GALOIS GROUPS OF PROJECTIONS

GIAN PIETRO PIROLA AND ENRICO SCHLESINGER

1. Forward

This paper contains the text of a talk given at the "Symposium on Algebraic Geometry" held at Niigata, February 4-6, 2004. Full details can be found in [13]. We are very grateful to Professor Hisao Yoshihara for inviting us to the Symposium at Niigata.

2. Galois and monodromy groups

Let X and Y be irreducible complex algebraic varieties; $\pi: X \to Y$ a finite morphism of degree d (dim $X = \dim Y$). The Galois group of π is by definition

$$Gal(\hat{K}/k(Y)) \subseteq S_d$$

where K(Y) is the field of rational functions on Y, \hat{K} is the Galois closure of the field extension K(X)/K(Y), and S_d is the symmetric group on d letters. The Galois group acts on the roots of the minimal polynomial of a primitive element of K(X)/K(Y), and it is well defined up to conjugation as a subgroup of S_d .

One can also define the monodromy group G_{π} of π as the image of the "path-lifting" representation:

$$\rho: \pi_1(U, y) \to \operatorname{Aut}(\pi^{-1}(y)) \cong S_d$$

where U is a Zariski open subset of Y over which π is étale.

It is not difficult to see the monodromy group is isomorphic to the Galois group [7], and so in particular does not depend on the choice of the open set U.

The first author was partially supported by: 1) MIUR PRIN 2003: Spazi di moduli e teoria di Lie; 2) Gnsaga; 3) Far 2002 (PV): Varietà algebriche, calcolo algebrico, grafi orientati e topologici. The second author was partially supported by MIUR PRIN 2002 Geometria e classificazione delle varietà proiettive complesse.

3. Main results

Zariski [17] proved that, if g > 6 and X is a general smooth projective curve of genus g, then the Galois group of any covering $X \to \mathbb{P}^1$ is not solvable.

Zariski thought of this result as the geometric analogue of Abel's Theorem on the non solvability by radicals of a general algebraic equation of degree $n \geq 5$. In modern terminology, Zariski's Theorem says a general curve X of genus g > 6 cannot be rationally uniformized by radicals. In his paper, Zariski goes further and asks whether a general X can be algebraically uniformized by radicals, that is, whether there exists a finite map $Z \to X$ where Z is a curve that can be rationally uniformized by radicals. As far as we know this problem is still open. We will give in a forthcoming paper [14] an example of a genus 7 curve that can be uniformized by radicals algebraically but not rationally.

Zariski's result has been since greatly strengthened, and it is now known that, for a general curve X of genus g > 3, the monodromy group of a degree d indecomposable covering $X \to \mathbb{P}^1$ is either S_d -in which case we say the covering is uniform - or A_d [6].

As far as existence of uniform coverings (Galois groups S_d), it is classical that a general curve X of genus g admits a degree d uniform covering $X \to \mathbb{P}^1$ if $d \geq \frac{g+2}{2}$ (every curve if $d \geq g+2$). The corresponding results for the alternating groups A_d are more

The corresponding results for the alternating groups A_d are more recent. Magaard and Volklein [9] have proven that a general curve X of genus g admits a degree d covering $X \to \mathbb{P}^1$ with monodromy group A_d if $d \geq 2g + 1$. Artebani and Pirola [2] have shown every X curve of genus g admits such a covering if $d \geq 12g + 4$.

In this paper we will be interested in coverings of \mathbb{P}^1 obtained by projecting a curve embedded in projective space from a codimension two linear subspace, thus for example we project a plane curve from a point, or a space curve from a line.

We use the following notation: $C \subset \mathbb{P}^r$ will be a reduced, irreducible, nondegenerate curve of degree d; $L \subset \mathbb{P}^r$ an (r-2)-plane;

We say L is uniform if the projection $\pi_L: C \dashrightarrow \mathbb{P}^1$ is uniform. We mention a few results in this context:

- Miura and Yoshihara [11, 12, 15] have classified the Galois groups of projections of smooth plane curves of degree ≤ 5.
 In particular, they showed there are only finitely many non-uniform points for these curves.
- Cukierman [4] has proven that, if C is a general plane curve of degree d, f or every $x \in \mathbb{P}^2 \setminus C$ the projection $\pi_x : C \to \mathbb{P}^1$ is uniform.

• the Uniform Position Principle can be stated as follows: for any nondegenerate curve $C \subset \mathbb{P}^r$, the general (r-2)-plane L is uniform.

It is therefore natural to ask for a bound for the dimension of non-uniform subspaces in the grassmannian $\mathbb{G}(r-2,\mathbb{P}^r)$. In this respect we have

Theorem 3.1. For any nondegenerate curve $C \subset \mathbb{P}^r$, The locus of non-uniform subspaces has codimension at least two in $\mathbb{G}(r-2,\mathbb{P}^r)$.

For smooth curves the theorem is easily proven (cf. the proof of Theorem 3.2 below); for curves with arbitrary singularities the proof is more involved and can be found in [13].

Theorem 3.1 is sharp: in \mathbb{P}^2 there are plane curve with non uniform points (e.g. the Galois coverings of Miura and Yoshihara). When r > 2, one can construct "trivial" examples of codimension two families of non-uniform subspaces as follows. Suppose $x \in \mathbb{P}^r$ is a **non-birational** point, that is, projection from x

$$\pi_x: C \dashrightarrow \mathbb{P}^{r-1}$$

is not birational onto its image. Then the Schubert cycle of (r-2)-planes through x:

$$\sigma(x) = \{ L \in \mathbb{G}(r-2, \mathbb{P}^r) : x \in L \}$$

is contained in the non-uniform locus, because $x \in L$ not birational and $r > 2 \Rightarrow L$ decomposable $(\pi_L \text{ factors through } \pi_x) \Rightarrow L$ non-uniform.

For smooth curves in \mathbb{P}^3 we have improved Theorem 3.1 classifying curves with a locus of non-uniform lines of codimension two. The result is:

Theorem 3.2. Suppose: $C \subset \mathbb{P}^3$ is a smooth irreducible nondegenerate curve; $\Sigma \subset \mathbb{G}(1,\mathbb{P}^3)$ is an irreducible surface; the general line L in Σ is non-uniform and does not meet C. Then one of the following possibilities holds:

- (1) $\Sigma = \sigma(x)$, with $x \in \mathbb{P}^3 \setminus C$ non-birational;
- (2) C is a twisted cubic curve, and $L = H_1 \cap H_2$ where H_1 , H_2 are osculating planes for C;
- (3) C is a rational curve of degree 4 (resp. 6), and $L = H_1 \cap H_2$ where H_1 , H_2 bitangent (resp. tritangent) planes for C.

Remarks

• The theorem holds as well for curves with mild singularities (for example for curves with only nodes and simple cusps).

- Every rational curve of degree 3 or 4 admits a surface of non-uniform lines as in the theorem.
- The rational sextic curve studied by in [3] admits a surface of non-uniform lines, but this is not the case for a general rational sextic.

Sketch of the proof of Theorem 3.2

The codomain of projection from the line L is the line \mathbb{P}^1_L of planes through L in the dual projective space. A standard argument shows that, since the projection is not uniform, \mathbb{P}^1_L contains at least two planes that are either multitangent or osculating planes for C, that is, are in the singular locus C^*_{sing} of the dual surface C^* . Since C^*_{sing} is one dimensional, we see dim $\Sigma \leq 2$, and so obtain a proof of Theorem 3.1 in case C is smooth - more generally, in case C^* is reduced.

Case one: \mathbb{P}^1_L contains at least three singular points of C^* .

Since L varies in a surface, it follows C_{sing}^* has a planar component Z of degree ≥ 3 and \mathbb{P}^1_L belongs to the plane of Z. Dualizing we see $\Sigma = \sigma(x)$, and conclusion (1) holds.

Case two: \mathbb{P}^1_L contains exactly two singular points and no smooth point of C^* .

Then the projection π_L has only two branch points, hence $C \cong \mathbb{P}^1$ and $\pi_L(z) = z^d$.

Since L varies in a surface, we find infinitely many osculating planes H with

$$C \cap H = dP$$
.

But then d = 3, and conclusion (2) holds.

Case three: \mathbb{P}^1_L contains exactly two singular points and at least one smooth point of C^* .

Then the monodromy group G_L contains a transposition, while $G_L \neq S_d$. It follows that G_L is not primitive, hence π_L factors nontrivially as

$$C \xrightarrow{\alpha} Y \xrightarrow{\beta} \mathbb{P}^1.$$

The morphism β has exactly two branch points, otherwise \mathbb{P}^1_L would meet C^*_{sing} in more than 2 points. Thus $Y \cong \mathbb{P}^1$ and $\beta(z) = z^e$ for some $e \geq 2$. Since C has a finite number of hyperosculating and multiosculating planes, we have $e = \deg \beta = 2$.

We may assume $\Sigma \neq \sigma(x)$, otherwise conclusion (1) holds. Then a general plane H contains some line $L \in \Sigma$. We claim this implies C is rational. Since the projection from L factors as $C \xrightarrow{\alpha} \mathbb{P}^1 \xrightarrow{\beta} \mathbb{P}^1_L$, we have

$$C \cap H = E_1 + E_2$$

where the divisors E_1 and E_2 are fibres of α , and therefore are lineraly equivalent. Since H is a general plane, the Uniform Position Principle now implies $A_1 \sim A_2$ for *every* pair of divisors A_1 , A_2 of degree $a = \deg \alpha$ with $A_1 + A_2 = C \cap H$.

Given 2 distinct points P and Q in $C \cap H$, we choose F_1 and F_2 of degree a-1 such that

$$P + Q + F_1 + F_2 = C \cap H$$
.

Then

$$P + F_1 \sim Q + F_2$$
 e $P + F_2 \sim Q + F_1$

hence

$$2P \sim 2Q$$
.

It follows the Jacobian contains infinitely many 2-torsion points and ${\cal C}$ must be rational.

Thus C is rational, and the general $L \in \Sigma$ is contained in 2 multitangent planes H such that $C \cap H = 2E$. Since L varies in a surface, we must have a curve of divisors 2E in the linear system defining the embedding $C \hookrightarrow \mathbb{P}^3$.

We set:

- $\mathbb{P}_b = \mathbb{P}H^0(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1}(b)) = \text{effective divisors of degree } b \text{ on } \mathbb{P}^1;$
- $\mathbb{P}(V) \cong \mathbb{P}^{3*} \subset \mathbb{P}_{2a} = \text{linear series defining } C \hookrightarrow \mathbb{P}^3 = \mathbb{P}(V^*);$
- $q: \mathbb{P}_a \to \mathbb{P}_{2a}$ the map $E \mapsto 2E$;
- $Y \subset \mathbb{P}_a$ a curve of divisors E with $q(Y) \subset \mathbb{P}(V)$.

Now the conclusion follows from:

Proposition 3.3. Suppose

- (1) $Y \subset \mathbb{P}_a$ is a reduced, irreducible, curve of degree e;
- (2) q(Y) spans a 3-plane $\mathbb{P}(V) \subset \mathbb{P}_{2a}$;
- (3) the linear series $\mathbb{P}(V)$ is base point free and defines an embedding of \mathbb{P}^1 in \mathbb{P}^3 .

Then either a = e = 2 and Y is a smooth conic or a = e = 3 and Y is a twisted cubic curve.

Examples

(1) Suppose a = 2. Then $q(\mathbb{P}_2)$ is a Veronese surface in \mathbb{P}_4 , and every 3-plane $\mathbb{P}(V)$ in \mathbb{P}_4 cuts a curve q(Y) on the Veronese. It follows every rational quartic admits a surface of non uniform (even decomposable) lines.

(2) Case a=3: the intersection of $q(\mathbb{P}_3)$ with a general 3-plane $\mathbb{P}(V)$ is zero dimensional, hence the general rational sextic does not have a surface of lines as in conclusion (3) of Theorem 3.2. On the other hand, let $Y \subset \mathbb{P}_3$ be the twisted cubic:

$$f(t) = [x + tx^3 + t^2 - t^3x^2]$$

The image $q(Y) \subset \mathbb{P}_6$ spans a \mathbb{P}^3 . We obtain the rational sextic studied by Barth and Moore, which has a surface of non-uniform lines as in conclusion (3) of Theorem 3.2..

(3) The normal rational quartic $Y \subset \mathbb{P}_4$:

$$f(t) = [1 - 2xt - 2x^2t^2 - 4x^3t^3 + 4x^4t^4]$$

has image $q(Y) \subset \mathbb{P}_8$ spanning just a \mathbb{P}^4 :

$$[1 - 4tx + 28t^4x^4 - 32t^7x^7 + 16t^8x^8].$$

and only a \mathbb{P}^3 in characteristic 7 !! Thus proposition is false in char.=7.

Sketch of the proof of Proposition 3.3 Given $s \in \mathbb{P}^1$, let $H(s) \subset \mathbb{P}_a$ denote the hyperplane of divisors containing s. The curve Y is not in H(s) for any s. We claim:

For a general $s \in \mathbb{P}^1$, the intersection $H(s) \cap Y$ consists of $e = \deg Y$ distinct points.

Otherwise: for every s the hyperplane H(s) is tangent to Y:

$$\Gamma = \{H(s) : s \in \mathbb{P}^1\} \subset Y^* \subset \mathbb{P}_a^*$$

Biduality theorem (roughly) $\Rightarrow Y \subset \Gamma^* = \Delta$ where Δ is the hypersurface defined by the discriminant. Thus every divisor in Y contains at least one point of multiplicity ≥ 2 , and so the linear series $\mathbb{P}(V)$ generated by q(Y) contains infinitely many divisors with a point of multiplicity ≥ 4 , absurd.

Consider the projection of C from a generic tangent line: for $s \in \mathbb{P}^1$ general, the tangent line $T_{f(s)}C$ meets C only at the point of tangency f(s) (Kaji's theorem [8]) and with multiplicity 2. Therefore projection from $T_{f(s)}C$ is a morphism of degree 2a-2

$$\pi: C = \mathbb{P}^1 \to \mathbb{P}^1.$$

Furthermore, if E is a divisor in $Y \cap H(s)$, the linear series defining π contains the divisor

$$2E - 2s = 2s_1 + \dots + 2s_{a-1}$$

and so $s_1 + \cdots + s_{a-1}$ is contained in the ramification divisor R_{π} of π . We conclude, since $Y \cap H(s)$ consists of e distinct divisors, that $\deg R_{\pi} \geq e(a-1)$.

We then have by Riemann-Hurwitz

$$-2 = -2(2a-2) + \deg(R_{\pi}) \ge -2(2a-2) + e(a-1)$$

and so

$$e \le 4 - \frac{2}{a - 1}.$$

Since e > 1, we must have either e = 3 and $a \ge 3$ or e = 2 and $a \ge 2$. One can now finish the proof using results due to Hopf and Eisenbud [5].

In case $C \subset \mathbb{P}^r$ is an arbitrary reduced, irreducible, nondegenerate curve, essentially the same arguments prove the following theorem [13]:

Theorem 3.4. Suppose

- $C \subset \mathbb{P}^r$ reduced, irreducible, nondegenerate curve.
- $\Sigma \subset \mathbb{G}(r-2,\mathbb{P}^3)$ irreducible of dimension r-1.
- Generic subspace of Σ is decomposable and does not meet C.

Then either C is rational or the projection

$$\{(L,H) \in \Sigma \times \mathbb{P}^{r*}: L \subset H\} \to \mathbb{P}^{r*}$$

is not dominant.

References

- [1] E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris. *Geometry of algebraic curves. Vol. I.* Springer-Verlag, New York, 1985.
- [2] M. Artebani, G. Pirola Algebraic functions with even monodromy. Proceedings of the AMS, to appear
- [3] W. Barth and R. Moore. On rational plane sextics with six tritangents. In *Algebraic geometry and commutative algebra, Vol. I*, pages 45–58. Kinokuniya, Tokyo, 1988.
- [4] F. Cukierman. Monodromy of projections. *Mat. Contemp.*, 16:9–30, 1999. 15th School of Algebra (Portuguese) (Canela, 1998).
- [5] D. Eisenbud. Linear sections of determinantal varieties. Amer. J. Math., 110(3):541–575, 1988.
- [6] R. Guralnick and K. Magaard. On the minimal degree of a primitive permutation group. J. Algebra, 207(1):127–145, 1998.
- [7] J. Harris. Galois groups of enumerative problems. *Duke Math. J.*, 46(4):685–724, 1979.
- [8] H. Kaji On the tangencially degenerate curves. *Journal of the London Math. Soc.* (2) 33 (1986), no. 3, 430-440.
- [9] K. Magaard, H. Völklein The monodromy group of a function on a general curve. Preprint, math.AG/0304130
- [10] R. Miranda. Algebraic curves and Riemann surfaces. American Mathematical Society, Providence, RI, 1995.
- [11] K. Miura. Field theory for function fields of plane quintic curves. *Algebra Colloq.*, 9(3):303–312, 2002.

- [12] K. Miura and H. Yoshihara. Field theory for function fields of plane quartic curves. J. Algebra, 226(1):283–294, 2000.
- [13] G.P. Pirola and E. Schlesinger Monodromy of Projective Curves Preprint, math.AG/0312375.
- [14] G.P. Pirola and E. Schlesinger In Preparation.
- [15] H. Yoshihara. Function field theory of plane curves by dual curves. *J. Algebra*, 239(1):340–355, 2001.
- [16] H. Yoshihara. Galois lines for space curves. Preprint.
- [17] O. Zariski Sull'impossibilità di risolvere parametricamente per radicali un'equazione algebrica f(x,y)=0 di genere p>6 a moduli generali. Atti Accad. Naz. Lincei Rend., Cl. Sc. Fis. Mat. Natur., serie VI , 3:660–666, 1926.

DIPARTIMENTO DI MATEMATICA "F. CASORATI", UNIVERSITÁ DI PAVIA, VIA FERRATA 1, 27100 PAVIA, ITALIA

E-mail address: pirola@dimat.unipv.it

DIPARTIMENTO DI MATEMATICA, POLITECNICO DI MILANO, PIAZZA LEONARDO DA VINCI 32, 20133 MILANO, ITALIA

E-mail address: enrsch@mate.polimi.it