment spaces 	d

h and Xd
h will play an important role in applying Lehmann–Goerisch’s

theorem.
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Guaranteed high-precision estimation for P0 interpolation constants

3 Explicit error estimation for the projection to L1
h

To give an explicit bound for the eigenvalue based on L1
h , we introduce a projection

Ph,i : Vi → L1
h ∩Vi (i = 1, 2) along with an explicit error estimation. For the purpose

of simple notation, we denote L1
h ∩ Vi by Vh,i (i = 1, 2).

For any u ∈ Vi (i = 1, 2), the projection Ph,i u ∈ Vh,i is defined as

(∇(u − Ph,i u),∇vh) = 0 ∀vh ∈ Vh,i . (7)

Note that, for each i , the projection Ph,i does not change if the range of the test function
vh changes from Vh,i to Vh .

For each i = 1, 2, assume ui ∈ Vi and uh,i ∈ Vh,i are the solutions of the following
two boundary problems, respectively: for f ∈ L2(K )

(∇ui ,∇v) = ( f, v), ∀v ∈ Vi , (8)

(∇uh,i ,∇vh) = ( f, vh), ∀vh ∈ Vh,i . (9)

The existence and uniqueness of the solutions for (8) and (9) are easily seen using the
Lax–Milgram theorem.

The explicit error estimation for (u1 − Ph,1u1) is well known, as quoted in Theorem
1. The error estimation for (u2 − Ph,2u2) can be found in [18], although the argument
is somewhat lengthy. In Theorem 2, we give the proof in a concise manner.

P1 Interpolation function and error estimation
Before discussing the projection error estimation, let us introduce the P1 interpola-

tion operator �
(1)
h over the triangulation T h . This has an important role in constructing

an explicit a priori error estimation for the projection Ph,i .
For u ∈ H2(�), �

(1)
h u ∈ L1

h is the Lagrange interpolation of u, that is,

(�
(1)
h u) (pi ) = u(pi ), for each node pi of triangulation T h . (10)

The computable interpolation error estimation for �
(1)
h has been comprehensively

investigated (e.g., [14,15,18]):

|u − �
(1)
h u|1 ≤ C3h|u|2 for u ∈ H2(�), (11)

where h is the mesh size to be specified. The constant C3 is defined as follows:

C3 := max
T ∈T h

C3(T )/h; C3(T ) := sup
v∈H2(T ),v=0

on vertices of T

|v|1,T

|v|2,T
. (12)

For each element T of T h , letting L be the second-longest edge length, θ the
maximum angle, and αL the smallest edge length (see Fig. 2), the result in Liu and
Kikuchi [18] gives
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Fig. 2 Configuration of triangle
element K by (α, θ, L)

C3(T ) ≤ 0.493L
1 + α2 + √

1 + 2α2 cos 2θ + α4√
2

(
1 + α2 − √

1 + 2α2 cos 2θ + α4
) .

When T h is the uniform mesh with isosceles right triangle elements, we can take:

h = leg length of right triangle element, C3 = 0.493.

Now, we continue with the projection error estimation. First, we consider the case
of Ph,1. The following theorem can be found in classical textbooks, see, e.g., [24].

Theorem 1 Let u ∈ V1 and uh = Ph,1u ∈ Vh,1 be the solutions of (8) and (9) in the
case i = 1, respectively. The error estimation is given as

|u−Ph,1u|1 ≤ Mh,1‖ f ‖0, ‖u−Ph,1u‖0 ≤ Mh,1|u−Ph,1u|1 ≤ M2
h,1‖ f ‖0. (13)

where Mh,1 = C3h.

For the case i = 2, we summarize one result of [18] to give a concise proof.

Theorem 2 Let u ∈ V2 and uh = Ph,2u ∈ Vh,2 be the solutions of (8) and (9) in the
case i = 2, respectively. Then, the error estimation is given as

|u−Ph,2u|1 ≤ Mh,2‖ f ‖0, ‖u−Ph,2u‖0 ≤ Mh,2|u−Ph,2u|1 ≤ M2
h,2‖ f ‖0, (14)

where Mh,2 :=
(

2 + √
2/2

)
C3h.

Proof First, we show that |u|2 ≤
(

2 + √
2/2

)
‖ f ‖0. We assume that the vertex p1 of

K is (x1, y1). As suggested by [20], we introduce a quadratic function f1

f1(x, y) := |e1|[(x − x1)
2 + (y − y1)

2]/(4|K |).

It is easy to see that ∂ f1/∂n ≡ 1 on e1 and ∂ f1/∂n ≡ 0 on e2 and e3. Because the
solution u ∈ V2 has the property that

∂u/∂n ≡ ( f, 1)/|e1| on e1, ∂u/∂n = 0 on e2, e3.
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Guaranteed high-precision estimation for P0 interpolation constants

We see that û := u − |e1|−1( f, 1) f1 satisfies the homogeneous Neumann boundary
condition and |û|2 = ‖�û‖0 (c.f. Theorem 4.3.1.4 of [11]). Note that ‖� f1‖0 =√

2| f1|2 = |e1|/√|K |. Thus, using the triangle and Schwarz’s inequalities,

|u|2 ≤ ‖�u‖0 + |e1|−1|( f, 1)|(| f1|2 + ‖� f1‖0)

≤
(

2 + √
2/2

)
‖ f ‖0.

Second, we give the error estimation by introducing a new minimizing principle.
Define another projection Q : H1(K ) → Vh,2 such that

Qv = v − |e1|−1
∫

e1

vds.

Therefore, (∇u − ∇uh,∇(Qvh)) = 0 for any vh ∈ L1
h . Further, noticing that

∇vh = ∇(Qvh), we have (∇u − ∇uh,∇vh) = 0 for any vh ∈ Lh
1. Hence,

|u − uh |1 = min
vh∈L1

h

|u − vh |1 ≤ |u − �
(1)
h u|1 ≤ C3h|u|2 ≤ Mh,2‖ f ‖0.

The estimation for the L2 norm can be obtained by applying Nitsche’s technique.

4 Rough eigenvalue bounds based on L1
h

This section is devoted to obtaining an estimation for the approximate eigenvalues
of (6).

The discussion will be shaped in a parallel way. Let (V, Vh, Ph) be (V1, Vh,1, Ph,1)

or (V2, Vh,2, Ph,2). Denote by λ1 ≤ λ2 ≤ · · · the stationary values of the Rayleigh
quotient R over V . Suppose dim(Vh) = n. The finite stationary values of R over Vh

are denoted by λh
1 ≤ λh

2 · · · ≤ λh
n . The associated eigenfunctions {ui } for {λi } are

normalized to form an orthonormal set in L2(�), that is, (ui , u j ) = δi j , where δi j is
Kronecker’s delta.

The qualitative estimation for λh
k is well known (see, e.g., Strang and Fix [24]),

λk ≤ λh
k ≤ λk

(
1 + C sup

v∈Ek ,‖v‖=1
|v − Phv|21

)
, (15)

where Ek is the space spanned by the eigenfunctions {ui }k
i=1. Recall the a priori error

estimation for Ph in Sect. 2,

‖u − Phu‖0 ≤ Mh |u − Phu|1, (16)

where Mh = Mh,i for Ph,i (i = 1, 2). There are other qualitative estimations for
the eigenvalues, but most of them remain as asymptotic bounds, and the concrete
eigenvalue bounds are difficult to obtain (see the survey paper on these theories [4]).
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Using the explicit values of Mh , we will derive the eigenvalue bound formula in [19],
but with a weakened prerequisite condition. First, we give a lemma for the eigenvalue
approximation based on the max–min principle.

Lemma 3 Let vh
1 , . . . , vh

k−1 be any functions of Vh and V h
k−1 := span{vh

1 , · · · , vh
k−1}.

Let V h,⊥
k−1 be the complementary space of V h

k−1 in V . Define λ̃k over L1
h ∩ V h,⊥

k−1 as

λ̃k = min
vh∈Vh∩V h,⊥

k−1

(∇vh,∇vh)

(vh, vh)
.

Thus, we have a lower bound for λk ,

λk ≥ λ̃k/
(

1 + M2
h λ̃k

)
, (17)

where Mh is as in (16).

Proof From the max–min principle, we have

λk = max
W⊂V,dim(W )≤k−1

min
v∈W⊥

(∇v,∇v)

(v, v)
.

Thus, by choosing W := V h
k−1, a lower bound for λk is given by

λk ≥ min
v∈V h,⊥

k−1

(∇v,∇v)

(v, v)
. (18)

For any v ∈ V h,⊥
k−1 , Phv ∈ Vh . Let wh be any function in V h

k−1(⊂ Vh). Then,
(∇v,∇wh) = 0. Thus, (∇ Phv,∇wh) = (∇v,∇wh) = 0, which implies that Phv ∈
Vh ∩ V h,⊥

k−1 . Considering (14) and the definition of λ̃k ,

‖v‖0 ≤ ‖Phv‖0 + ‖v − Phv‖0 ≤ λ̃
−1/2
k ‖∇ Phv‖0 + Mh‖∇(v − Phv)‖0.

Thus,

‖v‖2
0 ≤

(
λ̃−1

k + M2
h

)
(‖∇ Phv‖2

0 + ‖∇(v − Phv)‖2
0) =

(
λ̃−1

k + M2
h

)
‖∇v‖2

0.

Hence, for any v ∈ V h,⊥
k−1 , we have

‖∇v‖2
0/‖v‖2

0 ≥ λ̃k/
(

1 + M2
h λ̃k

)
.

Using (18), we can draw the conclusion in (17).
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Take the subspace V h
k−1 in Lemma 3 to be the space spanned by the eigenfunctions

corresponding to λh
1, . . . , λh

k−1, such that λ̃k = λh
k . We summarize the bounds for the

eigenvalues in the following theorem.

Theorem 4 For each i = 1, 2, let λk and λh
k be the kth eigenvalues of (4) and (6),

respectively. Then, the lower and upper bounds of λk are given by

λh
k /

(
1 + M2

hλh
k

)
≤ λk ≤ λh

k (1 ≤ k ≤ n). (19)

Remark 2 The estimation (19) in Theorem 4 was also obtained by Liu and Oishi [19],
who considered the eigenvalue problem of the Laplacian with a singularity. In [19],
the min–max principle is the starting point for the proof of (19). However, the method
in [19] introduces the additional condition λk M2

h < 1 to make the estimation hold,
which is in fact not necessary considering the proof of Lemma 3.

5 High-precision bounds based on Lehmann–Goerisch’s theorem

As we will see in Sect. 6, the eigenvalue bounds based on the L1
h finite element

method are somewhat rough. To have high-precision bounds, a natural idea is to refine
the mesh and deal with large scale matrices in the computation. Another approach is
to consider utilizing Ld

h with some high degree d. However, it is hard to obtain an
explicit error estimation if d is large. To overcome this difficulty, we introduce the
Lehmann–Goerisch theorem [6,10,17], which uses the a priori rough lower bound for
certain eigenvalues to sharpen the bounds for others.

In this section, let V represent the function space V1 or V2. The high-precision
bound for C1(K ) and C2(K ) can be obtained with the same algorithm.

First, let us quote the Lehmann–Goerisch theorem as follows.

Theorem 5 (Lehmann–Goerisch’s theorem) Assumptions and notation.

A1 D is a real vector space. M and N are symmetric bilinear forms on D; M( f, f ) >

0 for all f ∈ D, f �= 0.
A2 There exist sequences {λi }i∈N and {φi }i∈N such that λi ∈ R, φi ∈ D, M(φi , φk) =

δik for i, k ∈ N,

M( f, φi ) = λi N ( f, φi ) for all f ∈ D, i ∈ N. (20)

N ( f, f ) =
∞∑

i=1

(N ( f, φi ))
2 for all f ∈ D. (21)

A3 X is a real vector space; G : D → X is a linear operator; b is a symmetric
bilinear form on X. b( f, f ) ≥ 0 for all f ∈ X and b(G f, Gg) = M( f, g) for all
f, g ∈ D.

A4 n ∈ N, vi ∈ D for i = 1, . . . , n. wi ∈ X satisfies

b(G f, wi ) = N ( f, vi ) for all f ∈ D, i = 1, . . . , n ; (22)
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A5 ρ ∈ R, ρ > 0. Define matrices as

A0 := (M(vi , vk))i,k=1,...,n , A1 := (N (vi , vk))i,k=1,...,n ,

A2 := (b(wi , wk))i,k=1,...,n ,

AL = A0 − ρ A1, BL = A0 − 2ρ A1 + ρ2 A2;

BL is positive definite. For i = 1, . . . , n, the i th smallest eigenvalue of the eigen-
value problem AL z = μBL z is denoted by μi .

Assertion: For all i , 1 ≤ i ≤ n, such that μi < 0, the interval [ρ −ρ/(1 −μi ), ρ)

contains at least i eigenvalues of (20).

Remark 3 The method based on Lehmann–Goerisch’s theorem can provide lower
bounds for the eigenvalues of (20). Suppose the eigenvalues of (20) are ordered by
λ1 ≤ λ2 ≤ . . . . If ρ is a lower bound of the eigenvalue λN+1, i.e.,

ρ ≤ λN+1, (23)

then we have a lower bound for λN+1−i in the case μi < 0,

ρ − ρ/(1 − μi ) ≤ λN+1−i (1 ≤ i ≤ N ).

Remark 4 Generally, it is not easy to provide the a priori lower bound (23). The homo-
topy method developed by Plum [22] is one approach for finding such a bound. This
method considers a family of eigenvalue problems that connects the objective eigen-
value problem to one with an explicit spectrum, which is called the “base problem.”
The complex manipulation of eigenvalue problems and requirement of a base problem
limit its use in dealing with problems over a general domain.

To obtain high-precision bounds for C1(K ) and C2(K ), we will apply the Lehmann–
Goerisch theorem to sharpen the bounds of the eigenvalues corresponding to the Lapla-
cian. We choose the function spaces and operator G as follows:

D := V, X := (L2(K ))2 , G := ∇,

and assume the bilinear forms to be

M(u, v) := (∇u,∇v), N (u, v) := (u, v), for u, v ∈ H1(T ),

b(u, v) := (u, v) for u, v ∈ (L2(K ))2 .

As we are only concerned with the lower bound of the minimal eigenvalue of problem
(4), we seek ρ satisfying λ1 < ρ ≤ λ2. If the first N eigenvalues are the same, then
we seek ρ such that λN < ρ ≤ λN+1. The lower bound (19) based on the L1

h finite
element provides a good choice of ρ,

ρ := λh
N+1/(1 + M2

hλh
N+1) ≤ λN+1.
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The function vi in the Lehmann–Goerisch theorem is chosen as the approximation,
denoted by ui,h , to the eigenfunction ui from Ld

h ∩ V (1 ≤ i ≤ N ). The function
wi ∈ (L2(K ))2 corresponding to vi , which is not unique, will be selected from 	d

h .
Define by 	d

h,c the subset of 	d
h ,

	d
h,c := {ph ∈ 	d

h | ph · n = 0 on e2, e3; ph · n = c on e1}.

For a fixed approximate eigenvector uh ∈ Ld
h ∩ V , define c0 := ∫

T uhdx/|e1|. Notice
that c0 = 0 for uh ∈ Ld

h ∩ V1. We consider the problem of finding (ph, ρh) ∈
	d+1

h,c0
× Xd

h with

{
(ph, qh) + (ρh, div qh) = 0 ∀qh ∈ 	d+1

h,c0

(div ph, fh) + (uh, fh) = 0 ∀ fh ∈ Xd
h

(24)

The system (24) admits a unique solution (ph, ρh) (c.f., e.g., [2], §IV.1 Prop. 1.1 of
[7]). Moreover, the matrices that present the map from uh to ph and ρh , which is just
the operator G in A3 of Theorem 5, can be exactly enclosed by solving (24) using
interval arithmetic. However, such a matrix representation involves the full matrix,
and an effective algorithm is needed; for a detailed discussion, see [19].

The second equation in (24) implies that div ph + uh = 0. Thus, combining the
boundary condition of ph ∈ 	d+1

h,c0
, it is easy to see that the solution ph satisfies

(ph,∇ f ) = (uh, f ) for all f ∈ V . (25)

Therefore, for each vi := uh,i , the wi corresponding to vi can be taken as the solution
ph of (24) with uh := uu,i .

Remark 5 As (24) is obtained by applying the Lagrange multiplier to the minimization
problem,

min
ph∈	d+1

h,c0
, div ph+uh=0

‖ph‖2
0, (26)

the minimizer ph for (26) (also the solution of (24)) gives the smallest value of ‖ph‖2.
If ρ can be selected as λ1 < ρ ≤ λ2, and the matrices in condition A5 of Lehmann–
Goerisch’s theorem are of dimension 1, it is easy to see that ph gives an optimal lower
bound for the eigenvalue λ1 over all candidates of wi in 	d+1

h,c0
.

Let us summarize the algorithm that gives high-precision bounds for the constants
C(K ) = C1(K ) or C(K ) = C2(K ).

Algorithm 1: high-precision bound for P0 interpolation constant

S1. Solve the eigenvalue problem (6) in L1
h and denote the eigenvalues by λ

(1)
1,h ≤

λ
(1)
2,h ≤ . . .. With a proper mesh size and index N , we can obtain an estimation as

follows:
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λ
(1)
N ,h < ρ := λ

(1)
N+1,h/(1 + M2

hλ
(1)
N+1,h) ≤ λN+1 (27)

S2. For a proper degree d > 1, solve the eigenvalue problem (6) in Ld
h and denote the

eigenvalues by λ
(d)
1,h ≤ λ

(d)
2,h ≤ . . .. Let uh,i be the eigenfunction corresponding

to λ
(d)
i,h .

S3. For each uh,i , i = 1, · · · , N , let wh,i be the solution ph ∈ 	d+1
h of (24) with

uh := uh,i .
S4. Define A0, A1, and A2 with functions uh,i , wh,i , i = 1, . . . , N .

A0 = (
(uh,i , uh, j )

)
i, j=1,...,N , A1 = (

(∇uh,i ,∇uh, j )
)

i, j=1,··· ,N ,

A2 = (
(wh,i , wh, j )

)
i, j=1,...,N ,

AL = A1 − ρ A0, BL = A1 − 2ρ A0 + ρ2 A2.

(Notice that the selection of ρ in (27) satisfies λ
(d)
N ,h ≤ λ

(1)
N ,h < ρ. Thus, −AL is

positive definite.)
S5. Let the eigenvalues of AL = μBL be μ1 ≤ · · · ≤ μN . If BL is positive definite,

then μN < 0 and the lower bound of λ1 in (4) is given by

ρ − ρ/(1 − μN ).

S5. The high-precision bound for C(K ) is given as

(λ
(d)
1,h)−1/2 ≤ C(K ) ≤ (ρ − ρ/(1 − μN ))−1/2 .

6 Computational results and applications

We apply Algorithm 1 to bound the P0 interpolation constants C1(K ) and C2(K )

over a triangle K of different shapes. The triangle K has vertices (0, 0), (1, 0), and
(a, b), where (a, b) will be assigned different values. A sample triangulation of K is
displayed in Fig. 3. Let L(T ) be the second edge length of T ∈ T h ; then, the mesh
size h is defined by the maximal L(T ) over all the elements.

To verify the estimation of the constants, we apply interval arithmetic in the
numerical computations. The method of [5], along with the INTLAB toolbox for
MATLAB [23], is adopted to solve the matrix eigenvalue problem with verified
bounds.

Fig. 3 Triangulation of K (from left to right, h = 0.25, 0.25, 0.25, 0.22)
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First, we give a rough estimate for the leading 3 eigenvalues of (4) based on L1
h .

The lower and upper bounds of the eigenvalues, in the form of intervals, are displayed
in Tables 1 and 2. If λN and λN+1 are not close to each other, then the lower bound of
λN+1, which is underlined in Tables 1 and 2, is chosen as ρ for the purpose of giving
high-precision bounds.

Second, we apply the Lehmann–Goerisch theorem to sharpen the eigenvalue
bounds; see results in Tables 3 and 4. The high-precision bounds are presented in
compact form. For example, 0.492912451797

54 denotes the interval [0.492912451754,
0.492912451797] that encloses the constant C2(K ) for the unit isosceles right triangle
K . We can see, even with a sparse mesh, that high-order finite element spaces can give
dramatically improved bounds.

To see the dependency of the precision on the polynomial degree (p) and mesh size
(h), we estimate the value of C2(K ) with different pairs of (p, h). The vertices of K
are fixed to (0, 0), (1, 0), and (−1/2,

√
3/2). For each p = 1, 2, 3, the mesh size is

taken to be h = 0.433, 0.217, 0.108, and 0.054, whereas for p = 4, 5, 6, only the first
three mesh sizes are considered. In this example, the floating point computations are
performed with fixed rounding-to-nearest mode. The width of the constant bounds,
i.e., the distance between the lower and the upper bounds, is denoted by ‘Err,’ and
their values along with the degrees of freedom (DOF) of L p

h are displayed in Fig. 4.
We can see that, for suitable pairs (p, h), ‘Err’ converges to zero very quickly as DOF
increases.

Table 1 Eigenvalue bound based on L1
h element (C1(K ))

(a, b) Shape h Mh,1 λ1 λ2 λ3

(0, 1) 0.063 0.0308 [9.80, 9.91] [19.55, 19.93] [38.52, 39.99]

(0,
√

3/3) 0.063 0.0308 [13.04, 13.21] [38.48, 39.95] [50.74, 53.31]

(1/2,
√

3/2) 0.063 0.0654 [16.38, 17.63] [16.38, 17.63] [43.42, 53.31]

(−1/2,
√

3/2) 0.054 0.0231 [7.13, 7.17] [17.43, 17.61] [37.00, 37.76]

Table 2 Eigenvalue bound based on L1
h element (C2(K ))

(a, b) Shape h Mh,2 λ1 λ2 λ3

(0, 1) 0.063 0.0846 [4.00, 4.12] [17.44, 19.93] [20.71, 24.32]

(0,
√

3/3) 0.063 0.0834 [6.67, 7.00] [27.99, 34.76] [31.25, 39.95]

(1/2,
√

3/2) 0.063 0.177 [5.67, 6.90] [11.35, 17.63] [17.03, 36.50]

(−1/2,
√

3/2) 0.054 0.0626 [2.85, 2.89] [14.89, 15.82] [29.63, 33.52]
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Table 3 High-precision bound for constant C1(K ) (d = 5)

(a, b) Shape h λ1 C1(K )

(0, 1) 0.25 9.86960441
39 0.31830988624

18

(0,
√

3/3) 0.25 13.159472536
23 0.27566444783

70

(1/2,
√

3/2) 0.25 17.545963381
27 0.238732414993

633

(−1/2,
√

3/2) 0.22 7.155353
26 0.3738396

83

Table 4 High-precision bound for constant C2(K ) (d = 5)

(a, b) Shape h λ1 C2(K )

(0, 1) 0.25 4.1158583657
49 0.492912451797

54

(0,
√

3/3) 0.25 6.9855990670
18 0.37835386272

57

(1/2,
√

3/2) 0.25 6.892786705
695 0.38089263968

43

(−1/2,
√

3/2) 0.22 2.88855609
497 0.58838242

29
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Fig. 4 Dependency of the precision on h and p
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7 Conclusion and future work

In this paper, we proposed a new algorithm to obtain high-precision bounds for the
P0 interpolation error constants. The method developed in this paper can be extended
to give sharp bounds for the general Pn interpolation error constant. For this purpose,
there are two difficulties we must overcome. First, to give the error estimation for a
high-order interpolation, e.g., |u − �

(1)
h u|1 ≤ C3h|u|2, the corresponding eigenvalue

problem of weak form may have second-order derivatives, making it difficult to obtain
even rough bounds for the eigenvalues.

Second, it is not easy to find wi that correspond to vi in the A4 condition of
Lehmann–Goerisch’s theorem, as there will be very complex boundary conditions.
On the advice of a referee, the helpful “spectral shift” technique will be applied to
overcome this difficulty in future work.

Acknowledgments The first author would like to show his respect to Prof. M. Plum of Karlsruhe Institute
of Technology, Germany, for introducing us to the Lehmann–Goerisch theorem.
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