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Abstract. Let V be a smooth hypersurface in Pn+1. We con-
sider a projection of V from P ∈ Pn+1 to a hyperplane H. This
projection induces an extension of fields k(V )/k(H), which does
not depend on the choice of H. We study the structures of this
extension and the hypersurfaces together. The point P is called
a Galois point if the extension is Galois. We show estimates of
the number of the Galois points and some rules of their distribu-
tions. Especially we give the defining equation of V with maximal
number of Galois points.
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1. Introduction

Let k be the field of complex numbers. We fix it as the ground field
of our discussions. Let V be a smooth hypersurface of degree d in the
projective (n+1)-space Pn+1 and K = k(V ) the function field of V . Let
P be a point in Pn+1 and πP : V · · · → H a projection with center P ,
where H is a hyperplane not containing P . When we do not mention
otherwise, we always assume that d ≥ 4. Then we have an extension
of function fields πP

∗ : k(H) ↪→ K. It is not difficult to see that the
structure of this extension does not depend on the choice of H but on
the point P . So that we use the notation KP instead of k(H). Clearly
we have [K : KP ] = d− 1 [resp. d] if P ∈ V [resp. P 6∈ V ].

Definition 1. The point P ∈ Pn+1 is called a Galois point for V if the
extension K/KP is Galois. If, moreover, P ∈ V [resp. P 6∈ V ], then we
call P an inner [resp. outer] Galois point. We denote by δ(V ) [resp.
δ(V c)] the number of inner [resp. outer] Galois points.

If P 6∈ V , then πP is a finite morphism, however if P ∈ V and
n ≥ 2, then it is not even a morphism. The restriction π′P := πP |V \P :
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V \ P −→ H becomes a morphism. Let L be the union of linear
varieties contained in V and passing through P . Then, π′′P := πP |V \L :
V \ L −→ H \ L becomes a quasi-finite morphism.

By Lemma 1 in Section 2, we can say that a point P ∈ V [resp. P
6∈ V ] is a Galois point if and only if π′′P [resp. πP ] is a Galois covering
in the sense of Namba [8].

Definition 2. We denote by LP the Galois closure of K/KP and put
GP = Gal(LP/KP ). We call it a Galois group at P .

We study the extension K/KP from geometrical points of view, es-
pecially we consider the following problems:

(A) Find all the Galois points. Do there exist any rules for the
distribution of the points (like quartic surfaces [13]) ?

(B) Find the structure of the Galois group GP at each point P ∈
Pn+1.

(C) Find the structure of a nonsingular projective model of LP .

We have studied these problems in detail when n = 1 (see, [7] and
[12]) and n = 2, d = 4 (see, [10] and [13]). Note that the definitions and
assertions above do not depend on projective changes of coordinates.
We will consider several objects up to projective equivalence.

Remark 1. For the motivation of our research, see [12].

Remark 2. In the case where n = 1, the field KP is always a maximal
rational subfield of K. Similarly in the case where n = 2, it is maximal
rational except the case where d = 4, P /∈ V and P is a Galois point.
In fact, if d ≥ 5 or d = 4 and P ∈ V , then KP is maximal rational by
[1] and [11].

We use the following notation and convention throughout this paper:

• (X0, . . . , Xn+1) : homogeneous coordinates on Pn+1

• F (X0, . . . , Xn+1) = 0 : the defining equation of V
• Sn : the symmetric group on n letters
• en := exp(2π

√−1/n)
• F (n, d) : the Fermat variety of degree d, which is defined by
Xd

0 +Xd
1 + · · ·+Xd

n+1 = 0
• σ[Y ] : the proper transform of Y by a birational map σ
• i(Y, Z;P ) : the intersection number of Y and Z at P
• Let Mi be square matrices of size mi (1 ≤ i ≤ r) and
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M =




M1 0M2

. . .
. . .

0 Mr



.

Then we denote M by M1 ⊕M2 ⊕ · · · ⊕Mr.
• diag[α1, · · · , αn] : the diagonal matrix (α1)⊕ · · · ⊕ (αn)
• lPQ : the line passing through two points P and Q

2. Statement of results

Suppose that P is a Galois point. Then σ ∈ Gal(K/KP ) induces a
birational transformation of V over H, we denote it by the same letter
σ.

Lemma 1. The transformation σ becomes an automorphism of V ,
in fact it turns out to be a restriction of a projective transformation
M(σ) ∈ PGL(n + 1, k). Hence we have a representation of GP in
PGL(n+ 1, k).

When there is no fear of confusion, we will use the notation σ instead
ofM(σ). We will show that σ(P ) = P and σ(l) = l for any line l passing
through P . From Lemma 1 we infer the following.

Theorem 1. If V is general in the class of hypersurfaces with d ≥ 4,
then it has no Galois point.

Next we consider GP for a given hypersurface V . If P is a general
point among the ones for P ∈ V [resp. P /∈ V ], then we will show that
GP
∼= Sd−1 [resp. Sd ]. We now state this fact in more definite form.

Let µ : Ṽ −→ V be a blowing-up of V at P . Then π̃ := πP · µ
becomes a morphism Ṽ −→ H. Let ∆P be the discriminant divisor of
this covering π̃. ∆P is a divisor in H and is defined locally as follows:
we can take homogeneous coordinates on Pn+1 satisfying the following
conditions (1), (2) and (3):

(1) P = (1, 0, . . . , 0).
(2) The hyperplane X1 = 0 is not tangent to V at any points.
(3) For each irreducible component W of {X0 = 0}∩V , there exists

a point Q ∈ W satisfying that the line lPQ does not touch V at
Q.
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Under these conditions we put xi = Xi/X0 (i = 1, . . . , n + 1) and
f(x1, . . . , xn+1) = F (X0, X1, . . . , Xn+1)/Xd

0 .
Moreover, we put x = x1, xi = ti−1x1 (i = 2, . . . , n+ 1) and

f ?(t1, . . . , tn, x) =

{
f(x, xt1, . . . , xtn)/x if P ∈ V
f(x, xt1, . . . , xtn) if P 6∈ V.

Note that f ? = 0 is the defining equation of the affine part of the
blowing-up of V at P . The affine part of ∆P is the divisor defined by
the discriminant of f ? with respect to x.

Theorem 2. Suppose that each component of ∆P is reduced. Then
GP
∼= Sd−1 [resp. Sd ] if P ∈ V [resp. P /∈ V ].

As an application we have the following.

Theorem 3. There exists a divisor D ⊂ Pn+1 satisfying the following
conditions:

(1) If P ∈ V \D, then GP
∼= Sd−1.

(2) If P ∈ Pn+1 \ (V ∪D), then GP
∼= Sd.

We obtain the following readily.

Corollary 4. If P is a general point, then there exists no field between
K and KP .

Note that, in the case where n = 1, we have that
degD ≤ d(d − 1)(d2 − 3)/2 (cf. [12]). It seems interesting to study
the structure of GP when P belongs to D. We have also an interest to
find the structure of a nonsingular projective model of LP . For lower
dimensional cases we have some results, see [7], [10] and [12].

Next, we investigate several structures in the most special case, i.e.,
the case of Galois points.

Theorem 5. If P is a Galois point, then GP is a cyclic group of order
d− 1 [resp. d ] for P ∈ V [resp. P /∈ V ].

From this theorem we infer the following useful corollary.

Corollary 6. If P = (1, 0, . . . , 0) is an inner [resp.outer] Galois point,
then the defining equation of V can be given by F = X1X

d−1
0 + G = 0

[resp. Xd
0 +G = 0], where G is a form of degree d in k[X1, . . . , Xn+1].

To find inner Galois points we can use the folllowing.

Corollary 7. Let H(F ) be the Hessian of F . If P is an inner Galois
point, then H(F )(P ) = 0

Definition 3. For a Galois point P an automorphism induced from
an element of GP is said to be an automorphism associated with P .



GALOIS POINTS FOR SMOOTH HYPERSURFACES 5

Assumption. When we consider several Galois points at the same
time, we assume that all of them are inner or outer simultaneously.

Here we present a simple but useful lemma.

Lemma 2. If P and Q are distinct Galois points, and σ and τ are
generators of GP and GQ respectively. Then σ(Q) and τ(P ) are also
Galois points. If, moreover, there exists no other Galois points on the
line lPQ, then σ and τ commute in PGL(n+ 1, k).

Note 8. Under the assumption of Lemma 2, suppose that σ|l is not
identity, where l = lPQ. Then Q is the only other fixed point of the
automorphism σ|l on l.

Now, we study the cardinality of Galois points.

Definition 4. A set of Galois points {P0, . . . , Pr} is said to be inde-
pendent, if for any two points Pi and Pj (0 ≤ i, j ≤ r) all the Galois
points for V lying on lPiPj are just Pi and Pj.

Lemma 3. If P0, . . . , Pr are independent Galois points, then we can
choose coordinates (X0, . . . , Xn+1) satisfying that Xj(Pi) = δji (0 ≤
i ≤ r, 0 ≤ j ≤ n + 1) and a generator σi of GPi (0 ≤ i ≤ r) has a
representation as diag[ζ, · · · , ζ, 1, ζ, · · · , ζ], where 1 is in i-th position
and ζ = ed−1 [resp. ed ]. Especially we have r ≤ n + 1, i.e., the
cardinality of a set of independent Galois points is at most n+ 2.

First we consider inner Galois points in detail. Hereafter we denote
by m = [n/2] the integral part of n/2.

Lemma 4. The cardinality of a set of independent inner Galois points
is at most m+ 1.

Theorem 9. We have the following assertions for inner Galois points.
(1) If d = 4, then we have δ(V ) ≤ 4(m+ 1). The equality holds true

if and only if V is projectively equivalent to the hypersurface defined by
the equation

F = Xm+1X
3
0 + · · ·+X2m+1X

3
m +X4

m+1 + · · ·+X4
n+1 = 0.

(2) If d ≥ 5, then the set of Galois points is independent, hence
we have δ(V ) ≤ m + 1. The equality holds true if and only if V is
projectively equivalent to the hypersurface defined by the equation

F = Xm+1X0
d−1 + · · ·+X2m+1Xm

d−1 +G = 0,

where G is a form in k[Xm+1, . . . , Xn+1] and has degG = d.

On the other hand, for outer Galois points, we have the following
simple assertion.



6 GALOIS POINTS FOR SMOOTH HYPERSURFACES

Theorem 10. We have δ(V c) ≤ n+ 2. The equality holds true if and
only if V is projectively equivalent to the Fermat variety F (n, d).

For a more detailed result, see Proposition 11 in Section 3. We have
a characterization of a Fermat variety, i.e., “a smooth hypersurface V
is a Fermat variety if and only if it has the maximal number of outer
Galois points.”

Remark 3. In the case where V is not smooth, the assertions of Lemma
1 and Theorem 5 do not hold true. In fact, we have the following
example.

Let W be the hypersurface defined by

Xn+1(X2
1 + · · ·+X2

n+1)d + (Xd+1
1 + · · ·+Xd+1

n+1)Xd
0 +Xn+1X

2d
0 = 0.

Then Q = (1 : 0 : · · · : 0) ∈ W is a Galois point and the Galois group
at Q is isomorphic to the dihedral group of order 2d. Indeed, let σ be
a quadratic transformation of Pn+1 defined by

σ(X0, X1, . . . , Xn+1) = (X2
1 + · · ·+X2

n+1, X0X1, . . . , X0Xn+1),

and let τ be a projective transformation of Pn+1 defined by

τ(X0, X1, . . . , Xn+1) = (edX0, X1, . . . , Xn+1).

Then σ2 = τ d = 1 and στσ = τ−1. Clearly σ and τ induce birational
transformations on W , and GQ is generated by σ and τ . For Galois
points on singular varieties, we have only a few results (cf. [6]).

Finally we raise problems.

Problem. (I) Find the Galois group at P ∈ D and the distribution
rule of the points P satisfying that GP

∼= G for a given finite group G.
(II) Study the problems (A), (B) and (C) in Introduction when V

has singularities.
(III) Let V and L be an n-dimensional subvariety and an (N−n−1)-

dimensional linear subvariety of PN respectively. Consider a projection
πL : PN · · · → L0 with center L satisfying that πL|V : V · · · → L0 is
dominant, where L0 is an n-dimensional lienar subvariety L ∩ L0 = ∅.
Then, study the extension k(V )/k(L0) similarly as above (cf. [14]).

3. Proofs and some other results

First we prove Lemma 1. In the case where dimV = 1, the proof is
standard (cf. [12]), so we prove when dimV ≥ 2. Let Q(6= P ) be a
point in V and l = lPQ be the line passing through P and Q.



GALOIS POINTS FOR SMOOTH HYPERSURFACES 7

Lemma 5. If l meets V at d distinct points, then σ is regular at Q
and σ(Q) is one of the points in l ∩ V .

Proof. Blow up P . Then we get a morphism π̃ : Ṽ −→ V , where Ṽ is

the blowing up at P . So, Ṽ = V if P 6∈ V . Then π̃ is a finite morphism
near π̃(Q) by the hypothesis (actually the line l is not completely con-
tained in V is enough for this). Since σ ∈ Gal(K/KP ), we see that σ

induces a birational map from Ṽ to Ṽ over H. But, since π̃ is finite

near π̃(Q) and Ṽ is smooth (normal is enough), by elementary alge-
bra, we see that σ is a morphism (necessarily an isomorphism) from a
suitable open set of the form π̃−1(U) containing Q.

Let UQ be a small neighbourhood of Q. Then ZQ = UQ ∩ π−1
P (∆P )

is a set of zero points of some holomorphic function in UQ, where ∆P

is the discriminant. Let σ = (σ1, . . . , σn) be an expression of σ on UQ.
Then each σi is regular and bounded on UQ \ ZQ by Lemma 5. Then,
by Riemann’s Extension Theorem ([2, p. 9]), σ is regular at Q. Thus σ
is regular in V \{P}. Then, by Hartogs’ Theorem (cf. [2, p. 7]), we see
that σ is regular at P . Hence it becomes an automorphism of V . By
the definition of σ it preserves hyperplane sections passing through P ,
i.e., letting H be a hyperplane passing through P and V ′ = H ·V , which
is the intersection divisor on V , then by definition we have σ(V ′) = V ′.
Since H0(Pn+1,O(H)) ∼= H0(V,O(V ′)), σ is a restriction of a projective
transformation.

Now the proof of Theorem 1 is simple. If P is a Galois point, then
there exists a monomorphism GP ↪→ Aut(V ) by Lemma 1. It may
be well known that Aut(V ) ={id} if V is general and d ≥ 4 (cf. [5]).
Hence the assertion is clear.

We prove Theorem 2 by induction on the dimension of V . In the
case where n = 1, the assertion holds true by [12]. We assume that
n ≥ 2.

We can take a hyperplane HP satisfying the following conditions (i),
(ii) and (iii):

(i) HP passes through P .
(ii) The intersection of HP and ∆P is reduced.
(iii) V ′ := V ∩HP is irreducible and smooth.
Then V ′ is a smooth hypersurface of HP . Put π′ := πP |V ′ : V ′ · · · →

H ′ := H ∩ HP . Let µ : Ṽ −→ V be a blowing-up of V at P . Then

π̃ := πP · µ : Ṽ −→ H is a morphism. Let W be a nonsingular
projective model of LP satifying that there exists a surjective morphism

ρ : W −→ Ṽ . Put W ′ := ρ−1(µ−1[V ′]), where µ−1[V ′] denotes the
proper transform of V ′. Each element σ ∈ GP induces a birational
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transformation of W over H. Take an irreducible component W ′
0 of W ′

and put
G′P = {σ ∈ GP | σ[W ′

0] = W ′
0},

which is a subgroup of GP . Since ρ−1π̃−1(H ′) = W ′, we have σ[W ′] =
W ′. Since GP acts transitively on each fiber in an open dense subset of
W ′, we infer that W ′

0/G
′
P is birational to H ′, i.e., for some open dense

subset W∗ of W ′
0 each element of G′P acts as an automorphism and

W∗/G′P is isomorphic to some dense subset of H ′. Therefore k(W ′
0) is

a Galois extension of k(H ′). Applying the induction hypothesis to the
covering π′ : V ′ · · · → H ′, we have that the Galois group of V ′ at P is
the full symmetric group. Hence we infer that deg((π̃ ·ρ)|W ′0) = (d−1)!
[resp. d!]. (Especially, W ′

0 is irrducible.) Hence we conclude GP is also
the full symmetric group.

Next we prove Theorem 3. Let f be the defining equation of V in
the affine part X0 6= 0 as in Section 2. Put

g(u1, . . . , un+1, t0, . . . , tn, x) := f(u1 + xt0, . . . , un+1 + xtn),

where (t0, . . . , tn) ∈ Pn. Let Σ = Σ(u1, . . . , un+1, t0, . . . , tn) be the
discriminant of g with respect to x. Consider a hyperplane HQ of
Pn+1
X0

= An+1 satisfying that HQ passes through Q = (u1, . . . , un+1)
and V ∩HQ is smooth. Let

h(x1, . . . , xn+1) = a0 +
n+1∑
i=1

aixi

be the defining equation of HQ and let LQ be the linear variety in
An+1 × Pn defined by the simultaneous equations:{

a0 + a1u1 + · · ·+ an+1un+1 = 0
a1t0 + · · ·+ an+1tn = 0.

Let ḡ be the polynomial which is a restriction of g to a0 +
∑n+1

i=1 aiui =∑n
j=0 aj+1tj = 0. Let Σ be the discriminant of ḡ with respect to x.

Since discriminants can be given by resultants, we infer easily that Σ
is the restriction of Σ to LQ.

Claim 1. Each component of Σ is reduced.

Proof. We prove by induction on the dimension of V . In the case where
n = 1, let M be the set of multitangent lines to the curve C( = V ),
where the definition is as follows:

A line l is said to be a multitangent line to a plane curve C if it
satisfies the following condition (1) or (2):

(1) There exists a point P ∈ C ∩ l satisfying that i(C, l ;P ) ≥ 3.
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(2) There exist at least two points Pi ∈ C ∩ l satisfying that
i(C, l ;Pi) = 2 for i = 1, 2.

Since the cardinality ofM is finite, we infer that each component of
Σ is reduced. In fact, Σ is reduced and irreducible (cf. [12]).

Let HQ be a general hyperplane passing through Q = (u1, . . . , un+1).
Then (V ∩ An+1) ∩ HQ is smooth, and by induction hypothesis Σ is
reduced. Since HQ is general, from the consideration before this claim
we conclude that Σ is also reduced.

Let p be the first projection An+1 × Pn −→ An+1, i.e.,
p(u1, . . . , un+1, t0, . . . , tn) = (u1, . . . , un+1). Since each component of
Σ is reduced, there exists a divisor Da in An+1 satisfying that each
component of p−1(Q) is reduced if Q /∈ Da. Therefore, taking D as the
divisor Da ∪ {X0 = 0}, where Da is the closure of Da in Pn+1, we see
the assertions of Theorem 3 hold true.

If P is a general point among the ones in V [resp. Pn+1], then GP
∼=

Sd−1 [resp. Sd]. As we have seen above, we have K = KP (x0), where
f ?(t1, . . . , tn, x0) = 0. Hence the group corresponding to K = k(V ) is
the symmetric group Sd−2 [resp. Sd−1], which is primitive, hence it is
a maximal subgroup of Sd−1 [resp. Sd].

Next we prove Theorem 5. Let P be a Galois point and let σ be
any element of GP . Take coordinates as P = (1, 0, . . . , 0). By Lemma
1, σ has a projective representation, which satisfies σ(P ) = P and
σ(l) = l for each line passing through P . Hence we infer that it has a
representation as

M(σ) =

(
a −→a−→
0 λEn+1

)
,

where the entries are as follows: a ∈ k×, −→a and
−→
0 are row and

column vectors of size n+ 1 respectively, and En+1 is a unit matrix of
size n+ 1. Moreover σr is identity if r = d− 1 [resp. d], hence we have
ar = λr. Thus we can express λ = aζ, where ζr = 1. Note that, if
ζ = 1, then −→a must be a zero vector. Whence we get a homomorphism
ρ : GP −→ k×, defined by ρ(σ) = ζ. By the note above ρ is injective,
hence we conclude GP is a cyclic group of order d−1 [resp. d] if P ∈ V
[resp. P 6∈ V ].

Now the proof of Corollary 6 is simple. Indeed, if P is a Galois point,
then by Theorem 5 we have the representation M(σ) = 1 ⊕ ζEn+1,
where ζ = ed−1 [resp. ed]. Since F is invariant up to constants by the
action of σ, the assertion is easy to see.
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The proof of Corollary 7 is clear from the following lemma, which
may be well known (cf. [9]).

Lemma 6. Let f be the defining equation of an affine part of V and
f̄ be the restriction of f to the affine tangent plane of V at P . Then
the Taylor expansion of f̄ at P starts with a nondegenerate quadratic
form if and only if H(F )(P ) 6= 0.

Let us prove Lemma 2. Put σ(Q) = Q′ and consider the projective
transformation τ ′ = στσ−1. Then we have τ ′(Q′) = Q′ and τ ′(l′) = l′

for any line l′ passing through Q′. From this we infer that Q′ is a
Galois point and GQ′ = 〈τ ′〉, and similarly so is τ(P ). Let l be the
line passing through P and Q, if there exists no other Galois points on
l, then σ(Q) = Q and τ(P ) = P . Therefore we infer that τ ′ ∈ GQ.
By Theorem 5 we have that τ ′ = τ r for some r ∈ N. Comparing
eigenvalues of τ and τ ′, we obtain that r = 1.

We go to the proof of Lemma 3. Let σi be an automorphism as-
sociated with Pi. Taking a suitable coordinates, we can assume that
P0 = (1, 0, . . . , 0) and σ0 = 1 ⊕ ζEn+1, where ζ = ed−1 [resp. ed].
Since the Galois points are independent, by Lemma 2, the points
Pi (i ≥ 1) are fixed by σ0. Thus we infer that Pi (i ≥ 1) are in
the hyperplane X0 = 0. Next we take coordinates on X0 = 0 satis-
fying that P1 = (0, 1, 0, . . . , 0) and (i, j)-th entry of σ1 is 0 if i 6= j
or i 6= 2. Since σ0σ1 = σ1σ0 by Lemma 2, we have that (2, 1)-th en-
try of σ1 is zero. Then it is not hard to see that we can assume that
σ2 = diag[ζ, 1, ζ, · · · , ζ]. Thus Pj(j ≥ 2) lie in the intersection of hy-
perplanes X0 = X1 = 0. In this way we can take such coordinates as
is stated in this lemma.

Making use of Lemma 3, we can prove Lemma 4 as follows. Sup-
pose that r = δ(V ) ≥ m + 2. Then take a system of coordinates
(X0, . . . , Xn+1) satisfying that Xj(Pi) = δji, where 0 ≤ i ≤ m+ 1 and
0 ≤ j ≤ n + 1. By Lemma 3, we can assume that σi is a diagonal
matrix diag[ζ, . . . , ζ, 1, ζ, . . . , ζ], where ζ = ed−1. Since F σi = λiF for
λi ∈ k×, we infer that F has the expression as

F = A0X
d−1
0 + · · ·+ Am+1X

d−1
m+1 +G,

where Ai and G are forms in k[Xm+2, . . . , Xn+1], and deg Ai = 1 and
deg G = d. Putting Ai =

∑n+1
j=m+2 aijXj, we consider the simulta-

neous equations ∂F/∂Xi = 0 (i = 0, . . . , n + 1). Then the following
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simultaneous linear equations



a0m+2y0 + · · · + am+1m+2ym+1 = 0
· · · · · · · · ·

a0n+1y0 + · · · + am+1n+1ym+1 = 0

have non-trivial solutions. We infer from this that the hypersurface de-
fined by F = 0 has a singular point, which is a contradiction. Therefore
we conclude that δ(V ) ≤ m+ 1.

Before the proof of Theorem 9 we prepare several lemmas. Let l be
a line in Pn+1 and Λl be the linear system on V defined by

{ V ·H | H is a hyperplane ⊃ l},
where V ·H denotes the intersection divisor on V .

Lemma 7. A general member Vg in Λl is smooth and irreducible if one
of the following conditions is satisfied:

(1) dimV ≥ 2 and l 6⊂ V
(2) dimV ≥ 3

Proof. By Bertini’s Theorem (cf. [3, pp. 274–275]), general member of
Λl is irreducible and smooth except at the points in l ∩ V . In the
case (1), l ∩ V consists of finitely many points. Since (projective)
dim Λl ≥ 1, we can find in general members an element given by a
hyperplane not tangent to at any points in l ∩ V . Hence we can take
a smooth irreducible member. In the case (2), we have dim(l ∩ V ) ≤ 1
and dim Λl ≥ 2. By the same reasoning as above, we have the same
conclusion.

Claim 2. Suppose that d = 4. Then the following assertions holds
true:

(1) If a line l is contained in V , then the number of Galois points on
l is at most two.

(2) If a line l is not contained in V , then the number of Galois points
on V ∩ l is zero, one or four.

Proof. We prove by induction on n. If n = 1 or n = 2, then the
assertions hold true by [12] and [13]. Suppose that n ≥ 3. Then,
consider the linear system Λl given by the hyperplanes as above. By
Lemma 7 a general member Vg is irreducible and smooth. Since the
Galois points for V become the ones for Vg, the assertion is true by
induction hypothesis.

Here we state two lemmas from plane curve theory. Let Γ be an
irreducible (possibly singular) plane curve of degree d and Γ0 be the
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smooth part. Put

W (Γ) =
∑
P∈Γ0

{i(Γ, TP ;P )− 2},

where TP is the tangent line to Γ at P ∈ Γ0. Let Pj be a place of a
singular point and x = tνj , y = a1t

λj + · · · is a local equation of Γ at
Pj. Then we have the following lemma (cf. [4]), where g is the genus
of the normalization of Γ.

Lemma 8. W (Γ) = 3d+ 6(g − 1)−∑Pj
(λj + νj − 3).

If P is a smooth point on Γ and the projection with center πP :
Γ −→ P1 induces a Galois extension of fields πP

∗ : k(P1) ↪→ k(Γ), then
we call P a (smooth) Galois point. Under this situation we have the
following lemma, which is due to Miura.

Lemma 9. The number δ′ = δ′(Γ) of (smooth) Galois points on a
quartic curve Γ is at most four.

Proof. Let C be the normalization of Γ and P a Galois point. We
have a triple Galois covering π̃P : C −→ P1. Let r be the number of
ramification points for this covering. Then we have that r = 2 + g by
Hurwitz’s theorem. If Γ is smooth, then this lemma is true (cf. [12]). So
we assume that Γ has singular points and prove by considering several
kinds of singularities separately (cf. [6]).

(i) Γ has a cusp Q with multiplicity three. Then δ′(Γ) ≤ 2.
Because, in this case we have g = 0 and Γ has no other singular

point. Hence we have r = 2 and W (Γ) = 3 · 4 − 6 − 4 = 2. Therefore
we infer that δ′(Γ) ≤ 2.

(ii) Γ has no cusp of multiplicity three. Then δ′(Γ) ≤ 4.
We divide this case into two subcases (ii-1) and (ii-2):
(ii-1) Γ has a cusp of multiplicity two. Then δ′ ≤ 1.
Because, the cusp Q will be a ramification point for π̃P with order 3

[resp. 2] if lPQ is the tangent [resp. not tangent] line to Γ at Q. Since
π̃P is a triple Galois covering, lPQ must be the tangent line, from this
fact we infer that δ′(Γ) ≤ 1.

(ii-2) Γ has no cusp of multiplicity two. Then δ′ ≤ 4.
Because, the singular points do not become the ramification points

for π̃P , we have that rδ′ ≤ W (Γ). This implies that δ′(Γ) ≤ 4.

Claim 3. If d = 4, then there does not exist seven Galois points
P0, P1, P

′
1, P2, P

′
2, P3, P

′
3 such that P0, P1, P2, P3 are collinear and

P0, P
′
1, P

′
2, P

′
3 are collinear.
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Proof. Suppose the contrary. Then let L be the two dimensional linear
variety containing all the points. Then by Claim 2 we have L 6⊂ V
and hence Γ = V ∩ L is a quartic curve in L ∼= P2. Note that, if σ is
an automorphism associated with one of the Galois points, then σ|L is
a projective transformation of L satisfying σ(Γ) = Γ. Since the order
of σ is three and it acts on the covering πP |Γ : Γ −→ P1 transitively,
Γ must be irreducible. Indeed, Γ is reduced. Otherwise, Γ can be
written as 2Γ0, where Γ0 is a conic. Since the Galois point lies on
Γ0, this is absurd. Hence Γ is reduced. Suppose that it is reducible.
Then, it can be written as Γ1 + Γ2, where deg Γ1 = 1, deg Γ2 = 3
or deg Γ1 = deg Γ2 = 2. Since σ acts on Γ transitively, σ(Γ1) = Γ2.
Hence the first case cannot occur. In the second case we have that
σ(Γ1) = Γ2 and σ3 = id. This implies σ(Γ1) = Γ1, which contradicts
the transitivity. Therefore Γ is irreducible. Since the degree of Γ is four,
it is smooth at the Galois points. By Lemma 9 a quartic curve has at
most four smooth Galois points. Then we have a contradiction.

Now let us proceed with the proof of Theorem 9. First we treat
the case (1) d = 4. Let P1, . . . , Pr be independent inner Galois points
such that the number r is the maximal one. We have r ≤ m + 1 by
Lemma 4. If there exists another Galois point Q, then by definition
and Claim 2 there exists Pi(1) (1 ≤ i(1) ≤ r) satisfying that on the
line lQPi(1)

there exist four inner Galois points Pi(1), Q = Q1, Q2, Q3. Of

course, on the line lPjQi , where j 6= i(1), i = 1, 2, 3, there exist no Galois
points except Pj and Qi by Claim 3. If moreover there exists another
Galois point Q4, then by the same reasoning as above there exists Pi(2)

(1 ≤ i(2) ≤ r) satisfying that on the line lQ4Pi(2)
there exist four Galois

points Pi(2), Q4, Q5, Q6. Here we notice that i(1) 6= i(2) by Claim 3. In
this way we conclude the former assertion of (1). For the latter one, the
“if part” is checked by direct computation. Indeed, we can make use of
Corollary 7. By rather tedious computations of the Hessian of F , we
can show that δ(V ) ≥ 4(m + 1). Then, the equality follows from the
first assertion. So we prove the “only if part”. If the equality holds,
then by Lemma 4 and Claim 3, V has (m + 1) independent Galois
points P0, . . . , Pm. Then by Lemma 3 we can assume the following:

(i) Xj(Pi) = δji, where 0 ≤ i ≤ m, 0 ≤ j ≤ n+ 1,
(ii) σi = diag[ω, . . . , ω, 1, ω, . . . , ω], where σi is a generator of GPi

and ω = e3.
(iii) F = A0X

3
0 + · · · + AmX

3
m + G, where Ai and G are linear and

quartic forms in k[Xm+1, . . . , Xn+1] respectively.
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Since δ(V ) = 4(m + 1), by the same reasoning as in the proof of
the former assertion of (1), there exists a Galois point P ′i satisfying
that Pi, P

′
i , σi(P

′
i ), σi

2(P ′i ) are collinear, where σi is an automorphism
associated with Pi (0 ≤ i ≤ m). Then the line lPiP ′i is not contained
in V and σj(P

′
i ) = P ′i if i 6= j. Therefore we have that Xj(P

′
i ) = 0 if

0 ≤ j ≤ m and j 6= i. Consequently, we can take coordinates satisfying
the following conditions:

(i′) Xj(Pi) = δji, where 0 ≤ i ≤ m, 0 ≤ j ≤ n + 1. Xj(P
′
i ) = δji,

where 0 ≤ i, j ≤ m.
(ii′) σi = diag[ω, . . . , ω, 1, ω, . . . , ω], where σi is a generator of GPi

and ω = e3.
(iii′) F = Xm+1X

3
0 + · · ·+X2m+1X

3
m +G, where G is a quartic form

in k[Xm+1, . . . , Xn+1].

Since the line lP ′iPj is contained in V (j 6= i), we see that P ′i ∈
T0 ∩ · · · ∩ Ti−1 ∩ Ti+1 ∩ · · · ∩ Tm, where Tj is the tangent plane to V
at Pj. Hence we have that Xj(P

′
i ) = 0 for i 6= j and j 6= m + i + 1,

i.e., P ′i = (0, . . . , 0, 1, 0, . . . , 0, αi, 0, . . . , 0), where 1 and αi (6= 0) are
in i-th and (m+ i+ 1)-th positions respectively.

Here we mention a criterion that a point on a quartic hypersurface
to be a Galois point. Let the origin P = (0, . . . , 0) be an inner Galois
point for a quartic hypersurface V in An+1 defined by f = f1 + f2 +
f3 + f4, where fi is the homogeneous part of f with degree i. Then we
have shown the following in [12, Lemma 11].

Lemma 10. Under the condition above, P is a Galois point of V if
and only if f2 = 3f1f3.

Let us continue the proof. Apply this lemma to find the condition
that P ′i (0 ≤ i ≤ m) becomes a Galois point. Consider the affine part
Xi 6= 0 of V . Then the defining equation is

f = xm+1x
3
0 + · · ·+ xm+i + · · ·+ x2m+1x

3
m + g(xm+1, · · · , xn+1),

where xj = Xj/Xi and P ′i = (0, . . . , 0, αi, 0, · · · , 0). Putting xm+i+1 −
αi = x, we get

f = x+ αi + h(xo, · · · , xi−1, xi+1, · · · , xn+1)

+ λ(x+ αi)
4 + g1 · (x+ αi)

3 + g2 · (x+ αi)
2 + g3 · (x+ αi) + g4,

where gi is a form with degree i in k[xm+1, . . . , xm+i, xm+i+2, . . . , xn+1].
Making use of Lemma 10, we conclude that g1 = g2 = g3 = 0 by simple
calculations. In this way we will obtain that G has an expression as∑n−m+1

i=1 λiX
4
m+i, where λi ∈ k×. Taking new coordinates, we obtain

the latter assertion of (1).
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Before proceeding with the proof of (2) we prepare some lemmas.

Lemma 11. Suppose that d ≥ 5. Then the following assertions holds
true.

(1) If a line l is contained in V , then the number of Galois points on
l is at most two.

(2) If a line l is not contained in V , then the number of Galois points
on V ∩ l is zero or one.

Proof. First we prove (1). Of course, in this case we have n ≥ 2. In the
case where n = 2, suppose that there exist at least three Galois points
on l. Then, let H be a hyperplane containing l and put V ∩H = l∪C.
If H is general, then C is smooth and irreducible by Bertini’s Theorem
[3, pp. 274–275]. The Galois points become the outer Galois points for
C in the plane H ∼= P2. However such collinear outer Galois points
cannot exist, see [12]. This is a contradiction. In the case where n ≥ 3,
we prove by induction using the linear system Λl defined before Lemma
7. Second we prove (2). In the case where n = 1 this is true by [12,
Theorem 4]. So we assume that this holds true in the case where
dimV = n−1 ≥ 1. Suppose that there exist at least two Galois points
on a line l. Then let H be a hyperplane containing l. By Lemma 7
we have a smooth irreducible subvariety V ∩ H. From this we get a
contradiction, hence the number is zero or one.

As a direct consequence of this lemma we have the following.

Lemma 12. If d ≥ 5, then inner Galois points are independent. Es-
pecially we have δ(V ) ≤ m+ 1.

Thus the former assertion of (2) is proved. For the latter one, “if
part” is clear. Indeed, the points Pi satisfying that Xj(Pi) = δji,
where 0 ≤ i ≤ m, 0 ≤ j ≤ n + 1, are Galois points. Hence we
have δ(V ) ≥ m+ 1. By the inequality in the former assertion we have
δ(V ) = m + 1. The “only if part” may also be clear. By Lemma
12, V has (m + 1) independent Galois points. Then by Lemma 3 we
can assume that F = A0X

d−1
0 + · · · + Ad−1

m + G, where Ai and G are
forms in k[Xm+1, . . . , Xn+1] and degAi = 1 and degG = d. Since V is
smooth, the matrix obtained from the coefficients of Ai has rank m+1.
Therefore we can take such coordinates as F has the representation as
in the theorem. Thus we complete the proof of Theorem 9.

Finally we consider outer Galois points and prove Theorem 10.

Lemma 13. Outer Galois points are independent if d ≥ 3.

Proof. This holds true when n = 1 (cf. [12]). We prove this by induction
on n. Suppose that this assertion does not hold true. Then, there exist
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at least three outer Galois points {Pi} for V which lie on a line l.
Of course, l is not contained in V . By Lemma 7 if H is a general
hyperplane containing l, then V ′ = V ∩ H is smooth and irreducible.
Hence {Pi} are also outer Galois points for V ′, which are collinear.
This is a contradiction by induction hypothesis.

Proposition 11. We have δ(V c) = 0, 1, 2, . . . , n, n + 2. If δ(V c) =
r + 1, then the defining equation of V can be expressed as F = Xd

0 +
· · · + Xd

r + G, where G is a form of degree d in k[Xr+1, . . . , Xn+1].
Especially, if δ(V c) = n+ 2, then F is the Fermat variety.

Proof. By Lemmas 3 and 13 the proof is straightforward.

Thus we complete all the proofs.
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