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Abstract: In this paper, a numerical verification method is presented for second-order semi-
linear elliptic boundary value problems on arbitrary polygonal domains. Based on the Newton-
Kantorovich theorem, our method can prove the existence and local uniqueness of the solution
in the neighborhood of its approximation. In the treatment of polygonal domains with an
arbitrary shape, which gives a singularity of the solution around the re-entrant corner, the
computable error estimate of a projection into the finite-dimensional function space plays an
essential role. In particular, the lack of smoothness of the solution makes classical error es-
timates fail on nonconvex domains. By using the Hyper-circle equation, an alternative error
estimate of the projection has been proposed. Additionally, a new residual evaluation method
based on the mixed finite element method works well. It yields more accurate evaluation than
the existing method. The efficiency of our method is shown through illustrative numerical
results on several polygonal domains.

Key Words: Computer-assisted proof, Semilinear elliptic equations, Finite element method,
Verified numerical computations

1. Introduction
Let R and N be sets of real and natural numbers, respectively. Let Ω be a bounded polygonal domain
in R

2 with an arbitrary shape. We are concerned with the Dirichlet boundary value problem of the
following semilinear elliptic equation:{

−Δu = f(∇u, u, x), in Ω,
u = 0, on ∂Ω,

(1)

where f : H1
0 (Ω) → L2(Ω) is assumed to be Fréchet differentiable with respect to u, e.g., for any

bounded N ∈ N, the following f

34

Nonlinear Theory and Its Applications, IEICE, vol. 4, no. 1, pp. 34–61 c©IEICE 2013 DOI: 10.1588/nolta.4.34



f(∇u, u, x) = (b · ∇)u+ c1u+ c2u
2 + c3u

3 + ...+ cNu
N + g

with b ∈ (L∞(Ω))2, ci ∈ L∞(Ω), (i = 1, ..., N) and g ∈ L2(Ω) satisfies this condition. Here, the
function spaces H1

0 (Ω), L2(Ω) and L∞(Ω) are defined in Section 2. In this paper, we will propose a
verified computation procedure for proving the existence of a solution for semilinear elliptic equations
on arbitrary polygonal domains. If we have a good approximate solution in a certain function space,
we will try to validate the existence of a solution with verified error bounds:

‖u− û‖H1
0
≤ ρ,

where u is the exact solution of (1) and û is its approximation. Our proposed method is based on the
Newton-Kantorovich theorem.

Computer-assisted proofs are also known as verified computations for differential equations. The
development of computer-assisted proofs to two-point boundary value problems (one-dimensional
case) has pioneered by Kantorovich [8] and Urabe [27]. The works of McCarthy and Tapia [14]
and Kedem [9] followed. In 1988, Nakao [15] presented a method of computer-assisted proof for the
existence of solutions to elliptic problems including two-point boundary value problems. This method
has been shown to be useful for generating a tight numerical inclusion of solutions [15, 17]. One of the
features of his method is that a novel fixed-point formula is set up by decomposing the function space
into the finite-dimensional part and its complement. In 1991, Plum [18] presented another method of
proving the existence and uniqueness of solutions to elliptic boundary value problems. In his method,
the norm of the inverse of a linearized operator is bounded by an eigenvalue-enclosing technique based
on the homotopy method. In the last two decades, both Nakao’s method and Plum’s method have
been demonstrated to be useful for developing a computer-assisted existence proof of solutions to
various elliptic boundary value problems [15–19, 28].

1.1 Two previous works
This part is devoted to briefly describing two existing methods by Nakao [15] and Plum [19]. These
two methods can be applied to the following operator equation. Let A be the linear operator H1

0 (Ω) →
H−1(Ω) and N be the nonlinear operator H1

0 (Ω) → H−1(Ω), where H−1(Ω) denotes the space of
linear continuous functionals on H1

0 (Ω). We can define an operator equation as

F(u) = Au−N (u) = 0, (2)

where F : H1
0 (Ω) → H−1(Ω). Problem (1) is transformed into this operator equation. Assuming the

invertibility of A, in Nakao’s method, (2) is transformed into the invariance form

A−1F(u) = u−A−1N (u) = 0. (3)

Let I be the identity operator in H1
0 (Ω). The function space Vh is assumed to be a finite-dimensional

subspace of H1
0 (Ω). Using the orthogonal projection Ph : H1

0 (Ω) → Vh ⊂ H1
0 (Ω), Nakao’s method

transforms the equation
u = A−1N (u),

which is equivalent to (3), into

Phu = PhA−1N (u),

(I − Ph)u = (I − Ph)A−1N (u).

For a certain approximate solution û ∈ Vh of (3), Nakao’s method further defines Nh : H1
0 (Ω) → Vh

as
Nh(u) := Phu−

[
(I − PhA−1N ′[û])|Vh

]−1 Ph(u−A−1N (u)).

Using this, the fixed-point formulation

TN (u) = Nh(u) + (I − Ph)A−1N (u)
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is considered. Then Nakao’s method searches for a nonempty bounded convex closed set U ⊂ H1
0 (Ω)

satisfying TN (U) ⊂ U . If we can find such a U , then Schauder’s fixed-point theorem states that the
set U includes at least one solution of (3). This is a simple outline of Nakao’s method.

On the other hand, Plum’s method considers (2) directly. In Plum’s method, the constants δ and
KP are calculated explicitly such that

‖F(û)‖H−1 ≤ δ (4)

and
‖u‖H1

0
≤ KP ‖F ′[û]u‖H−1 , for all u ∈ H1

0 (Ω). (5)

Furthermore, it is assumed that there exists a nondecreasing function g : [0,∞) → [0,∞) such that

‖F ′[û+ w] −F ′[û]‖H1
0 ,H

−1 ≤ g(‖w‖H1
0
), ∀w ∈ H1

0 (Ω) with g(t) → 0 as t→ 0. (6)

In Plum’s method, the existence of a solution for (2) is proved using the following theorem, which is
similar to the Newton-Kantorovich theorem:

Theorem 1 (Plum [19]). Let δ, KP and g satisfy conditions (4)–(6). Suppose that a certain αP > 0
exists such that

δ ≤ αP
KP

−G(αP ),

where G(t) :=
∫ t
0 g(s)ds, and

KP g(αP ) < 1

holds. Then, there exists a solution u ∈ H1
0 (Ω) of the equation F(u) = 0 satisfying

‖u− û‖H1
0
≤ αP . (7)

Moreover, the solution is locally unique under the side condition (7).

1.2 Features and challenges
The methods of Nakao, of Plum and the method to be proposed in this paper have no mathematical
difference in the sense that each method uses the fixed-point theorem to prove the existence and
uniqueness of solutions. One feature of our procedure is that it can treat (1) on arbitrary polygonal
domains without any difficulty. On nonconvex domains, the solution of (1) lacks the H2 regularity,
which poses difficulty in deducing an explicit error estimate. Using the Newton-Kantorovich theorem,
we present a verification theory specialized for the finite element method. Overcoming the difficulty,
we will introduce a procedure to obtain an a posteriori error estimate for the finite element method.
The error estimate is obtained only using the first derivative of the solution. This enables us to treat
arbitrary domains.

In Section 2, we will prepare the notations and the framework of our proposed method. In Section
3, we are concerned with explicit error estimation and Sobolev’s embedding constant evaluation.
In Section 4, several constants needed in applying the Newton-Kantorovich theorem are evaluated.
Furthermore, a new method of obtaining a residual bound of the operator equation using the Raviart-
Thomas mixed finite element is proposed. Finally, in Section 5, illustrative numerical results are
presented to show the usefulness of our procedure.

2. Preliminaries
Here, we introduce several notations used throughout this paper. An n-dimensional vector is denoted
by u = (u1, ..., un)T ∈ R

n. Let |u|l2 be the Euclidean norm

|u|l2 =
√
u2

1 + u2
2 + ...+ u2

n.

For a matrix A ∈ R
n×n, the norm ‖A‖2 denotes the spectral norm of matrix A.
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Let Ω be a bounded polygonal domain in R
2. Let Lp(Ω), p ∈ [1,∞) denote the space of pth power

Lebesgue integrable functions on Ω. It follows that, for u ∈ Lp(Ω),

∫
Ω
|u(x)|pdx < +∞ and ‖u‖Lp :=

(∫
Ω
|u(x)|pdx

)1/p

.

In particular, we mainly consider the case p = 2 for real functions. We denote the L2 inner product
and L2 norm as

(u, v) :=
∫
Ω
u(x)v(x)dx, ‖u‖L2 :=

√
(u, u),

respectively. For vector functions u, v ∈
(
L2(Ω)

)2, the L2 inner product of u and v is denoted by

(u, v) :=
2∑
i=1

(ui, vi), for u = (u1, u2)T , v = (v1, v2)T .

Let L∞(Ω) denote the space of functions essentially bounded on Ω with the norm

‖u‖L∞ := ess sup
x∈Ω

|u(x)|.

Hr(Ω) denotes the L2 Sobolev space of order r ∈ N with the inner product

〈u, v〉r :=
r∑

|k|=0

(D(k)u,D(k)v).

Here, D(k) denotes the partial differentiation with respect to the multi-index k = (k1, k2) with |k| =
k1 + k2:

D(k)u :=
∂|k|u

∂xk11 ∂x
k2
2

.

The Hr norm and semi-norm are respectively defined for u ∈ Hr(Ω) by

‖u‖Hr :=

⎛
⎝∑

|k|≤r
(D(k)u,D(k)u)

⎞
⎠

1/2

, |u|Hr :=

⎛
⎝∑

|k|=r
(D(k)u,D(k)u)

⎞
⎠

1/2

.

Let us further define H1
0 (Ω) as

H1
0 (Ω) :=

{
u ∈ H1(Ω) : u = 0 on ∂Ω

}
with the inner product

(∇u,∇v) =
∫
Ω
∇u · ∇vdx

and the norm

‖u‖H1
0

:= |u|H1 = ‖∇u‖L2 =
(∫

Ω
|∇u|2dx

)1/2

.

Here, ‘u = 0 on ∂Ω’ is in the trace sense. Generally, for p ∈ [1,∞], W r,p(Ω) denotes the Lp Sobolev
space of order r ∈ N with the norm,

‖u‖W r,p :=

⎛
⎝∑

|k|≤r

∫
Ω
|D(k)u|pdx

⎞
⎠

1/p

for p ∈ [1,∞)

and
‖u‖W r,∞ :=

∑
|k|≤r

ess sup
x∈Ω

|D(k)u(x)|.
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Let H−1(Ω) be the topological dual space of H1
0 (Ω), i.e., the space of linear continuous functionals

in H1
0 (Ω). Let T ∈ H−1(Ω) and u ∈ H1

0 (Ω). We denote Tu ∈ R as 〈T, u〉. The norm of T ∈ H−1(Ω)
is defined by

‖T‖H−1 := sup
0 �=u∈H1

0 (Ω)

|〈T, u〉|
‖u‖H1

0

.

Further, let X and Y be Banach spaces. The set of a bounded linear operator from X to Y is denoted
by L(X,Y ). For T ∈ L(X,Y ), its operator norm is denoted by

‖T ‖X,Y := sup
0 �=u∈X

‖T u‖Y
‖u‖X

.

Here, ‖ · ‖X is the norm in X and ‖ · ‖Y is the norm in Y .
Let us introduce Sobolev’s embedding theorem. For the Banach spaces X and Y , the embedding

X ↪→ Y means that a natural embedding map u ∈ X �→ u ∈ Y is continuous, i.e.,

‖u‖Y ≤ C‖u‖X

holds for a constant C. Using the Rellich-Kondrashov theorem [1], the following corollary is obtained.

Corollary 2. Let Ω ⊂ R
2 be a bounded polygonal domain. The embedding H1(Ω) ↪→ Lp(Ω) is compact

for ∀p ∈ [1,∞). Then, it follows that, for v ∈ H1(Ω) and p ∈ [1,∞),

‖v‖Lp ≤ Ce,p|v|H1 . (8)

The constant Ce,p depends on the shape of Ω. The method of obtaining its concrete value is
introduced in Section 3.2. Now we use the notations X := L2(Ω), V := H1

0 (Ω) and V ∗ := H−1(Ω)
for simplicity.

2.1 Framework of verified computations
This part is devoted to explaining the computer-assisted approach to solving the following abstract
problem:

Find u ∈ V satisfying F(u) = 0 in V ∗, (9)

where F : V → V ∗ denotes a Fréchet differentiable mapping. Let Vh be a finite-dimensional subspace
of V . Let û ∈ Vh ⊂ V be an approximate solution to (9). The Fréchet derivative of F at û is denoted
by F ′[û] : V → V ∗, i.e.,

‖F(û+ ν) −F(û) −F ′[û]ν‖V ∗ = o(‖ν‖V ).

To verify the existence and local uniqueness of the exact solution in the neighborhood of û, we apply
the Newton-Kantorovich theorem [6, 8] to (9).

Theorem 3 (Newton-Kantorovich’s theorem). Assume that the Fréchet derivative F ′[û] is nonsin-
gular and satisfies

‖F ′[û]−1F(û)‖V ≤ α,

for a certain positive α. Then, let B(û, 2α) := {v ∈ V : ‖v − û‖V ≤ 2α} be a closed ball centered at û
with radius 2α. Also, let D ⊃ B(û, 2α) be an open ball in V . We assume that, for a certain positive
ω, the following holds:

‖F ′[û]−1(F ′[v] −F ′[w])‖V,V ≤ ω‖v − w‖V , ∀v, w ∈ D.

If

αω ≤ 1
2

holds, then there is a solution u ∈ V of (9) satisfying

‖u− û‖V ≤ ρ :=
1 −

√
1 − 2αω
ω

.

Furthermore, the solution u is locally unique in B(û, ρ).
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Remark 1. To apply the Newton-Kantorovich theorem, we will calculate the following constants
explicitly.

‖F ′[û]−1‖V ∗,V ≤ C1, (10)

‖F(û)‖V ∗ ≤ C2,h, (11)

‖F ′[v] −F ′[w]‖V,V ∗ ≤ C3‖v − w‖V , ∀v, w ∈ D ⊂ V. (12)

Therefore, if C2
1C2,hC3 ≤ 1/2 is confirmed by verified computations, then the existence and local

uniqueness of the solution are proved numerically. Our main task in this paper is to calculate these
constants explicitly.

Remark 2. When αω ≤ 1
2 is obtained, the uniqueness of the solution is also proved in the ball

B(û, 2α) [6], so that there is a nonexistence area of the solution:

B(û, 2α) \B(û, ρ) = {v ∈ V : ρ < ‖v − û‖V ≤ 2α} .

2.2 Variational formulation
In this part, we provide variational formulations. We would like to deduce the form (9) from (1).
Our verified computation approach proves the existence and local uniqueness of a weak solution of
(1). Here, we rewrite f(∇u, u, x) as f(u) for simplicity. In the classical analysis of the variational
theory, the weak solution to the Dirichlet boundary problem (1) is simply the solution of the following
variational problem: Find u ∈ V such that

(∇u,∇v) = (f(u), v), ∀v ∈ V. (13)

For u, v ∈ V , let us define the continuous bilinear form A(·, ·) : V × V → R as

A(u, v) := (∇u,∇v).

For a fixed u ∈ V , A(u, ·) ∈ V ∗ is a linear functional. It enables us to define the operator A : V → V ∗

by
〈Au, v〉 := A(u, v), ∀v ∈ V.

It is obvious that A(u, v) is an inner product in V . Then, for a given T ∈ V ∗, Riesz’s representation
theorem states the existence of a unique solution u ∈ V such that

A(u, v) = 〈T, v〉, ∀v ∈ V,

in particular, ‖u‖V = ‖Au‖V ∗ holds. This shows the invertibility of A. We denote the inverse of A as
A−1 : V ∗ → V . Thus, the operator A becomes an isometric isomorphism. For a fixed u ∈ V , (f(u), ·)
becomes a linear functional. Then, we can define the nonlinear operator N : V → V ∗ by

〈N (u), v〉 = (f(u), v), ∀v ∈ V.

Using these operators, the variational problem (13) can be transformed into Au = N (u). Furthermore,
we define the operator F : V → V ∗ by F(u) := Au−N (u), which can be written as F(u) = 0. This
is simply the abstract problem (9).

To apply the Newton-Kantorovich theorem, the Fréchet derivative of F is needed. The Fréchet
differentiability of F is derived by that of f . We now show that F : V → V ∗ is Fréchet differentiable.
For fixed u, û ∈ V , (f ′(û)u, ·) is a linear functional on V . Here, f ′(û) : V → X is the Fréchet derivative
of f : V → X at û. Hence, we can define the operator N ′[û] : V → V ∗ by

〈N ′[û]u, v〉 := (f ′(û)u, v), ∀v ∈ V. (14)

For a given û ∈ V , the Fréchet derivative F ′[û] : V → V ∗ of F : V → V ∗ at û is given by

F ′[û] = A−N ′[û].
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In fact, we have

‖F(û+ v) −F(û) − (A−N ′[û])v‖V ∗ = sup
0 �=w∈V

|〈N (û+ v) −N (û) −N ′[û]v, w〉|
‖w‖V

= sup
0 �=w∈V

|(f(û+ v) − f(û) − f ′(û)v, w)|
‖w‖V

≤ Ce,2‖μ(û, v)‖X ,

where û, v ∈ V and
μ(û, v) = f(û+ v) − f(û) − f ′(û)v.

From the Fréchet differentiability of f : V → X, we have

‖μ(û, v)‖X
‖v‖V

→ 0, (‖v‖V → 0).

This shows the Fréchet differentiability of F : V → V ∗ at û ∈ V .
Now, we define a natural embedding operator, i(X→V ∗) : X → V ∗. For a fixed w ∈ X, (w, ·) ∈ V ∗

is a linear functional. Then, we can define

〈i(X→V ∗)w, v〉 := (w, v), ∀ v ∈ V.

Since the embedding operator i(V→X) : V → X is compact from Corollary 2, its adjoint operator
i(X→V ∗) : X → V ∗ becomes compact by Schauder’s theorem [3]. The operator i(X→V ∗) : X → V ∗ is
compact and f ′(û) : V → X is continuous so that the composite operator

N ′[û] = i(X→V ∗) ◦ f ′(û) : V → V ∗ (15)

is compact.

Remark 3. The nonlinear operator N : V → V ∗ is presented using this embedding operator s.t.

N (u) = i(X→V ∗) ◦ f(u) ∈ V ∗, for f(u) ∈ X.

3. Explicit evaluations
Two constants play an important role in our verification framework. One is an error constant appear-
ing in the error estimation of the finite element method. The other is Sobolev’s embedding constant.
Recently, an explicit value of error constants for the linear conforming finite element has been given
in [10] and [12]. In this section, we will explain how to obtain explicit values of these constants.

3.1 Error constants of FEM
The evaluation of the error constant strongly depends on the shape of the domain. Here, let us define
some notations corresponding to mesh triangulations. Let Th be a mesh triangulation of Ω. The
triangle element of Th is denoted by Kh. Let us define the finite element space Vh ⊂ V by

Vh := span{φ1, φ2, ..., φn} ⊂ V, (16)

where φi is a base function of finite elements. If we consider a linear finite element space, n is the
number of inner node points in Th. Let us consider the following Poisson’s equation for a given f ∈ X:

−Δu = f in Ω, u = 0 on ∂Ω.

The weak formulation is presented by

Find u ∈ V satisfying (∇u,∇v) = (f, v), ∀v ∈ V. (17)

Let us define the orthogonal projection that maps V to Vh by
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(∇(u− Phu),∇vh) = 0, ∀vh ∈ Vh. (18)

The classical error estimation theory gives an a priori estimation of Poisson’s equation for the projec-
tion Ph : V → Vh:

‖u− Phu‖V ≤ CM‖f‖X . (19)

In the case of the Dirichlet boundary condition with convex domains, we know that the solution of
(17) belongs to H2(Ω). For such a solution, we say that it has H2 regularity [7]. In this case, we
can easily obtain a concrete value of CM . Such regularity is not available for nonconvex domains.
The lack of H2 regularity causes a failure in the explicit evaluation of the constant CM . To treat an
arbitrary polygonal domain, we will adopt the technique developed by Liu and Oishi [13].

3.1.1 A priori error estimate with H2 regularity
In this part, we assume that Vh consists of linear base functions. Here, we will introduce two constants
Ch,i (i = 0, 1) that play an important role throughout this paper. These constants are related to
function interpolations πi (i = 0, 1) over the triangle element Kh ∈ Th. For u ∈ L2(Kh), π0u is a
constant function defined by

π0u :=
(∫

Kh

udx

)
/

(∫
Kh

1dx
)
.

For u ∈ H2(Kh), the interpolation π1u of u is a linear function defined by

(π1u)(x) := u(x) on the vertex of Kh.

For i = 0, 1, let global interpolations πh,i be an extension of πi to the entire domain. That is,
(πh,iu)|Kh

= πi(u|Kh
). Here, we define Ch,i over triangulation Th by

Ch,i := max
Kh∈Th

Ci(Kh), i = 0, 1 (20)

where

C0(Kh) := sup
0 �=v∈H1(Kh)

‖π0u− u‖X
‖u‖V

, C1(Kh) := sup
0 �=v∈H2(Kh)

|π1u− u|H1

|u|H2
.

These constants Ci(Kh) (i = 0, 1) correspond to an eigenvalue of a differential operator. Kikuchi and
Liu [10] give the upper bound of constants in the following lemma.

Lemma 1 (Kikuchi and Liu [10]). For α ∈ (0, 1) and θ ∈ (0, π),

C0(Kh) ≤
h

π

√
ν+(α, θ)

2
, C1(Kh) ≤ 0.493h

ν+(α, θ)√
2ν−(α, θ)

with

ν−(α, θ) = 1 + α2 −
√

1 + 2α2 cos 2θ + α4,

ν+(α, θ) = 1 + α2 +
√

1 + 2α2 cos 2θ + α4.

Here, h = |OA|, α = |OB|/|OA| and θ = ∠AOB (see Fig. 1).

In particular,

C0 ≤ 1
π
, C1 ≤ 0.493

hold on the unit isosceles right-angle triangle. Using this lemma, the verified bound of constants
Ch,i (i = 0, 1) is easy to obtain. Aside from this, other upper bounds for Ci(Kh) (i = 0, 1) are
introduced by Kobayashi [12].
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Fig. 1. Triangle element Kh for Lemma 1.

Lemma 2 (Kobayashi [12]). For an arbitrary triangle element,

C0(Kh) <

√
a2 + b2 + c2

28
− S4

a2b2c2

and

C1(Kh) <

√
a2b2c2

16S2
− a2 + b2 + c2

30
− S2

5

(
1
a2

+
1
b2

+
1
c2

)

hold, where a = |BC|, b = |AC|, c = |AB| and S is the area of Kh in Fig. 2.

Fig. 2. Triangle element Kh for Lemma 2.

The classical a priori error estimate is given by the following theorem.

Theorem 4. Let Ω be a convex polygonal domain. For a given f ∈ X, let u be the solution of the
variational problem in (17). The error estimate between u and its approximation Phu ∈ Vh is given
by

‖u− Phu‖V ≤ Ch,1‖f‖X , ‖u− Phu‖X ≤ Ch,1‖u− Phu‖V ≤ (Ch,1)2‖f‖X .

Proof. Under the given assumptions, the solution u belongs to H2(Ω). By using the interpolation
error estimate for πh,1, the minimization principle gives

‖u− Phu‖V ≤ |u− πh,1u|H1 ≤ Ch,1|u|H2 ≤ Ch,1‖f‖X ,

where the constant Ch,1 is the one defined in (20). Here, we use the fact [7] that, for u ∈ H2(Ω)∩H1
0 (Ω)

and f = −Δu, we have |u|H2 ≤ ‖Δu‖X = ‖f‖X . Furthermore, by adopting Aubin-Nitsche’s trick, we
can deduce

‖u− Phu‖X ≤ Ch,1‖u− Phu‖V ≤ (Ch,1)2‖f‖X .

Thus, one can take CM = Ch,1 in (19) when we choose Vh as the linear finite element space.

3.1.2 A posteriori error estimate without H2 regularity
For solutions with a singularity (u �∈ H2(Ω)), it is difficult to give a computable a priori estimation.
To solve this problem, Liu and Oishi [13] has proposed a new method based on the Prager-Synge
theorem [20]. For readers’ convenience, we give a sketch of the main result in [13] in the rest of
Section 3.1. Let us define a function space corresponding to the lowest-order Raviart-Thomas mixed
finite elements as

Wh :=
{
ph ∈ H(div,Ω) : ph = (ak + ckx, bk + cky)T in Kh

}
,

where ak, bk and ck are constants on element Kh and
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H(div,Ω) :=
{
ψ ∈

(
L2(Ω)

)2
: div ψ ∈ L2(Ω)

}
.

Denoting the base function of Wh by ψi,

Wh = span{ψ1, ψ2, ..., ψl}, (21)

where l denotes the number of edges in Th. The set of piecewise constant functions on Th is defined
by

Mh :=
{
v ∈ L2(Th) : v is constant on each element of Th

}
.

Let qi be the constant function that has a support to be the ith element of Th. We have

Mh = span{q1, q2, ..., qm}, (22)

where m is the number of elements in Th. Classical analysis shows that div(Wh) = Mh (see [21]).
For each fh ∈Mh, we define a subset of Wh by

Wfh
:= {ph ∈Wh : div ph + fh = 0, on each Kh ∈ Th}.

We also define the orthogonal projection Ph,0 : X →Mh by

(u− Ph,0u, μh) = 0, ∀μh ∈Mh.

The property of orthogonality indicates that

‖u‖2
X = ‖Ph,0u‖2

X + ‖Ph,0u− u‖2
X , ∀u ∈ X. (23)

From definition (20), the error estimate of the approximation Ph,0u is given by

‖u− Ph,0u‖X ≤ Ch,0|u|H1 , for u ∈ H1(Ω).

To provide the error estimate for the projection Phu without the second derivative of u, Liu and
Oishi [13] introduce a new computable quantity κ such that

κ := max
0 �=fh∈Mh

min
vh∈Vh

min
ph∈Wfh

‖ph −∇vh‖X
‖fh‖X

. (24)

Lemma 3 (Liu and Oishi [13]). For a given fh ∈Mh, let ū ∈ H1(Ω) and uh ∈ Vh be solutions of the
variational problems,

(∇ū,∇v) = (fh, v), ∀v ∈ V and (∇uh,∇vh) = (fh, vh), ∀vh ∈ Vh,

respectively. Then we have an error estimate using the quantity κ:

‖ū− uh‖V ≤ κ‖fh‖X . (25)

Proof. From the Prager-Synge theorem [20], for ū, any vh ∈ Vh and ph ∈Wfh
, it follows that

‖∇ū−∇vh‖2
X + ‖∇ū− ph‖2

X = ‖ph −∇vh‖2
X ,

which is called the hypercircle equation. This can be checked by confirming the vanishing of cross
terms. Then, the following inequality holds:

‖∇ū−∇vh‖X ≤ ‖ph −∇vh‖X , ∀vh ∈ Vh, ∀ph ∈Wfh
.

From the minimization principle, we obtain the error estimate between ū and uh:

‖∇ū−∇uh‖X ≤ ‖∇ū−∇vh‖X ≤ min
ph∈Wfh

‖ph −∇vh‖X .

Furthermore, the definition of κ yields

‖∇ū−∇uh‖X ≤ κ‖fh‖X .
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Theorem 5 (Liu and Oishi [13]). For f ∈ X, let u ∈ V and Phu ∈ Vh be the solutions of

(∇u,∇v) = (f, v), ∀v ∈ V and (∇(Phu),∇vh) = (f, vh), ∀vh ∈ Vh,

respectively. Also, let CM :=
√

(Ch,0)2 + κ2. We then have the following a posteriori estimation:

‖u− Phu‖V ≤ CM‖f‖X , ‖u− Phu‖X ≤ CM‖u− Phu‖V ≤ (CM )2‖f‖X .

Proof. We follow the analogous framework by Kikuchi and Saito [11] to finish the proof. Let ū
and uh be those defined in Lemma 3 with fh = Ph,0f ∈ Mh. The minimization principle leads to
‖u− Phu‖V ≤ ‖u− uh‖V . Decomposing u− uh by (u− ū) + (ū− uh), we have

‖u− Phu‖V ≤ ‖u− uh‖V ≤ ‖u− ū‖V + ‖ū− uh‖V .

From the definitions of u and ū, it follows for ∀v ∈ V that

(∇(u− ū),∇v) = (f − Ph,0f, v) = ((I − Ph,0)f, (I − Ph,0)v) .

Letting v be u− ū and applying the error estimate for the projection Ph,0, we have

‖u− ū‖2
V ≤ ‖(I − Ph,0)f‖X ‖(I − Ph,0)(u− ū)‖X

≤ ‖(I − Ph,0)f‖X · Ch,0‖u− ū‖V .

Hence, we have

‖u− ū‖V ≤ Ch,0 ‖(I − Ph,0)f‖X . (26)

From (23), (25) and (26), the error ‖u− Phu‖V is bounded by

‖u− Phu‖V ≤ ‖u− ū‖V + ‖ū− uh‖V
≤ κ‖Ph,0f‖X + Ch,0 ‖(I − Ph,0)f‖X
≤

√
(Ch,0)2 + κ2 ‖f‖X .

Furthermore, by adopting Aubin-Nitsche’s trick, the estimate for ‖u−Phu‖X can be obtained. Define
e := u− Phu ∈ X and ζ ∈ V satisfying

(∇ζ,∇v) = (e, v), ∀v ∈ V.

Then, we have

(e, e) = (∇ζ,∇e) = (∇(ζ − Phζ),∇e) ≤ ‖∇(ζ − Phζ)‖X · ‖∇e‖X ≤ CM‖e‖X‖∇e‖X ,

which leads to

‖u− Phu‖X ≤ CM |u− Phu|H1 ≤ (CM )2‖f‖X .

Remark 4. In [29], for an L-shaped domain, Yamamoto and Nakao proposed another method of giving
an explicit a priori error estimation for Poisson’s problem with a homogeneous Dirichlet boundary
condition, where the technique of extending the L-shaped domain to a square one is used to deal with
the solution singularity. Principally, the method in [29] can also be extended to solve problems on a
general domain, but a complicated domain manipulation is hard work. Also, the numerical comparison
in [13] shows that the method of Liu and Oishi gives a much sharper estimation of the constant CM .
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Computation of κ

This part is devoted to evaluating the quantity κ in (24). The discussion will be divided into two
steps. First, we derive the explicit forms of uh ∈ Vh and ph ∈Wfh

, which minimize ‖ph −∇uh‖X for
a fixed fh. Then, we find fh ∈Mh that maximizes ‖ph −∇uh‖X/‖fh‖X .

For a given fh ∈Mh, we consider the optimization problem

inf
uh∈Vh

inf
ph∈Wfh

‖ph −∇uh‖X . (27)

The classical theory of the Raviart-Thomas finite element method [2, 4, 21] implies that the minimizer
of (27) is given by solutions of the following two problems:

a) Find ph ∈Wh and λh ∈Mh such that{
(ph, qh) + (λh,div qh) = 0, ∀qh ∈Wh,

(div ph, μh) + (fh, μh) = 0, ∀μh ∈Mh.

b) Find uh ∈ Vh such that
(∇uh,∇vh) = (fh, vh), ∀vh ∈ Vh.

Let the base functions of the finite element spaces Vh, Mh, Wh be those in (16), (21) and (22). Define
the matrices P ∈ R

l×l, G ∈ R
n×l, S ∈ R

n×n, B ∈ R
n×m, M ∈ R

m×m and N ∈ R
m×l, whose i-j

elements are given by
Pi,j = (ψi, ψj), Gi,j = (∇φi, ψj),
Si,j = (∇φi,∇φj), Bi,j = (φi, qj),
Mi,j = (qi, qj), Ni,j = (qi,div ψj).

Additionally, suppose that x ∈ R
l, y ∈ R

n, z ∈ R
m and f ∈ R

m are vectors and let ph ∈Wh, uh ∈ Vh,
λh ∈Mh and fh ∈Mh be the elements such that

x = (x1, ..., xl)T ∈ R
l, ph = (ψ1, ..., ψl) · x ∈Wh,

y = (u1, ..., un)T ∈ R
n, uh = (φ1, ..., φn) · y ∈ Vh,

z = (z1, ..., zm)T ∈ R
m, λh = (q1, ..., ql) · z ∈Mh,

f = (f1, ..., fm)T ∈ R
m, fh = (q1, ..., ql) · f ∈Mh.

By using matrix notations, problems a) and b) can be characterized by

a)

{
Px +NT z = 0
Nx +M f = 0

, b) Sy = Bf.

There are various methods of solving this system. By adopting block matrix arithmetic for this
problem, the coefficient vectors of the minimizer, ph ∈Wh and uh ∈ Vh, are given by

x = −P−1NT (NP−1NT )−1M f =: Hf and y = S−1Bf =: Kf,

if NP−1NT has an inverse matrix. Then, the following is obtained:

‖∇uh − ph‖2
X = (∇uh,∇uh) + (ph, ph) − (∇uh, ph) − (ph,∇uh)

= yTSy + xTPx − yTGx − xTGTy

= fT (KTSK +HTPH −KTGH −HTGTK)f

= fTQf.

Here, we put Q = KTSK+HTPH −KTGH −HTGK ∈ R
m×m. Note that Q is symmetric. Finally,

κ2 is given by

κ2 = max
0 �=fh∈Mh

min
uh∈Vh

min
ph∈Wfh

‖∇uh − ph‖2
X

‖fh‖2
X
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= max
0 �=f∈Rm

fTQf
fTM f

.

This is simply the Rayleigh quotient form of a general matrix eigenvalue problem:

Qf = λM f. (28)

Thus, κ2 is given by the maximum eigenvalue of (28).

3.2 Embedding constant
Another task of the explicit evaluation is to obtain Sobolev’s embedding constant H1(Ω) ↪→ Lp(Ω) on
arbitrary polygonal domains. Sobolev’s embedding constant in (8) is related to the minimal eigenvalue
of the Laplacian (−Δ), which is discussed by Liu and Oishi [13]. The following lemma is introduced
by Plum [19]. He pointed out, “This is not always optimal but easy to compute”.

Lemma 4. Let σ ∈ [0,∞) denote the minimal point of the spectrum corresponding to −Δ on V . Let
p ∈ [2,∞) and ν denote the largest integer less than or equal to p/2. We have

Ce,p :=
(

1
2

) 1
2+ 2ν−3

p [p
2

(p
2
− 1
)
· · ·
(p

2
− ν + 2

)] 2
p

σ− 1
p ,

where the bracket term is set equal to 1 if ν = 1.

Here, we need a verified lower bound of the minimal eigenvalue of −Δ on the treated domain. The
following theorem gives a desired lower bound and was derived by Liu and Oishi [13].

Theorem 6 (Liu and Oishi [13]). Let {λk} be eigenvalues of −Δ. λhk is assumed to be its discretized
approximation with verified computations. CM is an error constant satisfying (19). Suppose

1 − (CM )2λk > 0.

Then, each eigenvalue of −Δ is bounded by

λhk
1 + (CM )2λhk

≤ λk ≤ λhk .

Using this result, we can take

σ ≥ λh1
1 + (CM )2λh1

, (29)

where λh1 is the first approximate eigenvalue in finite element discretized systems of the eigenvalue
problem

−Δu = λu

with the Dirichlet boundary condition u = 0 on ∂Ω.

4. Verification theories
Our computer-assisted approach needs explicit values of (10)–(12) in Section 2.1. In this section, we
discuss how to calculate each constant with verification.

4.1 Invertibility of linearized operator
Let û ∈ Vh be an approximate solution of (13). Here, we evaluate the upper bound of C1 in (10), which
corresponds to the inverse norm estimation of the Fréchet derivative operator F ′[û] = A−N ′[û]. Let
Vh be a finite element approximation of V and Vc be the orthogonal complement with an H1

0 inner
product. The theorem below is a modification of the main theorem of Nakao et al. [16] in 2005. Here,
we give another proof. In Nakao et. al.’s original paper [16], Schauder’s fixed-point theorem is used.
Since the operator N ′[û] is compact from the statement in (15), Fredholm’s alternative theorem can
be applied to prove the invertibility of the linearized operator.
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Theorem 7. The operator N ′[û] : V → V ∗ is the linear compact one defined in (14). The finite
dimensional subspace Vh is that introduced in (16). Furthermore, Ph : V → Vh is the orthogonal
projection defined in (18). Let K1, K2 and K ′ be the constants to make the following inequalities
hold:

‖f ′(û)u‖X ≤ K1‖u‖V , ∀u ∈ V,

‖f ′(û)uc‖X ≤ K2‖uc‖V , ∀uc ∈ Vc

and
‖PhA−1N ′[û]uc‖V ≤ K ′‖uc‖V , ∀uc ∈ Vc.

Assume that there exists a positive constant τ > 0 satisfying

‖uh‖V ≤ τ
∥∥Ph(I − A−1N ′[û])uh

∥∥
V
, ∀uh ∈ Vh.

Moreover, as in (19), the error estimate of Ph is available for a given f ∈ X:

‖u− Phu‖V ≤ CM‖f‖X .

If νh := 1 − CM (K1τK
′ +K2) > 0, then A−N ′[û] : V → V ∗ is invertible and satisfies

‖(A−N ′[û])−1‖V ∗,V ≤ ‖R‖2,

where ‖R‖2 is the spectral norm of a matrix described by

R :=

[
τ
(
K′
νh
CMK1τ + 1

)
τK′
νh

CMK1τ
νh

1
νh

]
∈ R

2×2. (30)

Proof. We fix u ∈ V . By putting ϕ ∈ V ∗ as

(A−N ′[û])u = ϕ (31)

and setting
uh := Phu, uc := (I − Ph)u,

ϕh := PhA−1ϕ, ϕc := (I − Ph)A−1ϕ,

the following are obtained:
u = uh + uc, A−1ϕ = ϕh + ϕc.

Furthermore, the property of orthogonality indicates that

‖uh‖2
V + ‖uc‖2

V = ‖u‖2
V , ‖ϕh‖2

V + ‖ϕc‖2
V = ‖A−1ϕ‖2

V = ‖ϕ‖2
V ∗ .

From (31), we have

PhA−1(A−N ′[û])(uh + uc) = ϕh

⇐⇒ Ph(I − A−1N ′[û])uh = PhA−1N ′[û]uc + ϕh.

From the assumption, the following inequality holds:

‖uh‖V ≤ τ‖Ph(I − A−1N ′[û])uh‖V
= τ‖PhA−1N ′[û]uc + ϕh‖V
≤ τ (K ′‖uc‖V + ‖ϕh‖V ) . (32)

On the other hand, from (31), it follows that

(I − Ph)A−1(A−N ′[û])(uh + uc) = ϕc

⇐⇒ uc = (I − Ph)A−1N ′[û](uh + uc) + ϕc.
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For a given f ∈ X, we note that the solution of

(∇u,∇v) = (f, v), ∀v ∈ V,

can be denoted by u = A−1i(X→V ∗) ◦ f . The error estimate (19) is rewritten by

‖u− Phu‖V = ‖(I − Ph)A−1i(X→V ∗) ◦ f‖V ≤ CM‖f‖X .

The representation of N ′[û] in (15) yields

‖(I − Ph)A−1N ′[û]u‖V = ‖(I − Ph)A−1i(X→V ∗) ◦ f ′(û)u‖V
≤ CM‖f ′(û)u‖X .

Thus, it turns out from (32) that

‖uc‖V =
∥∥(I − Ph)A−1N ′[û](uh + uc) + ϕc

∥∥
V

≤ CM‖f ′(û)(uh + uc)‖X + ‖ϕc‖V
≤ CM (‖f ′(û)uh‖X + ‖f ′(û)uc‖X) + ‖ϕc‖V
≤ CM (K1‖uh‖V +K2‖uc‖V ) + ‖ϕc‖V
≤ CM (K1τ (K ′‖uc‖V + ‖ϕh‖V ) +K2‖uc‖V ) + ‖ϕc‖V
= CM (K1τK

′ +K2)‖uc‖V + CMK1τ‖ϕh‖V + ‖ϕc‖V .

If the assumption
νh = 1 − CM (K1τK

′ +K2) > 0 (33)

holds, then we have

‖uc‖V ≤ 1
νh

(CMK1τ‖ϕh‖V + ‖ϕc‖V ) . (34)

Under condition (33), by substituting (34) into (32), it follows that

‖uh‖V ≤ τ

(
K ′

νh
(CMK1τ‖ϕh‖V + ‖ϕc‖V ) + ‖ϕh‖V

)

= τ

(
K ′

νh
CMK1τ + 1

)
‖ϕh‖V +

τK ′

νh
‖ϕc‖V .

Summing up the above arguments, the desired conclusion is obtained:

‖u‖V ≤ ‖R‖2‖(A−N ′[û])u‖V ∗ , (35)

where R ∈ R
2×2 is simply the matrix in (30). From (35), if (A −N ′[û])u = 0 in V ∗, it follows that

u = 0. This implies that the operator A−N ′[û] : V → V ∗ is injective. Since the operator A−N ′[û]
is of the Fredholm type with an index of 0, it is also surjective. Thus, A − N ′[û] is invertible and
satisfies

‖(A−N ′[û])−1‖V ∗,V ≤ ‖R‖2.

This completes the proof.

Therefore, one can put C1 := ‖R‖2 in (10).

4.1.1 Several constants
The constants K1, K2 and K ′ can be computed explicitly. For K1 and K2, we can choose

K1 = ‖f ′(û)‖V,X and K2 = ‖f ′(û)‖Vc,X .

Both depend on the concrete notation of the Fréchet derivative f ′(û). Furthermore, for K ′, let us
estimate the norm of PhA−1N ′[û] : Vc → Vh for uc ∈ Vc:
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‖PhA−1N ′[û]uc‖V = sup
0 �=vh∈Vh

A
(
PhA−1N ′[û]uc, vh

)
‖vh‖V

= sup
0 �=vh∈Vh

A
(
A−1N ′[û]uc, vh

)
‖vh‖V

= sup
0 �=vh∈Vh

〈N ′[û]uc, vh〉
‖vh‖V

= sup
0 �=vh∈Vh

(f ′(û)uc, vh)
‖vh‖V

≤ Ce,2‖f ′(û)uc‖X
≤ Ce,2K2‖uc‖X .

Thus, one can put K ′ = Ce,2K2. In Section 5, practical notations with respect to K1 and K2 are
presented.

4.1.2 Method of calculating τ

The upper bound of τ will be evaluated as below. Putting Bh := Ph(I − A−1N ′[û])|Vh
: Vh → Vh, it

follows for wh ∈ Vh that

‖Ph(I − A−1N ′[û])wh‖V = ‖Bhwh‖V

= sup
0 �=vh∈Vh

A(Bhwh, vh)
‖vh‖V

≥
(

inf
0 �=uh∈Vh

sup
0 �=vh∈Vh

A(Bhuh, vh)
‖uh‖V ‖vh‖V

)
‖wh‖V .

Introduce a quantity η satisfying

η := inf
0 �=uh∈Vh

sup
0 �=vh∈Vh

A(Bhuh, vh)
‖uh‖V ‖vh‖V

.

First, by selecting vh = Bhuh in the supremum in the definition, one can see that η is a non-negative
quantity. If η > 0, then we can take τ = η−1. In the case of η = 0, the operator Bh is not invertible,
which means that the bounded constant τ in Theorem 7 cannot be available. Thus, the verified
procedure fails and other manipulation, such as mesh refinement, is necessary.

The verified evaluation of η is introduced as follows. Let x, y ∈ R
n be real vectors and uh, vh ∈ Vh

satisfying

x = (u1, ..., un)T ∈ R
n, uh = (φ1, ..., φn) · x ∈ Vh

y = (v1, ..., vn)T ∈ R
n, vh = (φ1, ..., φn) · y ∈ Vh,

respectively. We recall the definition of S ∈ R
n×n on page 45 and redefine B ∈ R

n×n whose i-j
element is

Bi,j = (∇φj ,∇φi) − (f ′(û)φj , φi),

for 1 ≤ i, j ≤ n. Therefore, we have

η = inf
0 �=uh∈Vh

sup
0 �=vh∈Vh

A(Bhuh, vh)
‖uh‖V ‖vh‖V

= inf
0 �=uh∈Vh

sup
0 �=vh∈Vh

A(Ph(I − A−1N ′[û])uh, vh)
‖uh‖V ‖vh‖V

= inf
0 �=uh∈Vh

sup
0 �=vh∈Vh

A((I − A−1N ′[û])uh, vh)
‖uh‖V ‖vh‖V
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= inf
0 �=uh∈Vh

sup
0 �=vh∈Vh

(∇uh,∇vh) − (f ′(û)uh, vh)
‖uh‖V ‖vh‖V

= inf
0 �=x∈Rn

sup
0 �=y∈Rn

xTBy
|xTSx|1/2|yTSy|1/2 .

Since S is symmetric positive definite, there exists a lower triangular matrix L forming the Cholesky
decomposition, S = LLT . The Schwartz inequality aTb ≤ |aT a|1/2|bTb|1/2 holds for a, b ∈ R

n; in
particular, the equal sign holds if a = b. Thus, for a fixed a ∈ R

n, it follows that

sup
b∈Rn

aTb
|bTb|1/2 = |aT a|1/2.

By using this equation for ỹ := LTy,

η = inf
0 �=x∈Rn

sup
0 �=y∈Rn

xTB(L−TLT )y
|xTSx|1/2|yT (LLT )y|1/2

= inf
0 �=x∈Rn

sup
0 �=ỹ∈Rn

(xTBL−T )ỹ
|xTSx|1/2|ỹT ỹ|1/2

= inf
0 �=x∈Rn

|(L−1BTx)T (L−1BTx)|1/2
|xTSx|1/2

= inf
0 �=x∈Rn

|xTBS−1BTx|1/2
|xTSx|1/2 .

This is simply the Rayleigh quotient form of a general matrix eigenvalue problem. Thus, η2 is the
smallest eigenvalue of

Find λ ∈ R, x ∈ R
n, s.t. BS−1BTx = λSx.

We now discuss how to obtain a rigorous upper bound of τ by verified numerical computation. For
a matrix A ∈ R

n×n, we define

λmin(A) := min{|λ| : λ ∈ Spec(A)}, λmax(A) := max{|λ| : λ ∈ Spec(A)},

where Spec(A) is the set of eigenvalues of A. Furthermore, let σmin(A) be the minimum singular value
of A. For A,B ∈ R

n×n,

σmin(A) ≤ λmin(A), σmin(AB) ≥ σmin(A)σmin(B).

Since τ = η−1, the lower bound of η gives the upper bound of τ . As an efficient method of evaluating
the lower bound of η by verified numerical computation, we use the following lemma, which effectively
exploits the sparsity of B and S.

Lemma 5 (Rump 2011 [24]). Let γ > 0 be an estimate of the lower bound σmin(S−1B). Check

BBT − γ2S2 � 0, (36)

where A � 0 (� 0) means that A ∈ R
n×n is symmetric positive (semi-)definite. If condition (36) is

satisfied, then
σmin(S−1B) ≥ γ > 0. (37)

Note that (36) can be checked using Rump’s method (isspd) [23] by performing the sparse Cholesky
decomposition once with the floating-point arithmetic. The sparse Cholesky decomposition algorithm
is stable and efficient.

Now, let us consider the case of B ∈ R
n×n being symmetric. In this case, from (37), we have

η = λmin(S−1BS−1BT )1/2 = λmin(S−1B) ≥ σmin(S−1B) ≥ γ.

The upper bound of τ is evaluated as τ = η−1 ≤ γ−1.
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Next, let us consider the case of B ∈ R
n×n being general. In this case, we have

η = λmin(S−1BS−1BT )1/2 ≥ σmin(S−1BS−1BT )1/2 ≥
(
σmin(S−1B)σmin(S−1BT )

)1/2
. (38)

If we further check
BTB − γ′2S2 � 0

as above, then
σmin(S−1BT ) ≥ γ′

holds, so that it follows from (38) that

τ = η−1 ≤ 1√
γγ′

.

4.2 Residual bounds
In this part, we consider how to perform residual evaluation (11) such that

‖F(û)‖V ∗ = sup
0 �=v∈V

|〈Aû−N (û), v〉|
‖v‖V

= sup
0 �=v∈V

|(∇û,∇v) − (f(û), v)|
‖v‖V

using a smoothing technique with the Raviart-Thomas mixed finite element. Here, we introduce the
Raviart-Thomas mixed finite element [2, 4, 21]. We follow the discussions in [2, 4]. Let H(div,Ω)
denote the space of vector functions such that

H(div,Ω) :=
{
ψ ∈ (L2(Ω))2 : div ψ ∈ L2(Ω)

}
.

Let Kh be a triangle element in the triangulation of Ω. We define

Pk(Kh) : the space of polynomials of degree less than or equal to k on Kh,

Rk(∂Kh) := {ϕ ∈ L2(∂Kh) : ϕ|ei
∈ Pk(ei)}, for any edge ei of ∂Kh.

For k ≥ 0, we define

RTk(Kh) :=

{
q ∈ (L2(Kh))2 : q =

(
ak
bk

)
+ ck ·

(
x

y

)
, ak, bk, ck ∈ Pk(Kh)

}
.

The dimension of RTk(Kh) is (k+ 1)(k+ 3). We now introduce basic results about RTk(Kh) spaces.

Proposition 1. Let ei be a subtense of vertex i (= 1, 2, 3) and �n|ei
= (n(i)

1 , n
(i)
2 )T be an outward unit

normal vector on boundary ei. For q ∈ RTk(Kh), it follows that{
div q ∈ Pk(Kh),
q · �n|ei

∈ Rk(∂Kh).

Moreover, the divergence operator from RTk(Kh) onto Pk(Kh) is surjective, i.e.,

div(RTk(Kh)) = Pk(Kh).

For the entire domain Ω, the Raviart-Thomas finite element space RTk is given by

RTk :=
{
ph ∈ (L2(Ω))2 : ph|Kh

=

(
ak
bk

)
+ ck ·

(
x

y

)
, ak, bk, ck ∈ Pk(Kh),

ph · �n is continuous on the interelement boundaries.
}
. (39)

This is a finite-dimensional subspace of H(div,Ω). Furthermore, let us define

Mh := {v ∈ L2(Ω) : v|Kh
∈ Pk(Kh)}. (40)

It follows that div(RTk) = Mh (cf. Chapter IV.1 of [4]).
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4.2.1 Proposal bounds with RTk element
For residual bound estimation, some smoothing techniques have been proposed in [17, 19, 28]. This
part is dedicated to proposing another smoothing technique using mixed finite elements. One feature of
the proposed method is that we can use the basic property of the Raviart-Thomas element, div(RTk) =
Mh. For a given fh ∈Mh, this property enables us to define a subspace of RTk by

Wfh
= { ph ∈ RTk : div ph + fh = 0 for fh ∈Mh }.

Furthermore, we define vh ∈Mh by an orthogonal projection of v ∈ L2(Ω) such that

(v − vh, wh) = 0, ∀wh ∈Mh.

Assume that the error estimate given by

‖v − vh‖X ≤ CMh
‖v‖V for vh ∈Mh

holds. Also, we define fh(û) ∈Mh by the projection of f(û) ∈ L2(Ω). Finally, we obtain the following
evaluation of the residual bound using ph ∈Wfh(û):

‖F(û)‖V ∗ = sup
0 �=v∈V

|(∇û,∇v) − (f(û), v)|
‖v‖V

= sup
0 �=v∈V

|(∇û− ph,∇v) + (ph,∇v) − (f(û), v)|
‖v‖V

≤ sup
0 �=v∈V

|(∇û− ph,∇v)|
‖v‖V

+ sup
0 �=v∈V

|(div ph + f(û), v)|
‖v‖V

≤ ‖∇û− ph‖X + sup
0 �=v∈V

|(div ph + fh(û) + f(û) − fh(û), v)|
‖v‖V

≤ ‖∇û− ph‖X + sup
0 �=v∈V

|(f(û) − fh(û), v − vh)|
‖v‖V

≤ ‖∇û− ph‖X + CMh
‖f(û) − fh(û)‖X =: C2,h. (41)

Remark 5. The proposed estimation (41) holds for k ≥ 0. If the approximate solution û is obtained
from Vh, which consists of a piecewise polynomial of degree (k+1), an effective choice of the smoothing
element is from RTk and Mh is spanned by Pk elements. The rate of convergence can be expected to
be ‖∇û−ph‖X = O(hk+1) and ‖f(û)−fh(û)‖X = O(hk+1) in the case that the solution has sufficient
regularity. Further, CMh

is bounded by Ch,0 defined in (20), although tighter evaluation will be expected
for k > 0.

4.2.2 How to determine ph

This part is devoted to explaining a procedure for determining the smoothing element ph ∈ Wfh(û).
Using a verified numerical computation of linear equations, we have the interval function p̃h. This
includes the smoothing element ph ∈ p̃h with verification. The mixed method for Poisson’s equation
is applied to our procedure. First, we write the original problem (1) as{

∇u = p,

−div p = f(u).

This system leads directly to the following saddle point problem: Find (p, u) ∈ H(div,Ω) ×X such
that {

(p, q) + (u,div q) = 0, ∀q ∈ H(div,Ω),
(div p, v) = −(f(u), v), ∀v ∈ X.

(42)

Since the inf-sup condition of the general saddle point framework is obtained [2], this saddle point
problem has the solution (p, u) ∈ H(div,Ω)×X. Let Mh be defined in (40). As mentioned above, we
determine fh(û) ∈Mh such that
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(f(û) − fh(û), vh) = 0, ∀vh ∈Mh.

To obtain ph ∈Wfh(û) for a given fh(û), we consider an approximation of the problem (42). We seek
(ph, uh) ∈ RTk ×Mh defined in (39) and (40) satisfying{

(ph, qh) + (uh,div qh) = 0, ∀qh ∈ RTk,

(div ph, vh) = −(f(û), vh), ∀vh ∈Mh.
(43)

Suppose {ψi} and {qi} are the base functions of RTk and Mh, respectively, that is,

RTk = span{ψ1, ..., ψl}, Mh = span{q1, ..., qm}.

Recall the matrices P ∈ R
l×l and N ∈ R

m×l on page 45. Additionally, suppose that x ∈ R
l, z ∈ R

m

and f ∈ R
m are vectors. Using these notations, let ph ∈ RTk, uh ∈Mh be elements described by

x = (x1, ..., xl)T ∈ R
l, ph = (ψ1, ..., ψl) · x ∈ RTk,

z = (z1, ..., zm)T ∈ R
m, uh = (q1, ..., ql) · z ∈Mh,

f = [(f(û), qi)]i=1,...,m ∈ R
m.

By using matrix notations, problem (43) is finally characterized by{
Px +NT z = 0,
Nx = −f.

To obtain ph ∈ Wfh(û), we need to obtain the vector x ∈ R
l with verified numerical computations.

Here, we will use a basic algorithm to solve linear equations:

Find xz ∈ R
l+m s.t. Ãxz = f̃, Ã =

(
P NT

N 0

)
, xz =

(
x
z

)
, f̃ =

(
0
−f

)
.

The solution xz is enclosed by verified numerical computations.

4.3 Lipschitz constant
Finally, we estimate the Lipschitz constant of F ′[u] : V → V ∗. Here, we assume that f ′ : V → L(V,X)
is Lipschitz continuous on the open ball D ⊃ B(û, 2α). Namely, there exists a positive constant CL
satisfying

|((f ′(v) − f ′(w))u, ψ)| ≤ CL‖v − w‖V ‖u‖V ‖ψ‖V (44)

for v, w ∈ D and u, ψ ∈ V . Generally, the optimal estimation depends on the definition of f . We will
discuss the estimation of CL in Section 5 for a model case. For v, w ∈ D, we have

‖F ′[v] −F ′[w]‖V,V ∗ = sup
0 �=u∈V

sup
0 �=ψ∈V

|〈(N ′[v] −N ′[w])u, ψ〉|
‖u‖V ‖ψ‖V

= sup
0 �=u∈V

sup
0 �=ψ∈V

|((f ′(v) − f ′(w))u, ψ)|
‖u‖V ‖ψ‖V

≤ CL‖v − w‖V .

Therefore, one can put C3 := CL.

5. Computational results
To summarize this paper, we show our computational results. In the following, we present elliptic
boundary problems on several polygonal domains. Firstly, let us consider a practical formulation of
a certain example such that {

−Δu = f(u), in Ω,
u = 0, on ∂Ω
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with
f(u) = b · ∇u+ c1u+ c2u

2 + c3u
3 + g.

Here, b(x) ∈ (L∞(Ω))2, ci ∈ L∞(Ω), (i = 1, 2, 3) and g ∈ X. To show the applicability of our
verification theory to this problem, we must check whether f is Fréchet differentiable at û ∈ Vh as a
map f : V → X. This can be shown as follows. A candidate of f ′(û) : V → X is obviously

f ′(û) = b · ∇ + c1 + 2c2û+ 3c3û2.

Sobolev’s embedding theorem states that V ⊂ Lp(Ω) for p ∈ [1,∞) with ‖v‖Lp ≤ Ce,p‖v‖V , ∀v ∈ V .
Recall the generalized Hölder inequality, cf. page 93 in [3], that is,

‖uvw‖Lp0 ≤ ‖u‖Lp1‖v‖Lp2‖w‖Lp3 , for
1
p0

=
1
p1

+
1
p2

+
1
p3

≤ 1, 1 ≤ pi ≤ ∞.

For u, v, w ∈ V , it follows that

‖uv‖X ≤ ‖u‖L4‖v‖L4 ≤ C2
e,4‖u‖V ‖v‖V

and
‖uvw‖X ≤ ‖u‖L6‖v‖L6‖w‖L6 ≤ C3

e,6‖u‖V ‖v‖V ‖w‖V .

Then, we have for ν ∈ V

‖f(û+ ν) − f(û) − f ′(û)ν‖X = ‖(c2 + 3c3û)ν2 + c3ν
3‖X

≤ ‖c2‖L∞‖ν2‖X + 3‖c3‖L∞‖ûν2‖X + ‖c3‖L∞‖ν3‖X
≤

(
C2
e,4‖c2‖L∞ + C3

e,6‖c3‖L∞(3‖û‖V + ‖ν‖V )
)
‖ν‖2

V .

This shows the Fréchet differentiability of f : V → X at û ∈ Vh.
For the inverse operator norm estimation, we need the following constants. We can assume that

the computation result û ∈ Vh is essentially bounded so that û ∈ L∞(Ω) ∩ V is obtained.

‖f ′(û)‖V,X = sup
0 �=v∈V

‖f ′(û)v‖X
‖v‖V

= sup
0 �=v∈V

‖b · ∇v + c1v + 2c2ûv + 3c3û2v‖X
‖v‖V

≤ ‖|b|l2‖L∞ + Ce,2
(
‖c1‖L∞ + 2‖c2‖L∞‖û‖L∞ + 3‖c3‖L∞‖û‖2

L∞
)

=: K1,

where b = (b1, b2)T and |b|l2 = (b21 + b22)
1
2 . Furthermore, we have

‖f ′(û)‖Vc,X = sup
0 �=vc∈Vc

‖f ′(û)vc‖X
‖vc‖V

= sup
0 �=vc∈Vc

‖b · ∇vc + c1vc + 2c2ûvc + 3c3û2vc‖X
‖vc‖V

≤ ‖|b|l2‖L∞ + CM
(
‖c1‖L∞ + 2‖c2‖L∞‖û‖L∞ + 3‖c3‖L∞‖û‖2

L∞
)

=: K2.

Here, CM is the quantity defined in (19). The explicit values of K1 and K2 are obtained by verified
computations.

Let us describe the Lipschitz continuity of F ′[û] : V → V ∗ by checking inequality (44). B(û, 2α) is
assumed to be a closed ball centered at û ∈ Vh with radius 2α := 2C1C2,h. Select D as

D := {v ∈ V : ‖v − û‖V < 2α+ ε} ⊃ B(û, 2α)

with a small ε > 0. For v, w ∈ D and u, ψ ∈ V , we have

|((f ′(v) − f ′(w))u, ψ)| = |(2c2(v − w)u, ψ) + (3c3(v + w)(v − w)u, ψ)|
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≤ 2‖c2‖L∞ · ‖v − w‖L3 · ‖u‖L3 · ‖ψ‖L3

+ 3‖c3‖L∞ · ‖v + w‖L4 · ‖v − w‖L4 · ‖u‖L4 · ‖ψ‖L4

≤
(
2C3

e,3‖c2‖L∞ + 3C4
e,4‖c3‖L∞‖v + w‖V

)
‖v − w‖V · ‖u‖V · ‖ψ‖V .

Since v, w ∈ D,
‖v + w‖V < 2(‖û‖V + 2C1C2,h + ε).

Thus, it follows that

|((f ′(v) − f ′(w))u, ψ)| < CL‖v − w‖V · ‖u‖V · ‖ψ‖V , for v, w ∈ D

with
CL := 2 C3

e,3‖c2‖L∞ + 6 C4
e,4‖c3‖L∞ (‖û‖V + 2C1C2,h + ε)) .

5.1 On square domains
Next, we will present numerical results on square domains. All computations are carried out on a
Cent OS (Linux), Quad-Core AMD Opteron(tm) Processor 8376 of 2.30 GHz with 512 GB RAM
using MATLAB 2011a with INTLAB, a toolbox for verified numerical computations [22]. To obtain
a triangular mesh, we use Gmsh [5] (http://geuz.org/gmsh/).

5.1.1 Example 1
Let us consider the following semilinear Dirichlet boundary value problem on Ω = (0, 1) × (0, 1):{

−Δu = u2, in Ω,
u = 0, on ∂Ω.

(45)

An approximate solution û ∈ Vh is calculated using the quadratic conforming finite elements on a
nonuniform mesh triangulation. In the rest of this paper, CM is evaluated by the method described in
Section 3.1. Since the linear finite element space is the subspace of the quadratic one, the quadratic
finite element provides absolutely better approximation of the exact solution. Therefore, for our
current computation, we can use the projection error constant CM corresponding to the linear finite
element, which is easy to evaluate. We measure the mesh size using the maximum medium edge length
for each element. For mesh sizes of 1/16 and 1/32, the maximum û is about ‖û‖∞ ≈ 29.247. Our
verification procedure is applied to (45). When the mesh size is 1/32, it gives the following bounds:

C1 ≤ 3.121, C2,h ≤ 5.929 × 10−2, C3 ≤ 7.165 × 10−2.

Thus, it holds that

Fig. 3. Approximate solution û of (45), mesh size: 1/16.

55



C2
1C2,hC3 ≤ 4.132 × 10−2.

It turns out that there exists a solution in the closed ball B(û, ρ) with

‖u− û‖V ≤ ρ = 1.889 × 10−1.

By increasing the number of grid points, guaranteed error bounds are improved. The convergence
rate of the error depends on the ratio of C2,h. Using the residual evaluation (41), it is expected to be
O(h2). The guaranteed error bound is presented in Table I.

Table I. Verification results for (45).

1/2γ CM Ce,2 C1 C2,h C3 C2
1C2,hC3 ρ

3 5.37713×10−2 2.25079×10−1 Failed - - - -
4 2.34505×10−2 2.25079×10−1 4.2711 2.91265×10−1 7.16449×10−2 3.80671×10−1 1.67147
5 1.29561×10−2 2.25079×10−1 3.1191 5.92838×10−2 7.16449×10−2 4.13197×10−2 1.88893×10−1

6 6.37492×10−3 2.25079×10−1 2.8319 1.50966×10−2 7.16449×10−2 8.67379×10−3 4.29384×10−2

5.1.2 Example 2
Let us treat another semilinear Dirichlet boundary value problem on Ω = (0, 1) × (0, 1):{

−Δu = u3 + 5, in Ω,
u = 0, on ∂Ω.

(46)

The approximate solutions û ∈ Vh are calculated using the quadratic conforming finite element on a
nonuniform mesh. We have three approximate solutions of (46): û1 (‖û1‖∞ ≈ 6.263), û0 (‖û0‖∞ ≈
0.371) and û−1 (‖û−1‖∞ ≈ 6.962). Their shapes are shown in Fig. 4. For the approximation û0 with
a mesh size of 1/8, our computer-assisted proof method yields the following bounds:

C2
1C2,hC3 ≤ 1.348 × 10−2.

Fig. 4. Approximate solutions û1, û0 and û−1 of (46).
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Thus, we can state that there exists an exact solution u in the closed ball B(û0, ρ0) with

‖u0 − û0‖V ≤ ρ0 = 2.231 × 10−2.

Guaranteed error bounds are improved by decreasing the mesh size h presented in Table II. Here,
guaranteed error bounds are represented by ‖u−1−û−1‖V ≤ ρ−1, ‖u0−û0‖V ≤ ρ0 and ‖u1−û1‖V ≤ ρ1.

Table II. Verification results for (46).

1/2γ CM Ce,2 C1 C2,h C3 C2
1C2,hC3 ρ−1

5 1.29082×10−2 2.25079×10−1 560.26 2.25048×10−2 23.0453 1.62792×105 Failed
6 6.37492×10−3 2.25079×10−1 3.2627 5.99126×10−3 7.73894 4.93563×10−1 3.51111×10−2

1/2γ CM Ce,2 C1 C2,h C3 C2
1C2,hC3 ρ0

3 4.84064×10−2 2.25079×10−1 1.0155 2.18169×10−2 5.98946×10−1 1.34741×10−2 2.23053×10−2

4 2.34612×10−2 2.25079×10−1 1.0144 5.60044×10−3 5.78994×10−1 3.33647×10−3 5.69042×10−3

5 1.16517×10−2 2.25079×10−1 1.0141 1.47478×10−3 5.73911×10−1 8.70438×10−4 1.49623×10−3

1/2γ CM Ce,2 C1 C2,h C3 C2
1C2,hC3 ρ1

5 1.29082×10−2 2.25079×10−1 2.9506 1.67181×10−2 7.27778 1.05924 Failed
6 5.70970×10−3 2.25079×10−1 2.0967 4.17847×10−3 7.22844 1.32777×10−1 9.43554×10−3

5.1.3 Example 3
For Ω = (0, 1) × (0, 1), let us consider another example:{

−Δu = b · ∇u+ u+ u2, in Ω,
u = 0, on ∂Ω,

(47)

where b(x) = (1, 1)T . In this case, we have

‖|b(x)|l2‖L∞ =
√

2.

Figure 5 shows an approximate solution û ∈ Vh using the quadratic conforming finite element on a
nonuniform mesh (h = 1/16). Our verification method yields

C1 ≤ 4.559, C2,h ≤ 6.488 × 10−2, C3 ≤ 7.165 × 10−2,

and
C2

1C2,hC3 ≤ 9.658 × 10−2.

The verified computation ensures that there exists an exact solution in the closed ball B(û, ρ) with

‖u− û‖V ≤ ρ = 3.116 × 10−1.

Fig. 5. Approximate solution û of (47).
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Table III. Verification results for (47).

1/2γ CM Ce,2 C1 C2,h C3 C2
1C2,hC3 ρ

4 2.60362×10−2 2.25079×10−1 11.517 2.87224×10−1 7.16449×10−2 2.72905 Failed
5 1.29082×10−2 2.25079×10−1 4.5584 6.48743×10−2 7.16449×10−2 9.65776×10−2 3.11573×10−1

5.2 On hexagonal domains
Let Ω be a hexagonal domain, whose coordinates of vertices are given by

(x1, x2)T ∈
{(

sin
(nπ

3

)
, cos

(nπ
3

))T
∈ R

2 : n = 1, ..., 6
}
.

We consider the following Dirichlet boundary value problem{
−Δu = u2 + 10, in Ω,
u = 0, on ∂Ω.

(48)

We pay attention to two approximate solutions û1, û2 ∈ Vh given by the finite element method, which
are shown in Fig. 6 and Fig. 7 with a mesh size of 1/16.

Here, we give a detailed description of an advantage of the residual evaluation (41). In Tables IV
and V show the computational results of the approximate solution û1 ∈ Vh based on the linear and
quadratic conforming finite elements, respectively. In the residual evaluation (41), we adopt ph ∈ RT0

for û obtained using the linear finite element and ph ∈ RT1 for û obtained using the quadratic finite

Fig. 6. Approximate solution û1 of (48).

Fig. 7. Approximate solution û2 of (48).
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Table IV. Results for û1 obtained using linear finite element with ph ∈ RT0.

1/2γ CM Ce,2 C1 C2,h C3 C2
1C2,hC3 ρ1

3 6.288×10−2 3.777×10−1 3.667 9.003×10−1 2.018×10−1 2.441 Failed
4 3.231×10−2 3.749×10−1 3.477 4.609×10−1 1.988×10−1 1.107 Failed
5 1.886×10−2 3.743×10−1 3.404 2.248×10−1 1.981×10−1 5.155×10−1 Failed
6 8.745×10−3 3.741×10−1 3.334 1.131×10−1 1.978×10−1 2.482×10−1 4.403×10−1

7 4.819×10−3 3.739×10−1 3.308 5.662×10−2 1.977×10−1 1.224×10−1 2.004×10−1

Table V. Results for û1 obtained using quadratic finite element with ph ∈ RT1.

1/2γ CM Ce,2 C1 C2,h C3 C2
1C2,hC3 ρ1

3 5.776×10−2 3.779×10−1 3.821 1.255×10−1 2.019×10−1 3.699×10−1 6.351×10−1

4 2.823×10−2 3.749×10−1 3.496 4.479×10−2 1.987×10−1 1.088×10−1 1.662×10−1

5 2.138×10−2 3.745×10−1 3.437 1.491×10−2 1.983×10−1 3.491×10−2 5.216×10−2

element. Comparing two cases in Tables IV and V, we can observe that higher-order elements yield
greatly improved results.

Next, we present results with respect to û2, which is from the quadratic finite element space.
Table VI presents verified results for û2. Moreover, we compare three residual evaluation method. In
Table VII, the first column denotes the result of the residual evaluation reported in [26]. The second
column uses a refinement technique for residual evaluation, which was reported in [25, 28]. The third
column denotes the method proposed in this paper. The comparison in Table VII implies that our
proposed method enables much better estimation. Numerical values in the last column in Table VII
express the upper bound of the absolute error ρ2 using the residual bounds in (41).

Table VI. Results for û2 obtained using quadratic finite element with ph ∈ RT1.

1/2γ CM Ce,2 C1 C2,h C3 C2
1C2,hC3 ρ2

3 5.776×10−2 3.779×10−1 5.167 1.966×10−1 2.019×10−1 1.061 Failed
4 2.823×10−2 3.749×10−1 3.805 6.715×10−2 1.987×10−1 1.931×10−1 2.865×10−1

5 2.138×10−2 3.745×10−1 3.642 2.204×10−2 1.983×10−1 5.794×10−2 8.272×10−2

Table VII. Comparison of residual evaluation methods.

1/2γ [26] [25, 28] (41) ‖u− û2‖V ≤ ρ2

3 11.18 0.7509 0.1966 Failed
4 5.467 0.3796 0.0672 0.2865
5 4.141 0.2776 0.0221 0.0828

5.3 On nonconvex domains
Another example is the case in which Ω is a nonconvex domain. Let us consider the Dirichlet boundary
problem of the form {

−Δu = u2 + 10, in Ω,
u = 0, on ∂Ω,

(49)

on Ω = (0, 2)2 \ [1, 2]2 which is an L-shaped domain. An approximate solution û ∈ Vh of (49) is shown
in Fig. 8 with a mesh size of 1/16. Verification results are shown in Table VIII.

Using the Raviart-Thomas mixed finite element, CM is calculated by the procedure given by The-
orem 5. The convergence rate of CM becomes less than O(h). This is caused by the lack of H2

regularity. An undesirable situation with respect to the ratio of C2,h is similarly obtained for the
same reason. Here, C2,h uses the evaluation in (41) by the P2-RT1 smoothing technique, which means
the approximate solution is spanned by quadratic finite elements and ph is chosen from RT1. Al-
though the convergence rate is low, there is a unique solution in the error bound ρ based on the
Newton-Kantorovich theorem. In the case that the mesh size is 1/8, we have

C2
1C2,hC3 ≤ 1.541 × 10−1.
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Fig. 8. Approximate solution û of (49).

Table VIII. Verification results for (49) on L-shaped domain.

1/2γ CM Ce,2 C1 C2,h C3 C2
1C2,hC3 ρ

3 7.33147×10−2 3.29944×10−1 1.4591 3.51574×10−1 1.53955×10−1 1.15242×10−1 5.46550×10−1

4 3.58873×10−2 3.23931×10−1 1.4216 2.17645×10−1 1.48396×10−1 6.52736×10−2 3.20226×10−1

5 1.89612×10−2 3.22588×10−1 1.4139 1.27178×10−1 1.47167×10−1 3.74146×10−2 1.83309×10−1

Thus, the radius of the ball B̄(û, ρ) containing the exact solution is

‖u− û‖V ≤ ρ = 1.153 × 10−1.
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