ON WEAKENED FANO 3-FOLDS

TATSUHIRO MINAGAWA

1. Introduction

We will work over \mathbb{C} in this talk.

Definition 1.1. Let X be a 3-dimensional smooth projective variety.

- (1) We call X a Fano 3-fold when its anti-canonical divisor $-K_X$ is ample.
- (2) We call X a weak Fano 3-fold when its anti-canonical divisor $-K_X$ is nef and big.

Definition 1.2. Let X be a smooth weak Fano 3-fold and $(\Delta, 0)$ a germ of the 1-dimensional disk. We call X a weakened Fano 3-fold when

- (i) X is not a Fano 3-fold, and
- (ii) there exists a small deformation $\mathfrak{f}\colon \mathscr{X} \to (\Delta,0)$ of X such that the fiber $\mathscr{X}_s = \mathfrak{f}^{-1}(s)$ is a Fano 3-fold for any $s \in (\Delta,0) \setminus \{0\}$.

Let X be a weakened Fano 3-fold. We remark that $B_2(X) \geq 2$ because X is a weak Fano which is not a Fano 3-fold. Fano 3-folds with $B_2 \geq 2$ are classified by Mori and Mukai (cf. [M-M 1], [M-M 2]). In particular, $2 \leq B_2 \leq 10$.

Example 1.3. $\mathbb{P} \times \mathbb{F}_2$ is a weakened Fano 3-fold with $B_2(X) = 3$ and $(-K)^3 = 48$ which will deform to $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$.

Let S be a weak del Pezzo surface but a del Pezzo surface. Then it is a weakened del Pezzo surface. Thus $\mathbb{P}^1 \times S$ is a weakened Fano 3-fold. We call such weakened Fano 3-folds "product type".

Theorem 1.4. (H.Sato [Sa]) There are exacty 15 toric weakened Fano 3-folds X up to isomorphism.

In this classification, 11 toric weakened Fano 3-folds are of product type. Moreover, we had the following on product type.

Theorem 1.5. Let X be a weakened Fano 3-fold which will deform to $X_t \simeq \mathbb{P}^1 \times S_t$ where S_t is a del Pezzo surface. Then X is of product type.

Our main result is the following:

Theorem 1.6. Weakened Fano 3-folds are classified as in Classified Table.

Acknowledgement. I would like to thank Doctor Hiroshi Sato for useful discussions and encouraging the author during the preparation of this contents. I also wishes to thank organizers for giving me the opportunity to talk about this contents.

Notations. (1) The *i*-th Betti number of a manifold X is denoted by $B_i(X)$.

(2) The \mathbb{P}^1 -bundle $\mathbb{P}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(n))$ over \mathbb{P}^1 , a Hirzebruch surface of degree n, is denoted by \mathbb{F}_n .

Definition 2.1. Let X be a smooth weak Fano 3-fold, and $\phi \colon X \to \bar{X}$ a crepant birational projective morphism. We call ϕ primitive when its relative Picard number $\rho(X/\bar{X}) = 1$. Moreover, letting E be the exceptional locus of ϕ , we will define as follows.

- (i) ϕ is a crepant primitive birational contraction of type I when $\dim(E) = 1$.
- (ii) ϕ is a crepant primitive birational contraction of type II when $\dim(E)=2$ and $\dim \phi(E)=0$.
- (iii) ϕ is a crepant primitive birational contraction of type III when $\dim(E)=2$ and $\dim \phi(E)=1$.

Theorem 2.2. (Cf.[Pa],[Mi1]) Let X be a smooth weak Fano 3-fold, and $\phi: X \to \bar{X}$ a crepant primitive birational contraction.

- (1) If ϕ is of type I, then any deformation of ϕ , ϕ_t is of type I. In particular ϕ_t is not an isomorphism.
- (2) If ϕ is of type II, then any deformation of ϕ , ϕ_t is of type II. In particular ϕ_t is not an isomorphism.
- (3) If ϕ is of type III, then any deformation of ϕ , ϕ_t is of type I or type III unless ϕ is of type (III,0,2), that is a contraction which contracts a divisor E to a curve $C \subset \bar{X}$ such that
 - (1) $C \simeq \mathbb{P}^1$
 - (2) $\phi|_E: E \to C$ is a \mathbb{P}^1 -bundle structure
 - $(3) \ (-K_{\bar{X}} \cdot C) = 2$

Moreover, If ϕ is of type (III,0,2), then there exists a deformation of ϕ such that ϕ_t is an isomorphism for any $t \in (\Delta, 0) \setminus \{0\}$.

Theorem 2.3. Let X be a weak Fano 3-fold which is not a Fano 3-fold. X is weakened Fano 3-fold if and only if every primitive crepant contraction is of type (III, 0, 2).

Let X be a weakened Fano 3-fold, and $\phi_i: X \to X_i$ be a primitive crepant birational contraction, that is of type (III,0,2). ϕ_i contracts a divisor E_i to a curve $C_i \subset \bar{X}$. Let f_i be a fiber of $\phi_i|_{E_i}$. Then we have an automorphism $r_i: H^2(X,\mathbb{R}) \to H^2(X,\mathbb{R})$ defined by $L \to L + (L \cdot f_i)E_i$ which is a reflection. Let $\mathfrak{f}: \mathscr{X} \to (\Delta,0)$ be a deformation of X to Fano 3-folds and $Nef(X_t)$ be the nef cone of X_t . We may consider $Nef(X_t) \subset H^2(X,\mathbb{R})$.

Theorem 2.4. ([W2])

$$r_i(Nef(X_t)) \subset Nef(X_t)$$

Let $R = \mathbb{R}_{\geq 0}[l]$ be an extremal ray of X (hence an extremal ray of X_t), and $\psi: X \to Y$ the extremal contraction corresponding to R. Let $R_i = \mathbb{R}_{\geq 0}[r_i(l)]$.

Proposition 2.5. (1) R_i is an extremal ray of X_t .

(2) Let $\psi_i: X_t \to Y_t$ the extremal contraction corresponding to R_i . If ψ is the blow-up along a smooth curve, then so is ψ_i and $Exc(\psi_i) = r_i(Exc(\psi))$.

Using this proposition and the final column of classified table in [M-M 1], we know the deformation type of X_t .

 $\delta_X:=(-K_X)^3.$ $X_t:$ No. of Fano 3-fold in [M-M 1] which is a deformation of X.

e: Number of primitive crepant contractions.

n: Degree of Hirzebruch surface which is the exceptional divisor of a primitive crepant contraction.

Table.1 weakened Fano 3-folds with $B_2=2$

No.	δ_X	X_t	X	e	n
1_p	12	6	$Z := \mathbb{P}(\mathcal{O}_{\mathbb{P}^2}(2) \oplus \Omega^1_{\mathbb{P}^2}(2))$	1	1) 0
			L_Z : the tautological line bundle.		2) 2
			1) $X \in 2L_Z $.		
			2) $X' \in L_Z $, X is a double cover of X'		
			whose branch locus is a member of $ -K_{X'} $.		
2	20	12	$E' \cong \mathbb{F}_0$: smooth quadric surface in \mathbb{P}^3 .	1	0
			$\Gamma \subset E'$: a smooth curve of bi-degree $(2,4)$.		
			X is the blow-up of \mathbb{P}^3 along Γ .		
3	28	21	$E' \cong \mathbb{F}_0$: hyperplane in $Q \subset \mathbb{P}^4$.	1	0
			$\Gamma \subset E'$: a smooth curve of bi-degree (1,3).		
			X is the blow-up of \mathbb{P}^3 along Γ .		
4_p	48	32	$Z := \mathbb{P}(\mathcal{O}_{\mathbb{P}^2}(2) \oplus \Omega^1_{\mathbb{P}^2}(2))$	1	1
			L_Z : the tautological line bundle. $X \in L_Z $.		

Table.2 weakened Fano 3-folds with $B_2=3$

No.	δ_X	X_t	X	e	n
1_p	12	1	$X' := \mathbb{F}_2 \times \mathbb{P}^1$, X is a double cover of X'	1	0
•			whose branch locus is a member of $ -K_{X'} $.		
2	18	3	s: a section with $s^2 = 2$ on \mathbb{F}_2 . X is a divisor	1	0
			on $\mathbb{F}_2 \times \mathbb{P}^2$ which is a member of $ p_1^*O_{\mathbb{F}_2}(s) \otimes$		
			$p_2^*O_{\mathbb{P}^2}(2) $		
3	24	7	$Y := \mathbb{P}^2 \times \mathbb{P}^1, \ E' \in p_1^* O_{\mathbb{P}^2}(1) \otimes p_2^* O_{\mathbb{P}^1}(1) $	1	1
			which is isomorphic to \mathbb{F}_1 . s : a section with		
			$s^2 = 1$ on E' . $\Gamma \sim 3s$ on E' . X is the blow-		
			up of Y along Γ .		
4	26	9	$\pi: Y = \mathbb{P}(O_{\mathbb{P}^2} \oplus O_{\mathbb{P}^2}(2)) \to \mathbb{P}^2. E' \in$	1	4
			$ \pi^* O_{\mathbb{P}^2}(2) $ which is isomorphic to \mathbb{F}_4 . s: a		
			section with $s^2 = 4$ on E' . $\Gamma \sim 3s$ on E' . X		
			is the blow-up of Y along Γ .		
5	26	10	Y : the blow-up of $Q \subset \mathbb{P}^4$ along a conic	1	0
			on it. E' : its exceptional divisor which is		
			isomorphic to \mathbb{F}_0 . $\Gamma \subset E'$: a smooth curve		
			of bi-degree $(1,2)$. X is the blow-up of Y		
			along Γ .		

6	30	13	$Y \subset \mathbb{P}^2 \times \mathbb{P}^2$: a member of $ p_1^*O_{\mathbb{P}^2}(1) \otimes$	1	1
			$ p_2^*O_{\mathbb{P}^2}(1) $. $\pi:Y\to\mathbb{P}^2$ the restriction of		
			p_2 . $E' \subset Y$: a member of $ \pi^*O_{\mathbb{P}^2}(1) $ which		
			is isomorphic to \mathbb{F}_1 . s: a section with $s^2 = 1$		
			on E' . $\Gamma \sim 2s$ on E' . X is the blow-up of Y		
			along Γ .		
			Y: No.4 of Table 1. $\pi: Y \to \mathbb{P}^2$ be the	2	1,1
			extremal contraction (uniquely determined).		,
			$E' \subset Y$: a member of $ \pi^*O_{\mathbb{P}^2}(1) $ which is		
			isomorphic to \mathbb{F}_1 . s: a section with $s^2 = 1$		
			on E' . $\Gamma \sim 2s$ on E' . X is the blow-up of Y		
			along Γ .		
7	36	17	$Y := \mathbb{P}^2 \times \mathbb{P}^1$. $E' \subset Y$: a member of	1	0
	00		$ p_1^*O_{\mathbb{P}^2}(1) $ which is isomorphic to \mathbb{F}_0 . $\Gamma \subset$	_	Ü
			E': a smooth curve of bi-degree $(2,1)$. X is		
			the blow-up of Y along Γ .		
8	38	19	Y: the blow-up of $Q \subset \mathbb{P}^4$ with center a point	1	1
	30	10	$p \in Q$. E' its exceptional divisor. $q \in E'$ a	1	1
			point which does not lies on the conic which		
			parameterize lines in Q which through p . X		
			is the blow-up of Y with center q .		
9	38	20	Y: the blow-up of $Q \subset \mathbb{P}^4$ along a line on it.	1	1
9	30	20	E': its exceptional divisor which is isomor-	1	1
			phic to \mathbb{F}_1 . s : a section with $s^2 = 1$ on E' .		
10	4.4	25	$\Gamma \sim s$ on E' . X is the blow-up of Y along Γ .	1	0
10	44	25	Y: the blow-up of \mathbb{P}^3 along a line on it. E':	1	U
			its exceptional divisor which is isomorphic		
			to \mathbb{F}_0 . $\Gamma \subset E'$: a smooth curve of bi-degree		
11	40	07	$(1,1)$. X is the blow-up of Y along Γ .	1	0
11_p	48	27	$\mathbb{F}_2 \times \mathbb{P}^1$	1	0
12_p	52	31	Q' : the singular quadric 3-fold $xy = z^2$ in \mathbb{P}^4 .	1	0
			Y: the blow-up of Q' along its singular locus		
			l, which is a crepant resolution of Q' . E' :		
			its exceptional divisor which is isomorphic to		
			\mathbb{F}_0 . Γ : a fiber of $E' \to l$. X is the blow-up		
			of Y along Γ .		

Table.3 weakened Fano 3-folds with $B_2=4\,$

No.	δ_X	X_t	X	e	n
1	24	1	s: a section with $s^2 = 2$ on \mathbb{F}_2 . X is a di-	1	0
			visor on $\mathbb{F}_2 \times \mathbb{P}^1 \times \mathbb{P}^1$ which is a member of		
			$ p_1^*O_{\mathbb{F}_2}(s)\otimes p_2^*O_{\mathbb{P}^1}(1)\otimes p_3^*O_{\mathbb{P}^1}(1) $		
			t : a fiber of $\mathbb{F}_2 \to \mathbb{P}^1$. $E_2' \subset \mathbb{F}_2 \times \mathbb{P}^1$: a mem-	2	0,2
			ber of $ p_1^*O_{\mathbb{F}_2}(t)\otimes p_2^*O_{\mathbb{P}^1}(1) $ which is isomor-		
			phic to \mathbb{F}_2 . h' a section with ${h'}^2 = 2$ on E'_2 .		
			$\Gamma \sim 2h'$ on E' . X is the blow-up of $\mathbb{F}_2 \times \mathbb{P}^1$		
			along Γ .		

I					
			$E_2' \subset \mathbb{F}_2 \times \mathbb{P}^1$: a member of $ p_1^*O_{\mathbb{F}_2}(s) $ which	2	0,0
			is isomorphic to \mathbb{F}_0 . $\Gamma \subset E_2'$: a smooth curve		
			of bi-degree $(2,2)$. X is the blow-up of Y		
			along Γ .		
2	28	2	$\pi: Y = \mathbb{P}(O_{\mathbb{P}^1 \times \mathbb{P}^1} \oplus O_{\mathbb{P}^1 \times \mathbb{P}^1}(1,1)) \to \mathbb{P}^1 \times \mathbb{P}^1.$	1	2
			$E' \subset Y$: a member of $ \pi^* O_{\mathbb{P}^1 \times \mathbb{P}^1}(1,1) $ which		
			is isomorphic to \mathbb{F}_2 . h' a section with ${h'}^2=2$		
			on E_2' . $\Gamma \sim 2h'$ on E' . X is the blow-up of		
			Y along Γ .	2	0.0
			$p: Y \to Q'$ where Y: No.12 of Table 2 and	2	0,2
			Q' : the singular quadric 3-fold $xy = z^2$ in		
			\mathbb{P}^4 . $E' \subset Y$: a member of $ p^*O_{Q'}(1) $ which		
			is isomorphic to \mathbb{F}_2 . h' a section with ${h'}^2=2$		
			on E_2' . $\Gamma \sim 2h'$ on E' . X is the blow-up of		
			Y along Γ .		
3	30	3	s: a section with $s^2 = 1$ on \mathbb{F}_1 . $Y := \mathbb{P}^1 \times \mathbb{F}_1$.	1	0
			$E' \subset Y$: a member of $ p_2^*O_{\mathbb{F}_1}(s) $ which is		
			isomorphic to \mathbb{F}_0 . $\Gamma \subset E'$: a smooth curve		
			of bi-degree $(1,2)$. X is the blow-up of Y		
			along Γ .		
4	32	4	$Z \to Q \subset \mathbb{P}^4$: the blow-up of Q along a conic	1	1
			on it, D'_Z : its exceptional divisor, and f_D :its		
			exceptional line. $Y \to Z$: the blow-up of f_D		
			on Z . E' : its exceptional divisor, and D_Z :		
			strict transform of D'_Z . $\Gamma := E' \cap D_Z$. X is		
			the blow-up of Y along Γ .		
5	34	6	Y: the blow-up of \mathbb{P}^3 along 2 disjoint lines	1	0
			l_1, l_2 . E': its exceptional divisor contracted		
			to l_1 which is isomorphic to \mathbb{F}_0 . $\Gamma \subset E'$: a		
			smooth curve of bi-degree $(1,1)$. X is the		
			blow-up of Y along Γ .		
			Z: the blow-up of \mathbb{P}^3 along a line on it. E_1'' :	2	0,2
			its exceptional divisor which is isomorphic	_	·,=
			to \mathbb{F}_0 . $\Gamma' \subset E''_1$: a smooth curve of bi-degree		
			(1,1). Y is the blow-up of Z along Γ' . E'_2 :		
			its exceptional divisor which is isomorphic		
			to \mathbb{F}_2 , and E'_1 : strict transform of E''_1 . h' a		
			section with $h'^2 = 2$ on E'_2 . $\Gamma \sim h'$ on E'_2 .		
			Section with $n = 2$ on E_2 . $1 \sim n$ on E_2 .		
C	20	0	X is the blow-up of Y along $Γ$.	-1	0
6	38	8	s: a section with $s^2 = 2$ on \mathbb{F}_2 . $Y := \mathbb{P}^1 \times \mathbb{F}_2$.	1	0
			$H \subset Y$: a member of $ p_2^*O_{\mathbb{F}_2}(s) $ which is		
			isomorphic to \mathbb{F}_0 . $\Gamma \subset H$: a smooth curve of		
			bi-degree $(0,1)$. X is the blow-up of Y along		
<u>_</u>	40	10	Γ.	-1	0
7	42	10	$\mathbb{P}^1 \times S_7'$ where S_7' is the blow-up of \mathbb{F}_1 with	1	0
<u></u>			center a point p which lies on the (-1) -curve.		

8	46	12	Z	1	1
			its exceptional divisor, and f_D : its excep-		
			tional line. $Y \to Z$: the blow-up of f_D on Z .		
			E' : its exceptional divisor, and D_Z : strict		
			transform of D'_Z . $\Gamma := E' \cap D_Z$. X is the		
			blow-up of Y along Γ .		
9	26	13	s: a section with $s^2 = 2$ on \mathbb{F}_2 . $Y := \mathbb{P}^1 \times \mathbb{F}_2$.	1	0
			$H \subset Y$: a member of $ p_2^*O_{\mathbb{F}_2}(s) $ which is		
			isomorphic to \mathbb{F}_0 . $\Gamma \subset H$: a smooth curve of		
			bi-degree $(3,1)$. X is the blow-up of Y along		
			Γ.		

Table.4 weakened Fano 3-folds with $B_2=5$

No.	δ_X	X_t	X	e	n
1	28	1	$Z \to Q \subset \mathbb{P}^4$: the blow-up of Q along a conic	1	1
			on it, D'_Z : its exceptional divisor, and f_1, f_2 :		
			2 exceptional lines. $Y \to Z$: the blow-up of		
			Z along f_1, f_2 . E' : the exceptional divisor		
			contracted to f_1 , and D_Z : strict transform		
			of D'_Z . $\Gamma := E' \cap D_Z$. X is the blow-up of		
			Y along Γ .		
			$Z \to Q \subset \mathbb{P}^4$: the blow-up of Q along a conic	2	1,1
			on it, D'_Z : its exceptional divisor, and f_1 : its		
			exceptional line. $Y' \to Z$: the blow-up of Z		
			along f_1 . E''_1 : its exceptional divisor, and		
			D_Z : strict transform of D_Z' . $\Gamma_1 := E_1'' \cap D_Z$.		
			Y is the blow-up of Y' along Γ_1 . E'_2 : its		
			exceptional divisor, and D : strict transform		
			of D_Z . $\Gamma_2 := E'_2 \cap D$. X is the blow-up of Y		
			along Γ_2 .		
2	36	2	Z : the blow-up of \mathbb{P}^3 along 2 disjoint lines	1	1
			l_1, l_2, D'_1 : its exceptional divisor contracted		
			to l_1 and $\Gamma' \subset D'_1$: its exceptional line. Y		
			is the blow-up of Z along Γ' . E' : its excep-		
			tional divisor, and D_1 : strict transform of		
			D'_1 . $\Gamma := E' \cap D_1$. X is the blow-up of Y		
			along Γ .		
3	36	3	$\mathbb{P}^1 \times S_6'$ where S_6' is a weak del Pezzo surface		0
			of degree 6, which is not a del Pezzo surface.		

References

[Ba-Hu] Barth W. and Hulek K., Monads and moduli of vector bundles, Manuscripta Math. 25 (1978)

- $[\mathrm{Be}\ 1]\ \mathrm{Beauville}\ \mathrm{A.},$ Variété de Prym et jacobiennes intermédiaires, Ann. Sci. École Norm. Sup. 10 (1977)
- $[{\rm Is~1}]$ $\;$ Iskovskih V. A., Fano 3-fold I, English translation, Math. USSR Izv. 11 (1977)
- [Is 2] Iskovskih V. A., Fano 3-fold II, English translation, Math. USSR Izv. 12 (1978)
- $[\mathrm{Mil}]$ Minagawa T., Global smoothing of singular weak Fano 3-folds, J. Math. Soc. Japan 55 (2003)
- [Mi2] Minagawa T., On classification of weakened Fano 3-folds with $B_2=2,$ Proc. of alg. geom. symposium in Kinosaki (2000)

- [Mo] Mori S., Threefolds whose canonical bundles are not numerically effective, Ann. of Math. 116 (1982)
- [M-M 1] Mori S. and Mukai S., Classification of Fano 3-folds with $B_2 \geq 2$, Manuscripta Math. 36 (1981)
- [M-M 2] Mori S. and Mukai S., On Fano 3-folds with $B_2 \geq 2$, Algebraic and Analytic Varieties, Adv. Stud. in Pure Math. 1 (1983)
- [Pa] Paoletti, R., The Kähler cone in families of quasi-Fano threefolds, Math. Z. 227 (1998)
- [Sa] The classification of smooth toric weakened Fano 3-folds, Manuscripta Math. 109 (2002)
- [W1] Wilson, P.M.H., The Kähler cone on Calabi-Yau threefolds, Invent. Math. 107 (1992)
- [W2] Wilson, P.M.H., Elliptic ruled surfaces on Calabi-Yau threefolds, Math. Proc. Comb. Phil. Soc. 112 (1992)

Department of Mathematics, Tokyo Institute of Technology , Oh-okayama, Meguroku, Tokyo 153-8551, Japan

 $E ext{-}mail\ address: minagawa@math.titech.ac.jp}$