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Abstract. Let C be a curve, and l, l0 be lines in the projective three space P3. Consider
a projection πl : P3 · · · → l0 with center l, where l ∩ l0 = ∅. Restricting πl to C, we get a
morphism πl|C : C → l0 and an extension of fields (πl|C)∗ : k(l0) ↪→ k(C). We study the
algebraic structure of the extension and the geometric structure of C. In particular, we
study the structure of the Galois group and the number of Galois lines for some special
cases.
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1 Introduction

Let k be the ground field of our discussion and assume it to be an algebraically
closed field of characteristic zero. Let C be a smooth irreducible non-degenerate
curve of degree d in the projective three space P3, and l be a line in P3. Consider
a projection πl : P3 · · · → l0 with center l, where l0 is a line satisfying l ∩ l0 = ∅.
Restricting πl to C, we get a morphism πl|C : C → l0 and an extension of fields
(πl|C)∗ : k(l0) ↪→ k(C). It is easy to see that the structure of this extension does
not depend on the choice of l0, but on l. So we put Kl = k(l0). Moreover, we put
K = k(C) and let Ll be the Galois closure of K/Kl. We study this extension K/Kl

from various points of view. To this aim, we make the following definitions:

Definition 1.1. We call Gal(Ll/Kl) the Galois group for l and denote it by Gl.
Moreover, we call l a Galois line for C if the extension K/Kl is Galois, or equiva-
lently, if πl induces a Galois covering πl : C → l0.

If l is a Galois line, then each element σ ∈ Gl induces an automorphism of C
over l0. We denote it by the same letter σ.

Definition 1.2. The automorphism σ is called an automorphism associated with
the Galois line l.
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A line l ⊂ P3 is said to be skew for C if l ∩ C = ∅.
Definition 1.3. Let Cl be the non-singular projective model of Ll. We call Cl the
Galois closure curve for (C, l).

Remark 1.4. (1) If [K : Kl] ≤ 2, then l is always a Galois line. Such lines are said
to be trivial Galois lines, and we will not consider them. Indeed, skew Galois lines
will be considered mainly.

(2) The Galois closure curve is called the minimal splitting curve in Tokunaga [9].

For the motivation of this research, see [10], where we considered the Galois
points for plane curves.

Naturally, the following problems arise:
(I) Find the structure of the Galois closure curve for (C, l) and the structure

of Gl.
(II) Find all Galois lines l for C and their arrangements.

(III) Determine the intermediate fields corresponding to subgroups of Gl.

We originate the study of the curves C, lines l and the extensions of fields K/Kl

examining these problems. We use the following notation and convention:

Sn : the symmetric group of degree n;
An : the alternating group of degree n;

D2m : the dihedral group of order 2m;
Zn : the cyclic group of order n;

V4
∼= Z2 × Z2 : the Klein four group;

∼ : the linear equivalence of divisors;
g = g(C) : the genus of C;

(x0, . . . , xn) : homogeneous coordinates on Pn (when n = 2 or n = 3, we use
(X, Y, Z) or (X, Y, Z, W ) instead, respectively);

vn : the Veronese map of degree n, vn(x, y) = (xn, xn−1y, . . . , yn);
Hn(α, β) : the hyperplane in Pn defined by

∑n
i=0

(
n
i

)
αn−iβixi = 0, where

(α, β) ∈ P1;
δ(C) : the number of skew Galois lines for C;

ζn : a primitive n-th root of 1;
i(C, H;P ) : the intersection number of C and a plane H at P ;

div(f) : the divisor of a function f ;
L(D) : = {f ∈ k(V )∗ |div(f) + D ≥ 0} ∪ {0};

〈a1, . . . , an〉 : the subgroup of a group generated by the elements a1, . . . , an;
diag [a0, . . . , a3] : the diagonal matrix with components a0, . . . , a3.

Definition 1.5. When l is a Galois line for C and Gl
∼= Zn (resp., V4, . . . ), we call

l a Zn-line (resp., V4-line, . . . ).
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2 Statement of Results (General Line Case)

If l is a general line for C, then we will prove that Gl is the full symmetric group.
We state this fact in a more definite form. Let G = G(1, 3) be the Grassmannian
parameterizing lines in P3, which is realized as a quadric hypersurface in P5. Let
Σ be the set of lines l in P3 such that there exists a plane H ⊃ l satisfying the
following condition (a) or (b):

(a) There exists a point P ∈ C such that i(C, H;P ) ≥ 3.
(b) There exist two points P1 and P2 on C such that i(C, H;Pr) ≥ 2 (r = 1, 2).

Then we prove the following assertion:

Lemma 2.1. Σ is contained in a divisor of G.

As a corollary, we obtain the following assertion:

Theorem 2.2. There exists a divisor ∆ on G satisfying Gl
∼= Sd if l ∈ G\∆.

Indeed, recently we have a stronger assertion than this (see [7]). We infer from
Theorem 2.2 the following assertions.

Corollary 2.3. If l is a general line, then the following assertions hold :
(1) There exists no field between K and Kl.
(2) The genus of the Galois closure curve for (C, l) is (g + d− 3)d!/2 + 1.

Therefore, we may say that the problems (I) and (III) have been solved for
general l.

3 Statement of Results (Galois Line Case)

We are interested in special lines, i.e., the lines corresponding to the points in ∆
(which is defined in the previous section), especially Galois lines.

First, we notice the following lemma, whose proof is easy.

Lemma 3.1. Let l be a Galois line for C. If T is a projective transformation of
P3, then T (l) is a Galois line for T (C).

Throughout this section, we assume that C is linearly normal, i.e., the hyper-
planes cut out the complete linear series |OC(1)|.
Theorem 3.2. For a skew Galois line l, there is a representation G = Gl ↪→
PGL(3, k) and the exact sequence of groups 1 → G1 → G → G2 → 1, where G1 is
a cyclic group and G2 is a subgroup of Aut(l) ∼= PGL(1, k).

If an automorphism σ of C associated with a Galois line extends to an automor-
phism of P3, the extension will also be denoted by σ. In this case, it will be shown
that σ(l) = l.

Remark 3.3. (1) For a smooth plane curve, we have studied similar problems and
shown that GP is a cyclic group for a Galois point P (cf. [10]).
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(2) If l is not skew or C is not linearly normal, then it does not necessarily hold
true that Gl ⊂ PGL(3, k) (see Remark 6.4 below).

Example 3.4. There are five possibilities for the structure of G2; i.e., D2m, Zn, A4,
S4, A5. We can find the examples for the first two cases. In fact, let C be the curve
defined by the following equations (1), (2) and (3), respectively, where we assume
m ≥ 2:

(1) ZW = g2(X, Y ) and fm(X, Y ) + Zm + Wm = 0, where g2 and fm are forms
of degrees 2 and m, respectively, and have no common factors, and f2

m − 4gm
2 has

no multiple factors;
(2) Z2 = XY and (Xm−1 + Y m−1)Z + Wm = 0;
(3) W 2 = XZ, (Xm−1 +Y m−1)W +Zm = 0 and Xm +XY m−1 +Zm−1W = 0.

Then the line l : X = Y = 0 is a Galois line for each curve and Gl
∼= D2m, Z2m and

Z2m−1 corresponding to (1), (2) and (3), respectively. Moreover, their genera are
(m− 1)2, (m− 1)2 and (m− 1)(m− 2), respectively. Therefore, they are extremal
curves (for the definition, see [1]). In particular, the curves (1) and (2) are complete
intersections of quadrics and surfaces of degree m (cf. [1, p. 119]), hence they are
projectively normal (cf. [1, p. 141]). We will prove that the curve (3) is linearly
normal.

Next we study the number of Galois lines for C. The first result is the following:

Theorem 3.5. If g = g(C) ≥ 1, then there exist finitely many skew Galois lines
for C.

Remark 3.6. As we will see in Proposition 4.1 below, for a rational normal curve,
the Galois lines form a two-dimensional locally closed subvariety of G.

How many Galois lines are there, and how are they arranged? Do there exist
rules for the arrangements as for Galois points on quartic surfaces (cf. [11])? Gen-
erally, it seems quite difficult to determine them (cf. Theorem 4.3 and Remark 6.2
below); however, in the case where d is a prime number, they are simple.

Theorem 3.7. If d ≥ 5 is a prime number, then the number of skew Galois lines
is at most one.

Remark 3.8. Under the assumption of Theorem 3.7, let Gl = 〈σ〉 and P be a point
on l satisfying σ(P ) = P . Let πP : P3 · · · → P2 be a projection with center P . Then
the plane curve C = πP (C) has an automorphism σ associated with the outer Galois
point πP (l). From this, we can get the defining equation of C. In fact, by taking
suitable coordinates, we can express the defining equation as hd(X, Y ) + Zd = 0,
where hd is a form of degree d and (0, 0, 1) is the Galois point. Using this equation,
we will be able to recover the curve C (see Theorem 4.4 below).

4 Lower Degree Curves

We hope that we can find defining equations for all curves C with Galois lines, and
moreover, we can find all the Galois lines. However, if d is not small, it is very hard.
Let us examine some cases for d ≤ 6 hereafter.
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[I] (d = 3). We consider the case where d = 3. Then C is a twisted cubic
and can be expressed as the image of the Veronese map v3 : P1 ↪→ P3, where
v3(x0, x1) = (x0

3 : x0
2x1 : x0x1

2 : x1
3) for (x0 : x1) ∈ P1. Defining the line

l(αβ)(α′β′) = H3(α, β) ∩H3(α′, β′), where αβ′ − α′β 6= 0, we have the following:

Proposition 4.1. Suppose that d = 3 and C is defined as above. Then each
Galois line for C is given by l(αβ)(α′β′). Therefore, all the Galois lines form a two-
dimensional locally closed subvariety V of G. To be more precise, using the Plücker
coordinates, the defining equations of V are given by 9x01x23 = x12

2, 9x02x13 =
x12(9x03 + x12) and x01x13

2 = x23x02
2, where 3x03 6= x12.

Of course, except for these lines, we have Gl
∼= S3.

[II] (d = 4). We consider the case where d = 4. We have obtained the results
for this case (see [3]). For the completeness, we mention them here. Since C is
linearly normal, we have g(C) = 1. Let E be a Weierstrass model for C, i.e.,
y2 = 4x3 +px+ q = 4(x− e1)(x− e2)(x− e3), where we put x = X/Z and y = Y/Z.

Definition 4.2. Suppose that C is the curve above. Then the space curve defined
by Z2 = XY and W 2 = 4Y Z + pXZ + qX2, where p3 + 27q2 6= 0, is called the
standard form of C. We denote it by Cs.

Theorem 4.3.
(1) Each curve C with the Weierstrass canonical form E is projectively equivalent

to the standard form Cs.
(2) There exist just three V4-lines for each Cs, which are given by the equations

Y + ciX = 0 and Z− eiX = 0, where i = 1, 2, 3 and ci = ejek + ei
2 satisfying

(i − j)(j − k)(k − i) 6= 0. Thus, each curve C has just three V4-lines, which
are obtained from the projective transformation of the V4-lines for Cs.

(3) The curve C has Z4-lines if and only if the J-invariant of E is one, i.e.,
p = −1 and q = 0 in the standard form. Moreover, C has four Z4-lines.

[III] (d = 5). We consider the case where d = 5. Since C is linearly normal, we
have g(C) = 2. Using this fact and Remark 3.8, we obtain the defining equation of
C as:

(1) XY 3(Y − αX) + Z5 = 0 or
(2) X2Y 2(Y − αX) + Z5 = 0,

where α 6= 0.
We note here that these curves are birationally equivalent to each other. Indeed,

the curve (1) is transformed into (2) by the mapping

(X, Y, Z) 7→ (X2Y 3,−αZ5,−αXY Z3).

By using those equations, we obtain the following:

Theorem 4.4. Suppose that d = 5 and C has a skew Galois line l. Then there
exists another line l′ such that the reducible curve C ∪ l′ can be given by equations

(1) Z2 − Y W = 0 and XY (Y − αX) + ZW 2 = 0, or
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(2) Z3 −XY W = 0 and (Y − αX)Z + W 2 = 0,
where l′ is given by Y = Z = 0 or Z = W = 0, respectively. And the Galois line
for each curve is given by X = Y = 0. Moreover, the defining ideal of each curve is

(
Z2 − Y W, XY (Y − αX) + ZW 2, XZ(Y − αX) + W 3

)

or (
Z3 −XY W, (Y − αX)Z + W 2, Z2W + XY (Y − αX)

)
.

[IV] (d = 6). We consider the case where d = 6. We assume that C is not
hyperelliptic, so it is a canonical curve of genus 4.

Theorem 4.5. Suppose that d = 6 and C is not hyperelliptic and has a skew
Galois line l. Then Gl

∼= S3 or Z6, and we have the following :
(1) Gl

∼= S3 if and only if C is the Galois closure curve of a smooth cubic E with
respect to an outer point P , where P does not lie on the tangent line to E at
any flex (cf. [6, Note 2.2]).

(2) Gl
∼= Z6 if and only if C can be expressed as a triple Galois covering of a

plane conic or C = F ∩ Q, where F (resp., Q) is a hypersurface defined by
X3 + Y 3 + Z3 = 0 (resp., W 2 + a(X, Y ) = 0 or W 2 + b(X, Y )Z = 0) such
that (i) a(X, Y ) and b(X, Y ) are quadratic and linear forms, respectively ;
(ii) a(X, Y ) and b(X, Y ) have not common factors with X3+Y 3, respectively ;
and (iii) a(X, Y ) has no multiple factor.

Finally, we raise some problems:

Problems. (1) Find the estimate of the number of Galois lines for any d.
(2) In Theorem 3.2, it seems that G2 cannot be isomorphic to A4, S4 and A5.

Is it true?
(3) If C is not normal, what can we say about the structure of Gl and the

number of Galois lines?
(4) Consider the same problems for non-skew Galois lines.
(5) If two lines l and l′ are near in G\∆ and l 6= l′, then is it true that LL is not

isomorphic to Ll′ (cf. [12])?

5 Proofs

First, we prove Theorem 2.2. Referring to [4, Chpt. IV, Theorem 3.10] and its
proof, we see that there is a finite union of two-dimensional linear subvarieties L
of P3 with the following properties: If πQ : P3 · · · → H is the projection from
Q ∈ P3 \ (L ∪ C) to a hyperplane H ∼= P2 and X = πQ(C) is the image of C,
then X is birational to C and has at most nodes for singularities. Similarly as in
the proof of [10, Theorem 1′], there is a finite union of lines L′ on H such that if
R ∈ H \ (L′ ∪X), then any line l passing through R has the property

(1) l ∩X has normal crossings, or
(2) l∩X = {R1, . . . , Rd−1}, where l and X has normal crossings at Ri (1 ≤ i ≤

d− 2) and i(l, X;Rd−1) = 2.
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Then we consider the projection πR : H · · · → l0, where l0 is a line not passing
through R. Let X̃ → X be the normalization. Then it is easy to see that the
discriminant for the covering π̃R : X̃ → l0 has only simple roots. Therefore, we
infer from [8, Lemma 4.4.4] (see also [10]) that Gal(k(X)/k(l0)) is a full symmetric
group. It is clear that the extension k(C)/k(l0) is isomorphic to k(X)/k(l0). Hence,
taking the line l = π−1

Q (R) as the center of a projection, we get Gl
∼= Sd. Thus, we

infer readily Theorem 2 2.

The proof of Corollary 2.3 is clear. Indeed, the group corresponding to k(C) is
the symmetric group Sd−1, which is primitive, hence it is a maximal subgroup of Sd.
We have a Galois covering Cl → P1 of degree d!, which branches at (2g+d−2)-pieces
of points. Then using the Riemann–Hurwitz formula, we obtain Corollary 2.3.

We go to the proof of Theorem 3.2. First, we fix the projection πl : P3 · · · → l0
inducing the Galois extension (πl|C)∗ : k(l0) ↪→ k(C). Then clearly σ ∈ Gl induces
an automorphism of C such that πl · σ = πl. Since C ∩ l = ∅, we infer σ(C ∩H) =
C ∩ H for H ⊃ l. Therefore, σ induces an automorphism on H0(C,O(1)). Since
C is linearly normal and non-degenerate, we have an isomorphism H0(P3,O(1)) '
H0(C,O(1)), hence σ also induces an automorphism on H0(P3,O(1)). Thus, we
obtain the representation of Gl in PGL(3, k). If H is a general plane such that
H ⊃ l, then there are non-collinear points of C ∩ H. Since σ is a projective
transformation, we see σ(H) = H. This implies σ(l) = l.

By Lemma 3.1, we may assume that the defining equations of l are X = Y = 0.
From the definition of Galois lines, we infer that σ has the representation

σ =




a 0 0 0
0 a 0 0
∗ ∗ b c
∗ ∗ d e


 .

Consider the homomorphism γ : Gl → PGL(1, k) defined by

γ(σ) =
(

b c
d e

)
.

This is the restriction of σ to the Galois line l. Let G1 be the kernel of γ. Then
each element σ of G1 has the representation as b = e and d = c = 0 in the above
matrix. Therefore, we have a homomorphism γ′ : G1 → k∗ defined by γ′(σ) = b/a.
Clearly this is injective, hence G1 is a cyclic group.

Next we prove the assertions in Example 3.4. It is easy to see that each curve
(1), (2) or (3) is birational to the plane curve defined by

(1) gm
2 (X, Y ) + fm(X, Y )Zm + Z2m = 0,

(2) (Xm−1 + Y m−1)2XY + Z2m = 0 or
(3) (Xm−1 + Y m−1)Xm + Z2m−1 = 0,

respectively. From this, we can calculate the genus of C by the genus formula [5,
Theorem 9.1]. So it will be sufficient to prove that the curve C in (3) is linearly
normal. Note that C is a smooth curve on the quadric cone Q : W 2 = XZ. Let
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µ be the blowing-up of P3 at P = (0, 1, 0, 0) and let S be the proper transform
of Q. Then S turns out to be a P1-bundle P(O ⊕ O(2)) → P1 with fiber F and
C0 = µ−1(P ) is the (−2)-curve on S. Let H be a plane not passing through P and
put µ∗(H · Q) = HS , where H · Q is the intersection divisor on Q. Let C ′ be the
proper transform of C and KS be the canonical divisor on S. Then it is not difficult
to see the following:

Claim 1. HS ∼ C0 + 2F , KS ∼ −2C0 − 4F , and C ′ ∼ (m− 1)C0 + (2m− 1)F .

Putting D = H · C and D′ = µ∗D, we get the exact sequence

0 → H0(S, O(HS − C ′)) → H0(S, O(HS))
→ H0(C ′, OC′(D′)) → H1(S, O(HS − C ′)) → · · · .

Put hi(∆) = dim Hi(S,O(∆)) (i = 0, 1, 2) for a divisor ∆ on S. It is sufficient to
prove h1(HS − C ′) = 0 and h0(HS) = 4. The following assertion is easy to check:

Claim 2. The divisors (m− 2)C0 + (2m− 3)F and 3C0 + 6F are 1-connected.

Note that C ′ −HS ∼ (m− 2)C0 + (2m− 3)F . Then by Ramanujan’s vanishing
theorem (cf. [2, p. 131, (8.2)]), we obtain h1(HS −C ′) = 0 if m ≥ 3. In case m = 2,
since h1(O) = 0, we can easily prove h1(−F ) = 0 from the exact sequence

0 → H0(S, O(−F )) → H0(S, O) → H0(F, OF )
→ H1(S, O(−F )) → H1(S, O) → · · · .

Since HS−KS ∼ 3C0 +6F , we can similarly prove h1(HS) = 0 by the Serre duality
theorem. By the Riemann–Roch theorem,

h0(HS) = HS(HS −KS)/2 + h2(O)− h1(O) + 1 + h1(HS)− h0(KS −HS),

we have h0(HS) = 4.

Let us proceed with the proof of Theorem 3.5. Let S be the set of skew Galois
lines for C and let A be the set of subgroups of Aut(C), which is the automorphism
group of C. Then we have a mapping ϕ : S → A defined by ϕ(l) = Gl. If l 6= l′,
then we can find two planes H and H ′ satisfying H ⊃ l, H ′ ⊃ l′, H ∩ C 6= H ′ ∩ C
and H ∩H ′ ∩ C 6= ∅, hence Gl 6= Gl′ . This means that ϕ is injective. If g(C) ≥ 2,
then Aut(C) is a finite group, so the assertion holds. On the other hand, in case
g = 1, we have the fact δ(C) ≤ 7 (cf. [3] or Theorem 4.3 above). Thus, we complete
the proof of Theorem 3.5.

Before the proof of Theorem 3.7, we provide some lemmas.

Lemma 5.1. Suppose that d is a prime number and σ is an automorphism asso-
ciated with a skew Galois line l. Then at most two eigenvalues of σ coincide with
each other, more precisely, the eigenvalues of σ can be written as {α, α, αζ, αζi},
where ζ = ζd and 1 ≤ i ≤ d− 1.

Proof. As we have seen in the proof of Theorem 3.2, σ has eigenvalues α, α, β, γ.
Suppose α = β. Since σ has order d, γ = αζ and the Galois line is not contained in



Galois Lines for Space Curves 463

the plane H given by W = 0 and σ has a fixed point P ∈ l \H. Let πP : P3 · · · → H
be the projection with center P and put πP (C) = C and P = πP (l). Let πP :
H · · · → l0 be the projection with center P . Then we have πl = πP̄ πP . Since
deg πP |C = d, we have deg πP |C = 1. Thus, C must be a line, which contradicts
that C is a non-degenerate curve. 2

Let Λ be a linear system on C with dim Λ = r − 1 and let {a1, . . . , ar} be the
Λ-gap sequence at P . The Λ-index ρP (C, Λ) at P is defined to be

∑r
i=1(ai−(i−1)).

Then we have the following lemma (cf. [5, p. 222]).

Lemma 5.2. If Λ is a linear system and D ∈ Λ, then
∑

P∈C

ρP (C, Λ) = r deg D + r(r − 1)(g − 1).

Now we prove Theorem 3.7 step by step.

Claim 3. Let δm be the maximal number of skew Galois lines which do not meet
one another. If d ≥ 5 is a prime number, then we have

δm ≤ 2(d− 1)(d + 3g − 3)
(d− 3)(d + g − 1)

.

Indeed, since d is prime, Gl is a cyclic group of order d. Let s be the number
of ramification points of the Galois covering πl : C → l0 ∼= P1. Since d is prime,
the ramification index of πl is d, hence we have 2g − 2 = −2d + (d− 1)s. Let Λ be
the linear system on C obtained from restricting planes to C. By the same reason
as above, the Λ-gap sequence at each ramification point P is {0, 1, λ, d}, where
1 < λ < d. So we have ρP (C, Λ) = λ + d − 5 ≥ d − 3. Therefore, we infer from
Lemma 5.2 that (d− 3) · s · δ(C) ≤ 4d + 12(g− 1). Since s = (2d + 2g− 2)/(d− 1),
we get the inequality.

Claim 4. If d ≥ 5 is a prime number, then skew Galois lines do not meet one
another.

In fact, suppose that there exist two Galois lines l1 and l2 meeting at P . Then
by Lemma 3.1, we may assume that their defining equations are X = Y = 0 and
X = Z = 0, respectively, thus P = (0, 0, 0, 1). Let πP : P3 · · · → H be the projection
with center P , where H is the plane given by W = 0, and put C = πP (C). Since
πli = πPi

· πP , where Pi = πP (li), and d is a prime number, we have deg πP |C = 1
or d. Suppose deg πP |C = d. Then C must be a line, hence C is contained in a
plane, which is a contradiction. Thus, we have deg πP |C = 1. Let σi be a generator
of Gli (i = 1, 2).

Claim 5. The point P is a fixed point for σ1 and σ2.
Suppose the contrary. Then we may assume σ1(P ) = P1 and σ1(l2) = l3,

where P1 6= P and l3 6= l2. We note that l3 becomes a Galois line for C satisfying
Gl3 = 〈σ1σ2σ

−1
1 〉. Let H be the plane spanned by l1 and l2. Since l1 and l2 are Galois

lines, we have σ1(H) = H and σ2(H) = H. Next we consider σ2
1(P ), . . . , σd−1

1 (P )
similarly. By Lemma 5.1, these points are different from one another. Thus, we can
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find (d + 1)-pieces of Galois lines on H. We have the Galois covering πli : C → P1,
where li+2 = σ1

i(l2) for each i (i = 1, . . . , d − 1). Corresponding these coverings,
there are s-pieces of planes Hij satisfying Hij ⊃ li and i(C, Hij , Q) = d for some
point Q ∈ C, where s = (2d + 2g − 2)/(d − 1). One of the planes Hij happens to
coincide with H. At any rate, using Lemma 5.2, we get

4d + 12(g − 1) ≥ (d + 1)(s− 1)(d− 3) + (d− 3).

This implies
2g(d2 − 8d + 3) + (d− 1)(d− 2)(d− 3) ≤ 0.

Clearly, we have d ≤ 7. In the cases where d = 5 and d = 7, we can prove by
considering the following cases (i) and (ii) separately:

(i) σ2(P ) 6= P . We can find (2d +1)-pieces of Galois lines by the similar reason.
Thus, we get the inequality 4d + 12(g− 1) ≥ (2d + 1)(s− 1)(d− 3) + (d− 3), which
is a contradiction.

(ii) σ2(P ) = P . If σ2(l1) 6= l1, then we have a contradiction by the same reason
as above (i). So we assume σ2(l1) = l1. Then there exist three fixed points of σ2

on l1 ∪ l2. Suppose that there exists Q ∈ C satisfying i(C,H;Q) = d. Then σ2

has a fourth fixed point on H, whence σ2|H = id. This contradicts Lemma 5.1.
Therefore, in this case, there exists no such Q. Hence, we get the inequality

4d + 12(g − 1) ≥ (d + 1)s(d− 3),

which is also a contradiction.

Moreover, we will use the following lemma.

Lemma 5.3. Let Γ be a (possibly singular) irreducible plane curve of degree d ≥ 3.
Suppose that d is a prime number and Γ has two outer Galois points satisfying
GPi = 〈σi〉, where σi is assumed to be a restriction of a projective transformation.
Then Γ is a Fermat curve.

Proof. Referring to [10, Theorem 4′ and Proposition 5′], we only need to prove
that Γ is smooth. Taking suitable coordinates, σ = σ1 can be expressed as a
diagonal matrix diag [1, 1, ζd]. Then the defining equation of Γ has the expression
as hd(X, Y )+Zd = 0. Suppose that Γ has singular points. Then they lie on the line
Z = 0. Let µ : Γ̃ → Γ be the resolution of the singularities of Γ, and πP : P2 · · · → P1

be the projection with center P . Then µ · πP : Γ̃ → P1 becomes a Galois covering
of degree d. Since d is a prime number, we infer that Γ has only one singular point
Q and the three points P1, P2 and Q are collinear. Suppose σ1(P2) 6= P2. Then we
have (d + 1)-pieces of Galois points P1, P2, σ1(P2), . . . , σd−1

1 (P2), which lie on the
line P1P2. Let the covering µ · πP have s-pieces of ramification points. Then we
have 2g − 2 = −2d + s(d− 1). Let Λ be a linear system of lines on P2 and Λ̃ be a
linear system on Γ̃ obtained from Λ. We infer from [5, §6.7] that

∑

P∈Γ̃

ρP (Γ̃, Λ̃) = 3d + 6(g − 1)− (e + d− 3),
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where e is the multiplicity of Γ at Q. Since µ−1(Q) is the common ramification
point for each covering µ · πPi

, we obtain the inequality

3d + 6(g − 1)− (e + d− 3) ≥ (d + 1)(s− 1)(d− 2).

This implies

2g

(
(d + 1)(d− 2)

d− 1
− 3

)
+ (d + 1)(d− 2)− 2d + e + 3 ≤ 0.

This inequality cannot hold true, hence we get a contradiction. 2

Let us continue the proof of Claim 4. By Claim 5, σi induces an automorphism
of C, hence P 1 = πP (l1) = (0, 0, 1) and P 2 = πP (l2) = (0, 1, 0) become Galois
points for C. By Lemma 5.3, we see that C is a smooth curve. Then we get
g(C) = g(C) = (d − 1)(d − 2)/2 by the genus formula. On the other hand, we
have Castelnuovo’s bound g(C) ≤ (d− 1)(d− 3)/4. Thus, we get d = 1, which is a
contradiction. Therefore, we have finished the proof of Claim 4.

Let us resume the proof of Theorem 3.7.

Claim 6. If d ≥ 5 is a prime number, then each skew Galois line meets another.
Indeed, suppose that there exist two skew Galois lines l and l′ which do not

meet each other. Then we may assume that the defining equations of l (resp., l′)
are X = Y = 0 (resp., Z = W = 0). Let Gl = 〈σ〉. We now prove σ(l′) = l′.
Suppose the contrary. Then there exist at least (d + 1)-pieces of skew Galois lines
which do not meet one another by Claim 4. By Claim 3, we have the inequality

d + 1 ≤ 2(d− 1)(d + 3g − 3)
(d− 3)(d + g − 1)

.

Clearly, this cannot hold true if d ≥ 5, thus we have a contradiction. Therefore, we
have σ(l′) = l′. In addition, since σ(H · l′) = H · l′, we have σ|l′ = id. Hence, σ has
the representation as 



1 0 0 0
0 1 0 0
0 0 a b
0 0 c d


 .

By Lemma 5.1, each eigenvalue of the small matrix
(
a b
c d

)
is not one. Therefore, we

infer that the fixed points of σ are contained in l ∪ l′. Thus, σ has no fixed point
on C, which is a contradiction.

Combining Claims 4 and 6, we complete the proof of Theorem 3.7.

The proof of Remark 3.8 is clear, so we skip to the proof of Proposition 4.1. The
following lemma is easy to prove (cf. [9, Corollary 3.2]).

Lemma 5.4. Let p : C → P1 be a triple covering and P1, . . . , Pr (r ≥ 2) be
the branch points. If p−1(Pi) (i = 1, . . . , r) consists of one point, that is, the
ramification index of p−1(Pi) is 3, then p : C → P1 is a cyclic triple covering.
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From this lemma, we see that a Galois line for C is just the intersection of two
planes Hj satisfying i(C, Hj ;Pj) = 3 for some point Pj ∈ C, whence we infer readily
Proposition 4.1.

Next we treat the case where d = 5. Since g(C) = 2, the multiplicity sequences
of singular points of C are (3, 2) or {(2, 2), (2, 2)} (cf. [5, Theorem 9.1]). Thus, by
taking suitable coordinates, we have the defining equations of C. First, we take up
the case (1). Put x = X/Z and y = Y/Z. Let µ : C0 → C be the resolution of
singularities. Let ϕ be the rational map associated with a divisor D on C0 such that
ϕ gives an embedding of C0 into P3. Then clearly L(D) ⊃ 〈1, µ∗x, µ∗y〉. Thus, we
may assume D = µ∗(C · lZ), where lZ is the line Z = 0. Hence, we infer readily that
L(D) = 〈1, µ∗x, µ∗y, µ∗(1/y)〉, where xy3(y−αx)+1 = 0. Therefore, we obtain the
defining equations of C ∪ l′. The case (2) is similarly obtained. In fact, we infer
the result from L(D) = 〈1, µ∗x, µ∗y, µ∗(1/xy)〉.

Last, we prove Theorem 4.5. Let l be the line defined by X = Y = 0.
(1) If Gl

∼= S3, then Gl = 〈σ, τ〉, where σ3 = τ2 = 1 and τστ = σ2. Then we
can take coordinates giving the representation

σ =




1 0 0 0
0 1 0 0
0 0 ω 0
0 0 0 ω2


 and τi =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 .

Let πP be the projection with center P = (0, 0, 1,−1). Then πP (C) = C ∼= C/〈τ〉 is
a smooth plane cubic. The point P = πP (l) does not lie on C. Hence, the projection
πP with center P defines an extension k(C)/k(P1) of degree 3, which is not a Galois
extension. Thus, P does not lie on each tangent line to C at a flex. Therefore, we
see that k(C) is isomorphic to the Galois closure of this extension. The converse
assertion is clear (cf. [6, Note 2.2]).

(2) If Gl
∼= Z6, then Gl = 〈σ〉, where σ has the representation diag [1, 1, α, β],

satisfying ord(α) ≤ ord(β).

Claim 7. The following cases cannot occur:
(i) ord(α) = ord(β) = 6,
(ii) α = 1 and ord(β) = 6.

Suppose the contrary. Then in the case (i), we may assume (α, β) = (ζ, ζ) or
(ζ, ζ5), where ζ = ζ6. Thus, the fixed locus of Gl is l ∪ l′, where l and l′ are lines
defined by X = Y = 0 and Z = W = 0, respectively. Since l is a skew Galois line,
we have C ∩ l = ∅, hence the number of fixed points of Gl on C is at most three,
because if it is greater than three, then there exists a morphism from C to P1 with
degree ≤ 2. Since C is not hyperelliptic, this is a contradiction. Thus, there exist
at most three ramification points of the covering πl : C → C/Gl

∼= P1, but we see
that such a covering cannot exist by the Hurwitz formula. In the case (ii), we may
assume (α, β) = (1, ζ). Let πP be the projection with center P = (0, 0, 0, 1). Then
πP (C) = C = C/〈σ〉 is a smooth rational curve on P2, hence it is a line or a conic.
Then C must be in a plane or deg πl = 12, which is a contradiction.
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Therefore, we may assume (ord(α), ord(β)) = (3, 6), (2, 3) or (2, 6). In the
second case, let us interchange α and β. Then in the first two cases, we have
σ3 = diag [1, 1, 1,−1], hence C = C/〈σ3〉 is obtained from the projection with center
P = (0, 0, 0, 1). Clearly, C is a smooth plane cubic with an automorphism of order 3,
i.e., it can be defined by h(X, Y )+Z3 = 0, where h is a form of degree 3. Therefore,
C can be expressed as Q ∩ F , where F is a cubic surface f(X, Y ) + Z3 = 0 in P3

and Q is a quadric surface. Note that Q is unique (cf. [1, p. 118]), i.e., it is invariant
under the action of σ. Hence, the defining equation of Q has the expression as in
Theorem 4.5. Moreover, since the plane curve C has an automorphism of order 3
with fixed points, h(X, Y ) can be represented as X3 + Y 3.

Finally, we consider the third case. We have σ2 = diag [1, 1, 1, ω]. Similarly, we
consider the projection πP . The curve C = πP (C) is a conic defined by

h(X, Y ) + Z2 = 0,

where h is a form of degree 2. Thus, πP : C → C gives a triple Galois covering.
Note that if we take σ3 = diag [1, 1,−1,−1], then we get a curve C/〈σ3〉 of genus 2,
however this curve cannot be embedded into the plane.

6 Appendix

In this section, we consider the case where C is not linearly normal. We give ex-
amples of not only skew Galois lines but also non-skew ones l for quartic curves C.
These examples suggest the complexity of the general case.

If g = 0, then the curves can be obtained as follows. Let ϕλ be the embedding
P1 ↪→ P3 defined by ϕλ(x0, x1) = (x0

4, x0
3x1 + λx0

2x1
2, x0x1

3, x1
4), where λ ∈ k.

Referring to [4, Chpt. II, Example 7.8.6], we have that the rational curve C with
d = 4 is projectively equivalent to Cλ = ϕλ(P1) for some λ ∈ k.

Example 6.1. Suppose that d = 4 and C is defined as above and has Galois lines.
Since Cλ is rational, there cannot exist V4-lines. Thus, they are Z4- or Z3-lines
which are given as follows.

(1) As for Z4-lines, if λ 6= 0, then there exist three lines defined by two equations
chosen from the following three ones:





X = 0,

34X + 2333λY + 253λ3Z + 24λ4W = 0,

W = 0.

On the contrary, if λ = 0, then there exists one Z4-line X = W = 0.
(2) As for Z3-lines, there exist infinitely many Z3-lines. To be more precise, we

study two cases λ 6= 0 and λ = 0 separately.
(2-1) λ 6= 0.
Let αi (i = 1, 2) be roots of the equation 3α2 − 2λα + 3λ2 = 0.
(2-1-a) For each point ϕλ(−α, 1) ∈ Cλ, there exist three Z3-lines passing through

it except at α = αi (i = 1, 2). The equations of these lines are given by two equations
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chosen from the following three ones:




X + (α + 3β)Y + β2(3α + β)Z + αβ3W = 0,

X + (α + 3β′)Y + β′2(3α + β′)Z + αβ′3W = 0,

Z + αW = 0,

where β and β′ are two roots of the equation 3β2 + 3(α− λ)β − αλ = 0.
(2-1-b) At the point ϕλ(−αi, 1) ∈ Cλ (i = 1, 2) or ϕλ(1, 0), there exists one

Z3-line passing through it. The lines for the former two points are given by the
equations in (2-1-a), where the first two equations coincide with each other. The
line for the latter one is given by Y + (λ2/3)Z = 0 and W = 0.

(2-2) λ = 0.
(2-2-a) At the point ϕ0(−α, 1), where α 6= 0, there exist three Z3-lines passing

through it. The equations of these three lines are given by two equations chosen
from the following three ones:





X + αY = 0,

X − 2αY + 2α3Z − α4W = 0,

Z + αW = 0.

(2-2-b) At the point ϕ0(0, 1) or ϕ0(1, 0), there exists one Z3-line passing through
it. The equations of these lines are given by X = Z = 0 and Y = W = 0, respec-
tively.

Remark 6.2. Let C̃ be the normal rational curve of degree 4 in P4, which is the
image of v4. The curve Cλ above is obtained by the projection πλ with center
Qλ = (0,−λ, 1, 0, 0). The curve C̃ has one Z4-plane H4(α, β) ∩ H4(α′, β′), where
αβ′ − α′β 6= 0, while it has infinitely many Z3-planes. For example, we can obtain
Z3-lines in Example 6.1(2) by the projection of the Z3-planes with center Qλ. The
other Galois lines are similarly obtained.

If g(C) = 1, then we use the same notation as in Section 4. As C is linearly
normal, we consider only non-skew Galois lines.

Example 6.3. Suppose that C has a non-skew Galois line l. Then Gl
∼= Z3 if

and only if J = 0. In this case, for each point P on C, there exist three Z3-lines
passing through it. Those lines are given as follows. Suppose that C has a non-
skew Galois line l and let σ be a generator of Gl. Then put l ∩ C = {P} and let
πP : P3 · · · → H be the projection with center P , where H is a plane not containing
P . Put C = πP (C), then it is a smooth plane cubic with J = 0, hence it has
three skew Galois points Q′i (i = 1, 2, 3), which do not lie on C (cf. [10]) and one of
which is πP (l). Therefore, (πP )−1(Qi) becomes a Z3-line for C. Let us present the
quartic curve C and Z3-lines more concretely. Since J = 0, the Weierstrass form E
is y2 = 4x3 − 1. Let τ be an automorphism of E given by τ(z) = ζ3z. It acts on
k(x, y) as τ∗(x) = ζ3x and τ∗(y) = y, hence the fixed field k(x, y)τ is k(y). Putting
D = 3P0 + Q, where Q = (a, b, 1) and b2 = 4a3 − 1, we have div(y) + D ≥ 0. It
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is easy to see that L(D) = 〈1, x, y, (y + b)/(x− a)〉. Therefore, C can be expressed
as W (X − aZ) = Z(Y + bZ) and W (Y − bZ) = 4(X2 + aXZ + a2Z2), where
b2 = 4a3−1. Then the Z3-lines passing through (0, 0, 0, 1) are given by Y = Z = 0,
X = Y +

√
3 Z = 0 and X = Y −√3 Z = 0.

Remark 6.4. If C is not linearly normal or a Galois line is not skew, then the auto-
morphism associated with the Galois line is not necessarily extended to a projective
transformation. For example:

(i) Suppose that C is the curve Cλ (λ 6= 0) in Example 6.1 and take the Galois
line defined by W = 0 and 34X + 2333λY + 253λ3Z + 24λ4W = 0. Then it is easy
to see that σ cannot be extended.

(ii) Let C be the curve in Example 6.3 and take σ ∈ Gl. Then σ is the restriction
of the quadratic transformation:

(X, Y, Z, W ) 7→ (ωX(ωX − aZ), Y (ωX − aZ), Z(ωX − aZ), Z(Y + bZ)) .
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