Galois embeddings of elliptic curves and abelian surfaces

Hisao YOSHIHARA

Niigata University
March 12, 2009

The purpose of this talk is to introduce the notion and results of Galois embedding,

The purpose of this talk is
(1) to introduce the notion and results of Galois embedding, (2) and its application to elliptic curves and abelian surfaces.

The purpose of this talk is
(1) to introduce the notion and results of Galois embedding,
(2) and its application to elliptic curves and abelian surfaces.

Notation

k : ground field, $\bar{k}=k$ and $\operatorname{ch}(k)=0$

Notation

k : ground field, $\bar{k}=k$ and $\operatorname{ch}(k)=0$
V : nonsingular proj. variety, $\operatorname{dim} V=n$

Notation

k : ground field, $\bar{k}=k$ and $\operatorname{ch}(k)=0$
V : nonsingular proj. variety, $\operatorname{dim} V=n$
D : very ample divisor

Notation

k : ground field, $\bar{k}=k$ and $\operatorname{ch}(k)=0$
V : nonsingular proj. variety, $\operatorname{dim} V=n$
D : very ample divisor
$f=f_{D}: V \longrightarrow \mathbb{P}^{N}:$ embedding by $|D|$

Notation

k : ground field, $\bar{k}=k$ and $\operatorname{ch}(k)=0$
V : nonsingular proj. variety, $\operatorname{dim} V=n$
D : very ample divisor
$f=f_{D}: V \longrightarrow \mathbb{P}^{N}:$ embedding by $|D|$
where $N+1=\operatorname{dim} H^{0}(V, \mathcal{O}(D))$

Notation

k : ground field, $\bar{k}=k$ and $\operatorname{ch}(k)=0$
V : nonsingular proj. variety, $\operatorname{dim} V=n$
D : very ample divisor
$f=f_{D}: V \longrightarrow \mathbb{P}^{N}$: embedding by $|D|$
where $N+1=\operatorname{dim} H^{0}(V, \mathcal{O}(D))$
W : linear subvariety of $\mathbb{P}^{N}, \operatorname{dim} W=N-n-1, W \cap f(V)=\emptyset$

Notation

k : ground field, $\bar{k}=k$ and $\operatorname{ch}(k)=0$
V : nonsingular proj. variety, $\operatorname{dim} V=n$
D : very ample divisor
$f=f_{D}: V \longrightarrow \mathbb{P}^{N}$: embedding by $|D|$
where $N+1=\operatorname{dim} H^{0}(V, \mathcal{O}(D))$
W : linear subvariety of \mathbb{P}^{N}, $\operatorname{dim} W=N-n-1, W \cap f(V)=\emptyset$
$\pi_{W}: \mathbb{P}^{N} \rightarrow W_{0}:$ projection with the center W

Notation

k : ground field, $\bar{k}=k$ and $\operatorname{ch}(k)=0$
V : nonsingular proj. variety, $\operatorname{dim} V=n$
D : very ample divisor
$f=f_{D}: V \longrightarrow \mathbb{P}^{N}:$ embedding by $|D|$
where $N+1=\operatorname{dim} H^{0}(V, \mathcal{O}(D))$
W : linear subvariety of \mathbb{P}^{N}, $\operatorname{dim} W=N-n-1, W \cap f(V)=\emptyset$
$\pi_{W}: \mathbb{P}^{N} \rightarrow W_{0}$: projection with the center W
(where W_{0} linear subvariety, $\operatorname{dim} W_{0}=n$ and $W \cap W_{0}=\emptyset$)

Notation

k : ground field, $\bar{k}=k$ and $\operatorname{ch}(k)=0$
V : nonsingular proj. variety, $\operatorname{dim} V=n$
D : very ample divisor
$f=f_{D}: V \longrightarrow \mathbb{P}^{N}:$ embedding by $|D|$
where $N+1=\operatorname{dim} H^{0}(V, \mathcal{O}(D))$
W : linear subvariety of \mathbb{P}^{N}, $\operatorname{dim} W=N-n-1, W \cap f(V)=\emptyset$
$\pi_{W}: \mathbb{P}^{N} \rightarrow W_{0}:$ projection with the center W
(where W_{0} linear subvariety, $\operatorname{dim} W_{0}=n$ and $W \cap W_{0}=\emptyset$)
$\pi=\pi_{W} \cdot f: V \longrightarrow W_{0} \cong \mathbb{P}^{n}$

Notation

k : ground field, $\bar{k}=k$ and $\operatorname{ch}(k)=0$
V : nonsingular proj. variety, $\operatorname{dim} V=n$
D : very ample divisor
$f=f_{D}: V \longrightarrow \mathbb{P}^{N}:$ embedding by $|D|$
where $N+1=\operatorname{dim} H^{0}(V, \mathcal{O}(D))$
W : linear subvariety of \mathbb{P}^{N}, $\operatorname{dim} W=N-n-1, W \cap f(V)=\emptyset$
$\pi_{W}: \mathbb{P}^{N} \rightarrow W_{0}:$ projection with the center W
(where W_{0} linear subvariety, $\operatorname{dim} W_{0}=n$ and $W \cap W_{0}=\emptyset$)
$\pi=\pi_{W} \cdot f: V \longrightarrow W_{0} \cong \mathbb{P}^{n}$
$K=k(V)$: function field of V

Notation

k : ground field, $\bar{k}=k$ and $\operatorname{ch}(k)=0$
V : nonsingular proj. variety, $\operatorname{dim} V=n$
D : very ample divisor
$f=f_{D}: V \longrightarrow \mathbb{P}^{N}:$ embedding by $|D|$
where $N+1=\operatorname{dim} H^{0}(V, \mathcal{O}(D))$
W : linear subvariety of \mathbb{P}^{N}, $\operatorname{dim} W=N-n-1, W \cap f(V)=\emptyset$
$\pi_{W}: \mathbb{P}^{N} \rightarrow W_{0}:$ projection with the center W
(where W_{0} linear subvariety, $\operatorname{dim} W_{0}=n$ and $W \cap W_{0}=\emptyset$)
$\pi=\pi_{W} \cdot f: V \longrightarrow W_{0} \cong \mathbb{P}^{n}$
$K=k(V)$: function field of V
$K_{0}=k\left(W_{0}\right)$: function field of W_{0}

Galois embedding

$\pi^{*}: K_{0} \hookrightarrow K$: finite extension, $\operatorname{deg}=d=\operatorname{deg} f(V)=D^{n}$

Galois embedding

$\pi^{*}: K_{0} \hookrightarrow K$: finite extension, $\operatorname{deg}=d=\operatorname{deg} f(V)=D^{n}$
The structure of this extension does not depend on W_{0}, but on W.

Galois embedding

$\pi^{*}: K_{0} \hookrightarrow K$: finite extension, $\operatorname{deg}=d=\operatorname{deg} f(V)=D^{n}$
The structure of this extension does not depend on W_{0}, but on W.
$K_{W}:$ Galois closure of K / K_{0}

Galois embedding

$\pi^{*}: K_{0} \hookrightarrow K$: finite extension, $\operatorname{deg}=d=\operatorname{deg} f(V)=D^{n}$
The structure of this extension does not depend on W_{0}, but on W.
$K_{W}:$ Galois closure of K / K_{0}
$G_{W}:=\operatorname{Gal}\left(K_{W} / K_{0}\right)$
G_{W} is isomorphic to the monodromy group of $\pi: V \longrightarrow W_{0}$.

We call G_{W} the Galois group at W.

Galois embedding

$\pi^{*}: K_{0} \hookrightarrow K$: finite extension, $\operatorname{deg}=d=\operatorname{deg} f(V)=D^{n}$
The structure of this extension does not depend on W_{0}, but on W.
K_{W} : Galois closure of K / K_{0}
$G_{W}:=\operatorname{Gal}\left(K_{W} / K_{0}\right)$

Remark

G_{W} is isomorphic to the monodromy group of $\pi: V \longrightarrow W_{0}$.

Galois embedding

$\pi^{*}: K_{0} \hookrightarrow K$: finite extension, $\operatorname{deg}=d=\operatorname{deg} f(V)=D^{n}$
The structure of this extension does not depend on W_{0}, but on W.
$K_{W}:$ Galois closure of K / K_{0}
$G_{W}:=\operatorname{Gal}\left(K_{W} / K_{0}\right)$

Remark

G_{W} is isomorphic to the monodromy group of $\pi: V \longrightarrow W_{0}$.

Definition

We call G_{W} the Galois group at W.

Galois embedding

$\pi^{*}: K_{0} \hookrightarrow K$: finite extension, $\operatorname{deg}=d=\operatorname{deg} f(V)=D^{n}$
The structure of this extension does not depend on W_{0}, but on W.
K_{W} : Galois closure of K / K_{0}
$G_{W}:=\operatorname{Gal}\left(K_{W} / K_{0}\right)$

Remark

G_{W} is isomorphic to the monodromy group of $\pi: V \longrightarrow W_{0}$.

Definition

We call G_{W} the Galois group at W. If K / K_{0} is Galois, W is said to be Galois subspace.

Galois embedding

Definition

The V is said to have a Galois embedding if there exists a very ample divisor D s.t. the embedding by $|D|$ has a Galois subspace.

In this case we say that (V, D) defines a Galois embedding.

Galois embedding

Definition

The V is said to have a Galois embedding if there exists a very ample divisor D s.t. the embedding by $|D|$ has a Galois subspace. In particular, if W is a point or line, we call it a Galois point or Galois line respectively.

Similarly we can define the Galois embedding in the case

We do not treat this case in this talk.

Galois embedding

Definition

The V is said to have a Galois embedding if there exists a very ample divisor D s.t. the embedding by $|D|$ has a Galois subspace. In particular, if W is a point or line, we call it a Galois point or Galois line respectively.

In this case we say that (V, D) defines a Galois embedding.

Similarly we can define the Galois embedding in the case
We do not treat this case in this talk.

Galois embedding

Definition

The V is said to have a Galois embedding if there exists a very ample divisor D s.t. the embedding by $|D|$ has a Galois subspace. In particular, if W is a point or line, we call it a Galois point or Galois line respectively.

In this case we say that (V, D) defines a Galois embedding.

Remark

Similarly we can define the Galois embedding in the case where $W \cap f(V) \neq \emptyset$.
We do not treat this case in this talk.

Plane cubic

Example

$E:$ smooth cubic in \mathbb{P}^{2}.
then E is projectively equivalent to the curve defined by
$Y^{2} Z=4 X^{3}+Z^{3}$

Plane cubic

Example

E : smooth cubic in \mathbb{P}^{2}.
If there exists a Galois point,

Plane cubic

Example

E : smooth cubic in \mathbb{P}^{2}. If there exists a Galois point, then E is projectively equivalent to the curve defined by $Y^{2} Z=4 X^{3}+Z^{3}$

Plane cubic

Example

E : smooth cubic in \mathbb{P}^{2}. If there exists a Galois point, then E is projectively equivalent to the curve defined by $Y^{2} Z=4 X^{3}+Z^{3}$ and it has just three Galois points

$$
(X: Y: Z)=(1: 0: 0),(0:-\sqrt{-3}: 1) \text { and }
$$

Plane cubic

Example

E : smooth cubic in \mathbb{P}^{2}. If there exists a Galois point, then E is projectively equivalent to the curve defined by $Y^{2} Z=4 X^{3}+Z^{3}$ and it has just three Galois points $(X: Y: Z)=(1: 0: 0),(0:-\sqrt{-3}: 1)$ and ($0: \sqrt{-3}: 1$). Then we have three projections

Plane cubic

Example

E : smooth cubic in \mathbb{P}^{2}. If there exists a Galois point, then E is projectively equivalent to the curve defined by $Y^{2} Z=4 X^{3}+Z^{3}$ and it has just three Galois points $(X: Y: Z)=(1: 0: 0),(0:-\sqrt{-3}: 1)$ and ($0: \sqrt{-3}: 1$). Then we have three projections $\pi: \mathbb{P}^{2} \cdots \rightarrow \mathbb{P}^{1}$

Plane cubic

Example

E : smooth cubic in \mathbb{P}^{2}.
If there exists a Galois point,
then E is projectively equivalent to the curve defined by
$Y^{2} Z=4 X^{3}+Z^{3}$
and it has just three Galois points
$(X: Y: Z)=(1: 0: 0),(0:-\sqrt{-3}: 1)$ and
($0: \sqrt{-3}: 1$). Then we have three projections $\pi: \mathbb{P}^{2} \cdots \rightarrow \mathbb{P}^{1}$
given by $\pi(X: Y: Z)=(Y: Z),(X: Y+\sqrt{-3} Z)$ and $(X: Y-\sqrt{-3} Z)$,

Plane cubic

Example

E : smooth cubic in \mathbb{P}^{2}.
If there exists a Galois point,
then E is projectively equivalent to the curve defined by
$Y^{2} Z=4 X^{3}+Z^{3}$
and it has just three Galois points
$(X: Y: Z)=(1: 0: 0),(0:-\sqrt{-3}: 1)$ and
($0: \sqrt{-3}: 1$). Then we have three projections $\pi: \mathbb{P}^{2} \cdots \rightarrow \mathbb{P}^{1}$
given by $\pi(X: Y: Z)=(Y: Z),(X: Y+\sqrt{-3} Z)$ and $(X: Y-\sqrt{-3} Z)$, which yield Galois coverings $\left.\pi\right|_{E}: E \longrightarrow \mathbb{P}^{1}$.

Space quartic

Example

For any elliptic curve E there exists a Galois embedding in \mathbb{P}^{3}

Space quartic

Example

For any elliptic curve E there exists a Galois embedding in \mathbb{P}^{3} whose Galois group is isomorphic to V_{4}.

Later we will see this in detail.

Space quartic

Example

For any elliptic curve E there exists a Galois embedding in \mathbb{P}^{3} whose Galois group is isomorphic to V_{4}.

Later we will see this in detail.

Space quartic

Example

For any elliptic curve E there exists a Galois embedding in \mathbb{P}^{3} whose Galois group is isomorphic to V_{4}.

Later we will see this in detail.

Example

The elliptic curve E with $J(E)=1728$ has an embedding $C \subset \mathbb{P}^{3}$
satisfying that C has four Z_{4}-lines and three V_{4}-lines. Therefore C has seven Galois lines.

Space quartic

Example

For any elliptic curve E there exists a Galois embedding in \mathbb{P}^{3} whose Galois group is isomorphic to V_{4}.

Later we will see this in detail.

Example

The elliptic curve E with $J(E)=1728$ has an embedding $C \subset \mathbb{P}^{3}$ satisfying that C has four Z_{4}-lines and three V_{4}-lines.

Space quartic

Example

For any elliptic curve E there exists a Galois embedding in \mathbb{P}^{3} whose Galois group is isomorphic to V_{4}.

Later we will see this in detail.

Example

The elliptic curve E with $J(E)=1728$ has an embedding $C \subset \mathbb{P}^{3}$ satisfying that C has four Z_{4}-lines and three V_{4}-lines. Therefore C has seven Galois lines.

Space quartic

Example

In fact, let C be the sapce curve defined by $Z^{2}=X Y$ and $W^{2}=4 Y Z-X Z$.

Space quartic

Example

In fact, let C be the sapce curve defined by $Z^{2}=X Y$ and $W^{2}=4 Y Z-X Z$.
Then C has four Z_{4}-lines and three V_{4}-lines, the defining equations are given as follows:

Space quartic

Example

In fact, let C be the sapce curve defined by $Z^{2}=X Y$ and $W^{2}=4 Y Z-X Z$.
Then C has four Z_{4}-lines and three V_{4}-lines, the defining equations are given as follows:
(I) Z_{4}-liens :
(1) $\ell_{1}: X=Y=0$
(2) $\ell_{2}: Z=X+4 Y=0$
(3) $\ell_{3}: W=X-4 Y+4 i Z=0$, where $i=\sqrt{-1}$
(4) $\ell_{4}: W=X-4 Y-4 i Z=0$
(II) V_{4}-lines:
(5) $\ell_{5}: X-4 Y=Z=0$
(6) $\ell_{6}: X+4 Y=X+2 Z=0$
(7) $\ell_{7}: X+4 Y=X-2 Z=0$

The arrangement of the lines are as follows:

Space quartic

Example

In fact, let C be the sapce curve defined by $Z^{2}=X Y$ and $W^{2}=4 Y Z-X Z$.
Then C has four Z_{4}-lines and three V_{4}-lines, the defining equations are given as follows:
(I) Z_{4}-liens :

$$
\begin{aligned}
& \text { (1) } \ell_{1}: X=Y=0 \\
& \text { (2) } \ell_{2}: Z=X+4 Y=0 \\
& \text { (3) } \ell_{3}: W=X-4 Y+4 i Z=0 \text {, where } i=\sqrt{-1} \\
& \text { (4) } \ell_{4}: W=X-4 Y-4 i Z=0
\end{aligned}
$$

(II) V_{4}-lines:

$$
\begin{aligned}
& \text { (5) } \ell_{5}: X-4 Y=Z=0 \\
& \text { (6) } \ell_{6}: X+4 Y=X+2 Z=0 \\
& \text { (7) } \ell_{7}: X+4 Y=X-2 Z=0
\end{aligned}
$$

The arrangement of the lines are as follows:

Figure

(1) to (4): Z_{4}-lines, (5), (6) and (7) : V_{4}-lines

Figure

(1) to (4): Z_{4}-lines,

Figure

(1) to (4): Z_{4}-lines, (5), (6) and (7): V_{4}-lines

Remark

No divisor of degree five on elliptic curve has Galois embedding.

Problems

Problem

(1) Find the structure of G_{W}.

Find the subset \mathcal{S} of $\operatorname{Pic}(V)$ such that it consists of D which gives the Galois embedding.
(3) Find the arrangement of Galois :ubspaces for f(V).

Problems

Problem

(1) Find the structure of G_{W}.
(2) Find the subset \mathcal{S} of $\operatorname{Pic}(V)$ such that it consists of D which gives the Galois embedding.

Problems

Problem

(1) Find the structure of G_{W}.
(2) Find the subset \mathcal{S} of $\operatorname{Pic}(V)$ such that it consists of D which gives the Galois embedding.
(3) Find the arrangement of Galois subspaces for $f(V)$.

Problems

Problem

(1) Find the structure of G_{w}.
(2) Find the subset \mathcal{S} of $\operatorname{Pic}(V)$ such that it consists of D which gives the Galois embedding.
(3) Find the arrangement of Galois subspaces for $f(V)$.
(4) For an embedding (V, D) find the structure of Galois group G_{W} for each $W \in \operatorname{Grass}(N-n-1, N)$.

Problems

Problem

(1) Find the structure of G_{W}.
(2) Find the subset \mathcal{S} of $\operatorname{Pic}(V)$ such that it consists of D which gives the Galois embedding.
(3) Find the arrangement of Galois subspaces for $f(V)$.
(4) For an embedding (V, D) find the structure of Galois group G_{W} for each $W \in \operatorname{Grass}(N-n-1, N)$.
(5) How is the set $\left\{W \in \operatorname{Grass}(N-n-1, N) \mid G_{W} \cong S_{d}\right\}$?

Problems

Problem

(1) Find the structure of G_{W}.
(2) Find the subset \mathcal{S} of $\operatorname{Pic}(V)$ such that it consists of D which gives the Galois embedding.
(3) Find the arrangement of Galois subspaces for $f(V)$.
(4) For an embedding (V, D) find the structure of Galois group G_{W} for each $W \in \operatorname{Grass}(N-n-1, N)$.
(5) How is the set $\left\{W \in \operatorname{Grass}(N-n-1, N) \mid G_{W} \cong S_{d}\right\}$? In particular, is it true that the codimension of the complement of the set is at least two ?

Problems

Problem

(1) Find the structure of G_{W}.
(2) Find the subset \mathcal{S} of $\operatorname{Pic}(V)$ such that it consists of D which gives the Galois embedding.
(3) Find the arrangement of Galois subspaces for $f(V)$.
(4) For an embedding (V, D) find the structure of Galois group G_{W} for each $W \in \operatorname{Grass}(N-n-1, N)$.
(5) How is the set $\left\{W \in \operatorname{Grass}(N-n-1, N) \mid G_{W} \cong S_{d}\right\}$? In particular, is it true that the codimension of the complement of the set is at least two ?
(6) Suppose that $\operatorname{dim} \operatorname{Lin}(f(V))=0, W$ and W^{\prime} are close and $W \neq W^{\prime}$. Then is it true that K_{W} is not isomorphic to K_{W}^{\prime} ?

Results

The results change greatly whether

Results

The results change greatly whether
(A) $\operatorname{ch}(k)=0$ or >0,

We treat only the case where $c h(k)=0$ and $W \cap f(V)=\emptyset$.

Results

The results change greatly whether
(A) $\operatorname{ch}(k)=0$ or >0,
(B) $W \cap f(V)=\emptyset$ or not.

We treat only the case where $c h(k)=0$ and $W \cap f(V)=\emptyset$. First we show general results.

Results

The results change greatly whether
(A) $\operatorname{ch}(k)=0$ or >0,
(B) $W \cap f(V)=\emptyset$ or not.

We treat only the case where $\operatorname{ch}(k)=0$ and $W \cap f(V)=\emptyset$.

Results

The results change greatly whether
(A) $\operatorname{ch}(k)=0$ or >0,
(B) $W \cap f(V)=\emptyset$ or not.

We treat only the case where $\operatorname{ch}(k)=0$ and $W \cap f(V)=\emptyset$.
First we show general results.

Basic results

Hereafter we assume W is a Galois subspace.

There exists an injective representation α GW

Basic results

Hereafter we assume W is a Galois subspace.

Proposition

There exists an injective representation $\alpha: G_{W} \hookrightarrow \operatorname{Aut}(V)$. If $\operatorname{Aut}(V)$ is trivial, then V has no Galois embedding. We have another injective representation $G_{w} \hookrightarrow P G L(N, k)$

Basic results

Hereafter we assume W is a Galois subspace.

Proposition

There exists an injective representation $\alpha: G_{w} \hookrightarrow \operatorname{Aut}(V)$.

Corollary

If Aut (V) is trivial, then V has no Galois embedding.

Basic results

Hereafter we assume W is a Galois subspace.

Proposition

There exists an injective representation $\alpha: G_{W} \hookrightarrow \operatorname{Aut}(V)$.

Corollary

If Aut (V) is trivial, then V has no Galois embedding.

Proposition

We have another injective representation $\beta: G_{W} \hookrightarrow P G L(N, k)$.

Criterion

Proposition
We have $W_{0} \cong V / G_{W}$
The projection $\pi: V \longrightarrow W_{0}$ turns out a finite morphism.
In particular the fixed loci of G_{w} consists of divisors.

Criterion

Proposition

We have $W_{0} \cong V / G_{W}$
The projection $\pi: V \longrightarrow W_{0}$ turns out a finite morphism.

Criterion

Proposition

We have $W_{0} \cong V / G_{W}$
The projection $\pi: V \longrightarrow W_{0}$ turns out a finite morphism. In particular the fixed loci of G_{w} consists of divisors.

Criterion

Proposition

We have $W_{0} \cong V / G_{W}$
The projection $\pi: V \longrightarrow W_{0}$ turns out a finite morphism. In particular the fixed loci of G_{w} consists of divisors.

Theorem

(V, D) defines a Galois embedding iff

Criterion

Proposition

We have $W_{0} \cong V / G_{W}$
The projection $\pi: V \longrightarrow W_{0}$ turns out a finite morphism. In particular the fixed loci of G_{w} consists of divisors.

Theorem

(V, D) defines a Galois embedding iff
(1) There exsits a subgroup G of $\operatorname{Aut}(V)$ with $|G|=D^{n}$.

Criterion

Proposition

We have $W_{0} \cong V / G_{W}$
The projection $\pi: V \longrightarrow W_{0}$ turns out a finite morphism. In particular the fixed loci of G_{w} consists of divisors.

Theorem

(V, D) defines a Galois embedding iff
(1) There exsits a subgroup G of $\operatorname{Aut}(V)$ with $|G|=D^{n}$.
(2) There exsits a G-invariant linear subspace \mathcal{L} of $H^{0}(V, \mathcal{O}(D))$ of dimension $n+1$ such that, for any $\sigma \in G$, the restriction $\left.\sigma^{*}\right|_{\mathcal{L}}$ is a multiple of the identity.

Criterion

Proposition

We have $W_{0} \cong V / G_{W}$
The projection $\pi: V \longrightarrow W_{0}$ turns out a finite morphism. In particular the fixed loci of G_{w} consists of divisors.

Theorem

(V, D) defines a Galois embedding iff
(1) There exsits a subgroup G of $\operatorname{Aut}(V)$ with $|G|=D^{n}$.
(2) There exsits a G-invariant linear subspace \mathcal{L} of $H^{0}(V, \mathcal{O}(D))$ of dimension $n+1$ such that, for any $\sigma \in G$, the restriction $\left.\sigma^{*}\right|_{\mathcal{L}}$ is a multiple of the identity.
(3) The linear system \mathcal{L} has no base points.

abelian variety

Let us apply the above method to abelian varieties.

abelian variety

Let us apply the above method to abelian varieties.
$k=\mathbb{C}$: field of complex numbers

abelian variety

Let us apply the above method to abelian varieties.
$k=\mathbb{C}$: field of complex numbers
A : abelian variety, $\operatorname{dim} A=n$

abelian variety

Let us apply the above method to abelian varieties.
$k=\mathbb{C}$: field of complex numbers
A : abelian variety, $\operatorname{dim} A=n$
G : subgroup of $\operatorname{Aut}(A)$

abelian variety

Let us apply the above method to abelian varieties.
$k=\mathbb{C}$: field of complex numbers
A : abelian variety, $\operatorname{dim} A=n$
G : subgroup of Aut(A)
$\sigma \in G$ has the analytic representation $\widetilde{\sigma} z=M(\sigma) z+t(\sigma)$

abelian variety

Let us apply the above method to abelian varieties.
$k=\mathbb{C}$: field of complex numbers
A : abelian variety, $\operatorname{dim} A=n$
G : subgroup of Aut(A)
$\sigma \in G$ has the analytic representation $\widetilde{\sigma} z=M(\sigma) z+t(\sigma)$ where $M(\sigma) \in G L(n, \mathbb{C}), z \in \mathbb{C}^{n}, t(\sigma) \in \mathbb{C}^{n}$

abelian variety

Let us apply the above method to abelian varieties.
$k=\mathbb{C}$: field of complex numbers
A : abelian variety, $\operatorname{dim} A=n$
G : subgroup of Aut(A)
$\sigma \in G$ has the analytic representation $\widetilde{\sigma} z=M(\sigma) z+t(\sigma)$
where $M(\sigma) \in G L(n, \mathbb{C}), z \in \mathbb{C}^{n}, t(\sigma) \in \mathbb{C}^{n}$
$G_{0}=\left\{\sigma \in G \mid M(\sigma)=1_{n}\right\}$,

abelian variety

Let us apply the above method to abelian varieties.
$k=\mathbb{C}$: field of complex numbers
A : abelian variety, $\operatorname{dim} A=n$
G : subgroup of Aut(A)
$\sigma \in G$ has the analytic representation $\widetilde{\sigma} z=M(\sigma) z+t(\sigma)$
where $M(\sigma) \in G L(n, \mathbb{C}), z \in \mathbb{C}^{n}, t(\sigma) \in \mathbb{C}^{n}$
$G_{0}=\left\{\sigma \in G \mid M(\sigma)=1_{n}\right\}$,
$H=\{M(\sigma) \mid \sigma \in G\}$

abelian variety

Let us apply the above method to abelian varieties.
$k=\mathbb{C}$: field of complex numbers
A : abelian variety, $\operatorname{dim} A=n$
G : subgroup of Aut(A)
$\sigma \in G$ has the analytic representation $\widetilde{\sigma} z=M(\sigma) z+t(\sigma)$
where $M(\sigma) \in G L(n, \mathbb{C}), z \in \mathbb{C}^{n}, t(\sigma) \in \mathbb{C}^{n}$
$G_{0}=\left\{\sigma \in G \mid M(\sigma)=1_{n}\right\}$,
$H=\{M(\sigma) \mid \sigma \in G\}$
We have the following exact sequence of groups:

abelian variety

Let us apply the above method to abelian varieties.
$k=\mathbb{C}$: field of complex numbers
A : abelian variety, $\operatorname{dim} A=n$
G : subgroup of Aut(A)
$\sigma \in \mathcal{G}$ has the analytic representation $\widetilde{\sigma} z=M(\sigma) z+t(\sigma)$
where $M(\sigma) \in G L(n, \mathbb{C}), z \in \mathbb{C}^{n}, t(\sigma) \in \mathbb{C}^{n}$
$G_{0}=\left\{\sigma \in G \mid M(\sigma)=1_{n}\right\}$,
$H=\{M(\sigma) \mid \sigma \in G\}$
We have the following exact sequence of groups:

$$
1 \longrightarrow G_{0} \longrightarrow G \longrightarrow H \longrightarrow 1 .
$$

Basic property 1

Assume A has the Galois embedding and let G be the Galois group.
$B=A / G_{0}$ is abelian variety.
We determin the structures of G and H in the cases where $d=1$ and 2 respectively.

Basic property 1

Assume A has the Galois embedding and let G be the Galois group.
$B=A / G_{0}$ is abelian variety.
$H \cong G / G_{0}$ is a subgroup of $\operatorname{Aut}(B)$.
We determin the structures of G and H in the cases where
$d=1$ and 2 respectively.

Basic property 1

Assume A has the Galois embedding and let G be the Galois group.
$B=A / G_{0}$ is abelian variety.
$H \cong G / G_{0}$ is a subgroup of $\operatorname{Aut}(B)$.
We determin the structures of G and H in the cases where
$d=1$ and 2 respectively.

Basic property 2

Suppose (A, D) defines Galois embedding.
Then, each component of R is a translation of an abelian

Basic property 2

Suppose (A, D) defines Galois embedding.
Let R be the ramification divisor for $\pi: A \longrightarrow W_{0}$.

Basic property 2

Suppose (A, D) defines Galois embedding.
Let R be the ramification divisor for $\pi: A \longrightarrow W_{0}$. Then, each component of R is a translation of an abelian survariety of dimension $n-1$.
R is very ample and $R^{n}=(n+1)^{n}|G|$

Basic property 2

Suppose (A, D) defines Galois embedding.
Let R be the ramification divisor for $\pi: A \longrightarrow W_{0}$.
Then, each component of R is a translation of an abelian survariety of dimension $n-1$.
$R \sim(n+1) D$
R is very ample and $R^{n}=(n+1)^{n} \mid G$

Basic property 2

Suppose (A, D) defines Galois embedding.
Let R be the ramification divisor for $\pi: A \longrightarrow W_{0}$.
Then, each component of R is a translation of an abelian survariety of dimension $n-1$.
$R \sim(n+1) D$
R is very ample and $R^{n}=(n+1)^{n}|G|$.

Corollary

Simple abelian variety A does not have Galois embedding if $\operatorname{dim} A \geq 2$.

elliptic curve

Let us apply the above method to elliptic curves.

elliptic curve

Let us apply the above method to elliptic curves. $A=E$: elliptic curve

A finite subgroup G of $\operatorname{Aut}(E)$ can be a Galois group of some Galois embedding of E iff $|G|$

elliptic curve

Let us apply the above method to elliptic curves.
$A=E$: elliptic curve
Lemma
A finite subgroup G of $\operatorname{Aut}(E)$ can be a Galois group of some Galois embedding of E iff $|G| \geq 3$ and $\left|G_{0}\right| \neq 1$.

So the question is to find all finite subgroups of $\operatorname{Aut}(E)$.
As a direct consequence the following assertion holds:

elliptic curve

Let us apply the above method to elliptic curves.
$A=E$: elliptic curve
Lemma
A finite subgroup G of $\operatorname{Aut}(E)$ can be a Galois group of some Galois embedding of E iff $|G| \geq 3$ and $\left|G_{0}\right| \neq 1$.

So the question is to find all finite subgroups of $\operatorname{Aut}(E)$.

elliptic curve

Let us apply the above method to elliptic curves.
$A=E$: elliptic curve

Lemma

A finite subgroup G of $\operatorname{Aut}(E)$ can be a Galois group of some Galois embedding of E iff $|G| \geq 3$ and $\left|G_{0}\right| \neq 1$.

So the question is to find all finite subgroups of $\operatorname{Aut}(E)$. As a direct consequence the following assertion holds:

elliptic curve

Let us apply the above method to elliptic curves.
$A=E$: elliptic curve

Lemma

A finite subgroup G of $\operatorname{Aut}(E)$ can be a Galois group of some Galois embedding of E iff $|G| \geq 3$ and $\left|G_{0}\right| \neq 1$.

So the question is to find all finite subgroups of $\operatorname{Aut}(E)$. As a direct consequence the following assertion holds:

Corollary

For any smooth elliptic curve E there exists a Galois embedding whose Galois group is isomorphic to D_{n}.

Bidihedral group

Definition

A finite group G is called a bidihedral group if it is generated by the elements a, b and c s.t.
(1) $a^{2}=b^{m}=c^{n}=i d, a b a=b^{-1}, a c a=c^{-1}, b c=c b$

Bidihedral group

Definition

A finite group G is called a bidihedral group if it is generated by the elements a, b and c s.t.

Bidihedral group

Definition

A finite group G is called a bidihedral group if it is generated by the elements a, b and c s.t.
(1) $a^{2}=b^{m}=c^{n}=i d, a b a=b^{-1}, a c a=c^{-1}, b c=c b$

Bidihedral group

Definition

A finite group G is called a bidihedral group if it is generated by the elements a, b and c s.t.
(1) $a^{2}=b^{m}=c^{n}=i d, a b a=b^{-1}, a c a=c^{-1}, b c=c b$
(2) $n \geq m \geq 2$ and $n \geq 3$

We denote this group by $B D_{m n}$ or $B D$

Bidihedral group

Definition

A finite group G is called a bidihedral group if it is generated by the elements a, b and c s.t.
(1) $a^{2}=b^{m}=c^{n}=i d, a b a=b^{-1}$, $a c a=c^{-1}, b c=c b$
(2) $n \geq m \geq 2$ and $n \geq 3$

We denote this group by $B D_{m n}$ or $B D$

Exceptional elliptic group

Definition

A finite non-abelian group G of order $m^{2} k l$ is called an exceptional elliptic group
if it satisfies the following conditions (1), (2) and (3).

Exceptional elliptic group

Definition

A finite non-abelian group G of order $m^{2} k l$ is called an exceptional elliptic group if it satisfies the following conditions (1), (2) and (3).
(1) $I=3,4$ or 6

Exceptional elliptic group

Definition

A finite non-abelian group G of order $m^{2} k l$ is called an exceptional elliptic group if it satisfies the following conditions (1), (2) and (3).
(1) $I=3,4$ or 6
(2) G is the semi-direct product $H \rtimes K$ with some action of K onto H,
generators such that the orders of them are m and $m k$ respectively.
(3) In case H has one generator we regard $m=1$

Exceptional elliptic group

Definition

A finite non-abelian group G of order $m^{2} k l$ is called an
exceptional elliptic group
if it satisfies the following conditions (1), (2) and (3).
(1) $I=3,4$ or 6
(2) G is the semi-direct product $H \rtimes K$ with some action of K onto H,
where K is a cyclic group of order I and H is the normal abelian subgroup of G of order $m^{2} k$ with one or two generators such that the orders of them are m and $m k$ respectively.

Exceptional elliptic group

Definition

A finite non-abelian group G of order $m^{2} k l$ is called an exceptional elliptic group
if it satisfies the following conditions (1), (2) and (3).
(1) $I=3,4$ or 6
(2) G is the semi-direct product $H \rtimes K$ with some action of K onto H,
where K is a cyclic group of order $/$ and H is the normal abelian subgroup of G of order $m^{2} k$ with one or two generators such that the orders of them are m and $m k$ respectively.
(3) In case H has one generator we regard $m=1$.

Exceptional elliptic group

Definition

$k=1$ or $k=q_{1} \cdots q_{s}$, where q_{i} are distinct prime numbers satisfying the following condition (3.1) or (3.2).

Exceptional elliptic group

Definition

$k=1$ or $k=q_{1} \cdots q_{s}$, where q_{i} are distinct prime numbers satisfying the following condition (3.1) or (3.2).
(3.1) If $I=3$ or 6 , then $q_{i}=3$ or $q_{i} \equiv 1(\bmod 3)$, where $i=1, \ldots, s$.

We denote this group by $E(k, l)$ and $E(m, k, l)$ if $m=1$ and $m \neq 1$ respectively.

Exceptional elliptic group

Definition

$k=1$ or $k=q_{1} \cdots q_{s}$, where q_{i} are distinct prime numbers satisfying the following condition (3.1) or (3.2).
(3.1) If $I=3$ or 6 , then $q_{i}=3$ or $q_{i} \equiv 1(\bmod 3)$, where $i=1, \ldots, s$.
(3.2) If $I=4$, then $q_{i}=2$ or $q_{i} \equiv 1(\bmod 4)$, where $i=1, \ldots, s$.

Exceptional elliptic group

Definition

$k=1$ or $k=q_{1} \cdots q_{s}$, where q_{i} are distinct prime numbers satisfying the following condition (3.1) or (3.2).
(3.1) If $I=3$ or 6 , then $q_{i}=3$ or $q_{i} \equiv 1(\bmod 3)$, where $i=1, \ldots, s$.
(3.2) If $I=4$, then $q_{i}=2$ or $q_{i} \equiv 1(\bmod 4)$, where $i=1, \ldots, s$.

We denote this group by $E(k, l)$ and $E(m, k, l)$ if $m=1$ and $m \neq 1$ respectively.

Theorem

A finite group G can be a subgroup of $A(E)$ for some E if and only if G is isomorphic to one of the following:

Theorem

A finite group G can be a subgroup of $A(E)$ for some E if and only if G is isomorphic to one of the following:
(1) abelian case:

Theorem

A finite group G can be a subgroup of $A(E)$ for some E if and only if G is isomorphic to one of the following:
(1) abelian case:
(1.1) $Z_{m}(m \geq 1)$ or $Z_{m} \oplus Z_{m k}(m \geq 2, k \geq 1)$
(1.2) $Z_{2}, Z_{2}{ }^{\oplus 2}, Z_{2}{ }^{\oplus 3}, Z_{3}, Z_{3}{ }^{\oplus 2}, Z_{4}, Z_{2} \oplus Z_{4}$ or Z_{6}

Theorem

A finite group G can be a subgroup of $A(E)$ for some E if and only if G is isomorphic to one of the following:
(1) abelian case:
(1.1) $Z_{m}(m \geq 1)$ or $Z_{m} \oplus Z_{m k}(m \geq 2, k \geq 1)$
(1.2) $Z_{2}, Z_{2}{ }^{\oplus 2}, Z_{2}{ }^{\oplus 3}, Z_{3}, Z_{3}{ }^{\oplus 2}, Z_{4}, Z_{2} \oplus Z_{4}$ or Z_{6}
(2) non-abelian case:

Theorem

A finite group G can be a subgroup of $A(E)$ for some E if and only if G is isomorphic to one of the following:
(1) abelian case:
(1.1) $Z_{m}(m \geq 1)$ or $Z_{m} \oplus Z_{m k}(m \geq 2, k \geq 1)$
(1.2) $Z_{2}, Z_{2}{ }^{\oplus 2}, Z_{2}{ }^{\oplus 3}, Z_{3}, Z_{3}{ }^{\oplus 2}, Z_{4}, Z_{2} \oplus Z_{4}$ or Z_{6}
(2) non-abelian case:
(2.1) D_{n} or $B D_{m n}(n \geq 3)$
(2.2) $E(k, l)$ or $E(m, k, l)$

Theorem

A finite group G can be a subgroup of $A(E)$ for some E if and only if G is isomorphic to one of the following:
(1) abelian case:
(1.1) $Z_{m}(m \geq 1)$ or $Z_{m} \oplus Z_{m k}(m \geq 2, k \geq 1)$
(1.2) $Z_{2}, Z_{2}{ }^{\oplus 2}, Z_{2}{ }^{\oplus 3}, Z_{3}, Z_{3}{ }^{\oplus 2}, Z_{4}, Z_{2} \oplus Z_{4}$ or Z_{6}
(2) non-abelian case:
(2.1) D_{n} or $B D_{m n}(n \geq 3)$
(2.2) $E(k, l)$ or $E(m, k, l)$

Moreover, the cases (1.1), (1.2), (2.1) and (2.1) appear in the cases

Theorem

A finite group G can be a subgroup of $A(E)$ for some E if and only if G is isomorphic to one of the following:
(1) abelian case:
(1.1) $Z_{m}(m \geq 1)$ or $Z_{m} \oplus Z_{m k}(m \geq 2, k \geq 1)$
(1.2) $Z_{2}, Z_{2}{ }^{\oplus 2}, Z_{2}{ }^{\oplus 3}, Z_{3}, Z_{3}{ }^{\oplus 2}, Z_{4}, Z_{2} \oplus Z_{4}$ or Z_{6}
(2) non-abelian case:
(2.1) D_{n} or $B D_{m n}(n \geq 3)$
(2.2) $E(k, l)$ or $E(m, k, l)$

Moreover, the cases (1.1), (1.2), (2.1) and (2.1) appear in the cases
where $\left|G_{0}\right|=1,\left|G_{0}\right|>1,\left|G_{0}\right|=2$ and $\left|G_{0}\right|>2$ respectively.

Theorem
A finite subgroup G of $\operatorname{Aut}(E)$ can be a Galois group of some Galois embedding of E iff G is one of the following:

Theorem

A finite subgroup G of $\operatorname{Aut}(E)$ can be a Galois group of some Galois embedding of E iff G is one of the following:
(1) abelian case:

$$
Z_{2}{ }^{\oplus 2}, Z_{2}{ }^{\oplus 3}, Z_{3}, Z_{3}{ }^{\oplus 2}, Z_{4}, Z_{2} \oplus Z_{4} \text { or } Z_{6}
$$

Theorem

A finite subgroup G of $\operatorname{Aut}(E)$ can be a Galois group of some Galois embedding of E iff G is one of the following:
(1) abelian case:

$$
Z_{2}{ }^{\oplus 2}, Z_{2}{ }^{\oplus 3}, Z_{3}, Z_{3}{ }^{\oplus 2}, Z_{4}, Z_{2} \oplus Z_{4} \text { or } Z_{6}
$$

(2) non-abelian case:
$D_{m}, B D_{m n}, E(k, l)$ or $E(m, k, l)$

Make examples

Remark

By projecting an embedded elliptic curve with Galois subspace into the plane, we get a singular elliptic curve with Galois point.

Make examples

Remark

By projecting an embedded elliptic curve with Galois subspace into the plane, we get a singular elliptic curve with Galois point. Let us make examples of plane elliptic curve with a Galois point. Let G be the group in the above theorem

Make examples

Remark

By projecting an embedded elliptic curve with Galois subspace into the plane, we get a singular elliptic curve with Galois point. Let us make examples of plane elliptic curve with a Galois point. Let G be the group in the above theorem and suppose $\mathbb{C}(x, y)^{G}=\mathbb{C}(s)$.

Make examples

Remark

By projecting an embedded elliptic curve with Galois subspace into the plane, we get a singular elliptic curve with Galois point. Let us make examples of plane elliptic curve with a Galois point. Let G be the group in the above theorem and suppose $\mathbb{C}(x, y)^{G}=\mathbb{C}(s)$.
Then, taking an affine coordinate s, we have a morphism $p: E \rightarrow E / G \cong \mathbb{P}^{1}$.

Make examples

Remark

By projecting an embedded elliptic curve with Galois subspace into the plane, we get a singular elliptic curve with Galois point. Let us make examples of plane elliptic curve with a Galois point. Let G be the group in the above theorem and suppose $\mathbb{C}(x, y)^{G}=\mathbb{C}(s)$.
Then, taking an affine coordinate s, we have a morphism
$p: E \longrightarrow E / G \cong \mathbb{P}^{1}$.
Let D be the polar divisor of s on E.

Make examples

Remark

By projecting an embedded elliptic curve with Galois subspace into the plane, we get a singular elliptic curve with Galois point. Let us make examples of plane elliptic curve with a Galois point. Let G be the group in the above theorem and suppose $\mathbb{C}(x, y)^{G}=\mathbb{C}(s)$.
Then, taking an affine coordinate s, we have a morphism
$p: E \longrightarrow E / G \cong \mathbb{P}^{1}$.
Let D be the polar divisor of s on E.
Next, find an element $t \in \mathbb{C}(x, y)$ satisfying that $\operatorname{div}(t)+D \geq 0$

Make examples

Remark

By projecting an embedded elliptic curve with Galois subspace into the plane, we get a singular elliptic curve with Galois point. Let us make examples of plane elliptic curve with a Galois point. Let G be the group in the above theorem and suppose $\mathbb{C}(x, y)^{G}=\mathbb{C}(s)$.
Then, taking an affine coordinate s, we have a morphism
$p: E \longrightarrow E / G \cong \mathbb{P}^{1}$.
Let D be the polar divisor of s on E.
Next, find an element $t \in \mathbb{C}(x, y)$ satisfying that $\operatorname{div}(t)+D \geq 0$ and $\mathbb{C}(x, y)=\mathbb{C}(s, t)$.

Make examples

Remark

By projecting an embedded elliptic curve with Galois subspace into the plane, we get a singular elliptic curve with Galois point. Let us make examples of plane elliptic curve with a Galois point. Let G be the group in the above theorem and suppose $\mathbb{C}(x, y)^{G}=\mathbb{C}(s)$.
Then, taking an affine coordinate s, we have a morphism
$p: E \longrightarrow E / G \cong \mathbb{P}^{1}$.
Let D be the polar divisor of s on E.
Next, find an element $t \in \mathbb{C}(x, y)$ satisfying that $\operatorname{div}(t)+D \geq 0$ and $\mathbb{C}(x, y)=\mathbb{C}(s, t)$.
Then, the curve C defined by s and t has the Galois point at ∞ with the Galois group G.

Make examples

Remark

By projecting an embedded elliptic curve with Galois subspace into the plane, we get a singular elliptic curve with Galois point. Let us make examples of plane elliptic curve with a Galois point. Let G be the group in the above theorem
and suppose $\mathbb{C}(x, y)^{G}=\mathbb{C}(s)$.
Then, taking an affine coordinate s, we have a morphism
$p: E \longrightarrow E / G \cong \mathbb{P}^{1}$.
Let D be the polar divisor of s on E.
Next, find an element $t \in \mathbb{C}(x, y)$ satisfying that $\operatorname{div}(t)+D \geq 0$ and $\mathbb{C}(x, y)=\mathbb{C}(s, t)$.
Then, the curve C defined by s and t has the Galois point at ∞ with the Galois group G.
Of course C is birational to E.

$Z_{2}{ }^{\oplus}$

Example
Let $E: y^{2}=x(x-1)(x-b)$ be an elliptic curve, where $b \neq 0,1$.

$Z_{2}{ }^{\oplus}$

Example

Let $E: y^{2}=x(x-1)(x-b)$ be an elliptic curve, where $b \neq 0,1$. Take the automorphisms σ and τ of $\mathbb{C}(x, y)$ such that

$Z_{2}{ }^{\oplus}$

Example

Let $E: y^{2}=x(x-1)(x-b)$ be an elliptic curve, where $b \neq 0,1$. Take the automorphisms σ and τ of $\mathbb{C}(x, y)$ such that the complex representations are $\widetilde{\sigma}(z)=-z$ and $\widetilde{\tau}(z)=z+\beta$,

$Z_{2}{ }^{\oplus}$

Example

Let $E: y^{2}=x(x-1)(x-b)$ be an elliptic curve, where $b \neq 0,1$. Take the automorphisms σ and τ of $\mathbb{C}(x, y)$ such that the complex representations are $\tilde{\sigma}(z)=-z$ and $\widetilde{\tau}(z)=z+\beta$, where $2 \beta \in \mathcal{L}$ and $\beta \notin \mathcal{L}$.

$Z_{2}{ }^{\oplus}$

Example

Let $E: y^{2}=x(x-1)(x-b)$ be an elliptic curve, where $b \neq 0,1$. Take the automorphisms σ and τ of $\mathbb{C}(x, y)$ such that the complex representations are $\tilde{\sigma}(z)=-z$ and $\widetilde{\tau}(z)=z+\beta$, where $2 \beta \in \mathcal{L}$ and $\beta \notin \mathcal{L}$.
The point $(b, 0) \in E$ is of order 2 and we have

Then the translation τ of order two can be expressed as

$Z_{2}{ }^{\oplus 2}$

Example

Let $E: y^{2}=x(x-1)(x-b)$ be an elliptic curve, where $b \neq 0,1$. Take the automorphisms σ and τ of $\mathbb{C}(x, y)$ such that the complex representations are $\widetilde{\sigma}(z)=-z$ and $\widetilde{\tau}(z)=z+\beta$, where $2 \beta \in \mathcal{L}$ and $\beta \notin \mathcal{L}$.
The point $(b, 0) \in E$ is of order 2 and we have
$(x, y) *(b, 0)=\left(\frac{b(x-1)}{x-b}, \frac{b(b-1) y}{(x-b)^{2}}\right)$.

$Z_{2}{ }^{\oplus 2}$

Example

Let $E: y^{2}=x(x-1)(x-b)$ be an elliptic curve, where $b \neq 0,1$. Take the automorphisms σ and τ of $\mathbb{C}(x, y)$ such that the complex representations are $\widetilde{\sigma}(z)=-z$ and $\widetilde{\tau}(z)=z+\beta$, where $2 \beta \in \mathcal{L}$ and $\beta \notin \mathcal{L}$.
The point $(b, 0) \in E$ is of order 2 and we have
$(x, y) *(b, 0)=\left(\frac{b(x-1)}{x-b}, \frac{b(b-1) y}{(x-b)^{2}}\right)$.
Then the translation τ of order two can be expressed as

$Z_{2}{ }^{\oplus 2}$

Example

Let $E: y^{2}=x(x-1)(x-b)$ be an elliptic curve, where $b \neq 0,1$. Take the automorphisms σ and τ of $\mathbb{C}(x, y)$ such that the complex representations are $\widetilde{\sigma}(z)=-z$ and $\widetilde{\tau}(z)=z+\beta$, where $2 \beta \in \mathcal{L}$ and $\beta \notin \mathcal{L}$.
The point $(b, 0) \in E$ is of order 2 and we have
$(x, y) *(b, 0)=\left(\frac{b(x-1)}{x-b}, \frac{b(b-1) y}{(x-b)^{2}}\right)$.
Then the translation τ of order two can be expressed as

$$
\tau(x)=\frac{b(x-1)}{x-b} \text { and } \tau(y)=\frac{b(b-1) y}{(x-b)^{2}} .
$$

$Z_{2}{ }^{\oplus 2}$ (Continuation)

Example

Since ∞ is the zero element and is fixed by σ, we see $\sigma(x)=x$, $\sigma(y)=-y$.

$Z_{2}{ }^{\oplus 2}$ (Continuation)

Example

Since ∞ is the zero element and is fixed by σ, we see $\sigma(x)=x$, $\sigma(y)=-y$.
Let $G=\langle\sigma, \tau\rangle$. Crealy $x+\frac{b(x-1)}{x-b}=\frac{x^{2}-b}{x-b}$ is invariant by τ.

$Z_{2}{ }^{\oplus 2}$ (Continuation)

Example

Since ∞ is the zero element and is fixed by σ, we see $\sigma(x)=x$, $\sigma(y)=-y$.
Let $G=\langle\sigma, \tau\rangle$. Crealy $x+\frac{b(x-1)}{x-b}=\frac{x^{2}-b}{x-b}$ is invariant by τ.
so put $s=\frac{x^{2}-b}{x-b}$.

$Z_{2}{ }^{\oplus 2}$ (Continuation)

Example

Since ∞ is the zero element and is fixed by σ, we see $\sigma(x)=x$, $\sigma(y)=-y$.
Let $G=\langle\sigma, \tau\rangle$. Crealy $x+\frac{b(x-1)}{x-b}=\frac{x^{2}-b}{x-b}$ is invariant by τ.
so put $s=\frac{x^{2}-b}{x-b}$.
Let Q_{1} and Q_{2} be the points ($b: 0: 1$) and ($0: 1: 0$) on E respectively,

$Z_{2}{ }^{\oplus 2}$ (Continuation)

Example

Since ∞ is the zero element and is fixed by σ, we see $\sigma(x)=x$, $\sigma(y)=-y$.
Let $G=\langle\sigma, \tau\rangle$. Crealy $x+\frac{b(x-1)}{x-b}=\frac{x^{2}-b}{x-b}$ is invariant by τ.
so put $s=\frac{x^{2}-b}{x-b}$.
Let Q_{1} and Q_{2} be the points ($b: 0: 1$) and ($0: 1: 0$) on E respectively,
where ($X: Y: Z$) are homogeneous coordinates satisfying $x=X / Z$ and $y=Y / Z$.

$Z_{2}{ }^{\oplus 2}$ (Continuation)

Example

Since ∞ is the zero element and is fixed by σ, we see $\sigma(x)=x$, $\sigma(y)=-y$.
Let $G=\langle\sigma, \tau\rangle$. Crealy $x+\frac{b(x-1)}{x-b}=\frac{x^{2}-b}{x-b}$ is invariant by τ.
so put $s=\frac{x^{2}-b}{x-b}$.
Let Q_{1} and Q_{2} be the points ($b: 0: 1$) and ($0: 1: 0$) on E respectively, where ($X: Y: Z$) are homogeneous coordinates satisfying $x=X / Z$ and $y=Y / Z$.
Then put $D=2 Q_{1}+2 Q_{2}$ as a divisor.

$Z_{2}{ }^{\oplus 2}$ (Continuation)

Example

Since ∞ is the zero element and is fixed by σ, we see $\sigma(x)=x$, $\sigma(y)=-y$.
Let $G=\langle\sigma, \tau\rangle$. Crealy $x+\frac{b(x-1)}{x-b}=\frac{x^{2}-b}{x-b}$ is invariant by τ.
so put $s=\frac{x^{2}-b}{x-b}$.
Let Q_{1} and Q_{2} be the points ($b: 0: 1$) and ($0: 1: 0$) on E respectively,
where ($X: Y: Z$) are homogeneous coordinates satisfying $x=X / Z$ and $y=Y / Z$.
Then put $D=2 Q_{1}+2 Q_{2}$ as a divisor.
It is easy to see that the pole divisor of $\frac{x^{2}-b}{x-b}$ is D.

$Z_{2}{ }^{\oplus 2}$ (Continuation)

Example

Since ∞ is the zero element and is fixed by σ, we see $\sigma(x)=x$, $\sigma(y)=-y$.
Let $G=\langle\sigma, \tau\rangle$. Crealy $x+\frac{b(x-1)}{x-b}=\frac{x^{2}-b}{x-b}$ is invariant by τ.
so put $s=\frac{x^{2}-b}{x-b}$.
Let Q_{1} and Q_{2} be the points ($b: 0: 1$) and ($0: 1: 0$) on E respectively,
where ($X: Y: Z$) are homogeneous coordinates satisfying
$x=X / Z$ and $y=Y / Z$.
Then put $D=2 Q_{1}+2 Q_{2}$ as a divisor.
It is easy to see that the pole divisor of $\frac{x^{2}-b}{x-b}$ is D.
Putting $t=\frac{y+a}{x-b}$, where $a \neq 0, \pm 1$, we have $\operatorname{div}(t)+D \geq 0$.

$Z_{2}{ }^{\oplus 2}$ (Continuation)

Example

Using the equations $s=\frac{x^{2}-b}{x-b}, t=\frac{y+a}{x-b}$ and $y^{2}=x(x-1)(x-b)$,

$Z_{2}{ }^{\oplus 2}$ (Continuation)

Example

Using the equations $s=\frac{x^{2}-b}{x-b}, t=\frac{y+a}{x-b}$ and $y^{2}=x(x-1)(x-b)$, we infer by some computations that $\mathbb{C}(s, t) \ni x$ if $a \neq 0, \pm 1$.

$Z_{2}{ }^{\oplus 2}$ (Continuation)

Example

Using the equations $s=\frac{x^{2}-b}{x-b}, t=\frac{y+a}{x-b}$ and $y^{2}=x(x-1)(x-b)$,
we infer by some computations that $\mathbb{C}(s, t) \ni x$ if $a \neq 0, \pm 1$.
Therefore we have $\mathbb{C}(x, y)=\mathbb{C}(s, t)$.
Thus we have the defining equation

$Z_{2}{ }^{\oplus 2}$ (Continuation)

Example

Using the equations $s=\frac{x^{2}-b}{x-b}, t=\frac{y+a}{x-b}$ and
$y^{2}=x(x-1)(x-b)$,
we infer by some computations that $\mathbb{C}(s, t) \ni x$ if $a \neq 0, \pm 1$.
Therefore we have $\mathbb{C}(x, y)=\mathbb{C}(s, t)$.
Thus we have the defining equation
$a^{4}+a^{3}(4 b-2 s) t+a b t\left(-4 b+4 b^{2}+2 s+2 b s-4 b^{2} s-2 s^{2}+\right.$ $\left.2 b s^{2}-4 b t^{2}+4 b^{2} t^{2}+2 s t^{2}-2 b s t^{2}\right)+a^{2}\left(2 b+2 b^{2}-6 b s-\right.$ $\left.2 b^{2} s+s^{2}+4 b s^{2}-s^{3}-2 b t^{2}+6 b^{2} t^{2}-4 b s t^{2}+s^{2} t^{2}\right)=$ $b^{2}\left(-1+2 b-b^{2}+2 s-4 b s+2 b^{2} s-s^{2}+2 b s^{2}-b^{2} s^{2}-2 t^{2}+\right.$ $\left.4 b t^{2}-2 b^{2} t^{2}+2 s t^{2}-4 b s t^{2}+2 b^{2} s t^{2}-t^{4}+2 b t^{4}-b^{2} t^{4}\right)$

Very ampleness

Lemma
Now, return to the case of abelian surface.
we apply the above method to abelian surfaces.
Let A be an abelian surface. Assume that G is a finite
automorphism group of A

Very ampleness

Lemma

Now, return to the case of abelian surface. we apply the above method to abelian surfaces.
automorphism group of A
satisfying that A / G is isomor bhic to \mathbb{P}^{2}

Very ampleness

Lemma

Now, return to the case of abelian surface. we apply the above method to abelian surfaces.
Let A be an abelian surface. Assume that G is a finite automorphism group of A

Very ampleness

Lemma

Now, return to the case of abelian surface. we apply the above method to abelian surfaces.
Let A be an abelian surface. Assume that G is a finite automorphism group of A satisfying that A / G is isomorphic to \mathbb{P}^{2}

Very ampleness

Lemma

Now, return to the case of abelian surface. we apply the above method to abelian surfaces.
Let A be an abelian surface. Assume that G is a finite automorphism group of A
satisfying that A / G is isomorphic to \mathbb{P}^{2} and let $\pi: A \longrightarrow \mathbb{P}^{2}$ be the quotient morphism.

Very ampleness

Lemma

Now, return to the case of abelian surface. we apply the above method to abelian surfaces.
Let A be an abelian surface. Assume that G is a finite automorphism group of A
satisfying that A / G is isomorphic to \mathbb{P}^{2}
and let $\pi: A \longrightarrow \mathbb{P}^{2}$ be the quotient morphism. If deg $\pi \geq 10$, then $\pi^{*}(\ell)=D$ is very ample for each line ℓ in \mathbb{P}^{2}.

Very ampleness

Lemma

Now, return to the case of abelian surface. we apply the above method to abelian surfaces.
Let A be an abelian surface. Assume that G is a finite automorphism group of A
satisfying that A / G is isomorphic to \mathbb{P}^{2} and let $\pi: A \longrightarrow \mathbb{P}^{2}$ be the quotient morphism. If $\operatorname{deg} \pi \geq 10$, then $\pi^{*}(\ell)=D$ is very ample for each line ℓ in \mathbb{P}^{2}.

Corollary

Under the same assumption and notation of the above lemma, the pair (A, D) defines a Galois embedding.

Theorem

Theorem
If an abelian surface A has the Galois embedding, then $H=G / G_{0}$ is isomorphic to one of the following:

Theorem

Theorem
If an abelian surface A has the Galois embedding, then $H=G / G_{0}$ is isomorphic to one of the following:
(1) D_{3}

Theorem

Theorem
If an abelian surface A has the Galois embedding, then $H=G / G_{0}$ is isomorphic to one of the following:
(1) D_{3}
(2) D_{4}

Theorem

Theorem
If an abelian surface A has the Galois embedding, then $H=G / G_{0}$ is isomorphic to one of the following:
(1) D_{3}
(2) D_{4}
(3) the semi-direct product of groups: $Z_{2} \ltimes H^{\prime}$,

Theorem

Theorem

If an abelian surface A has the Galois embedding, then $H=G / G_{0}$ is isomorphic to one of the following:
(1) D_{3}
(2) D_{4}
(3) the semi-direct product of groups: $Z_{2} \ltimes H^{\prime}$, where $H^{\prime} \cong D_{4}$ or $Z_{m} \times Z_{m}(m=3,4,6)$

Theorem

Theorem

If an abelian surface A has the Galois embedding, then $H=G / G_{0}$ is isomorphic to one of the following:
(1) D_{3}
(2) D_{4}
(3) the semi-direct product of groups: $Z_{2} \ltimes H^{\prime}$, where $H^{\prime} \cong D_{4}$ or $Z_{m} \times Z_{m}(m=3,4,6)$
To state case (3) more precisely, we put $Z_{2}=\langle a\rangle$

Theorem

Theorem

If an abelian surface A has the Galois embedding, then $H=G / G_{0}$ is isomorphic to one of the following:
(1) D_{3}
(2) D_{4}
(3) the semi-direct product of groups: $Z_{2} \ltimes H^{\prime}$, where $H^{\prime} \cong D_{4}$ or $Z_{m} \times Z_{m}(m=3,4,6)$
To state case (3) more precisely, we put $Z_{2}=\langle a\rangle$ and $H^{\prime}=\langle b, c\rangle$. Then the actions of Z_{2} on H^{\prime} are as follows:

Theorem

Theorem

If an abelian surface A has the Galois embedding, then $H=G / G_{0}$ is isomorphic to one of the following:
(1) D_{3}
(2) D_{4}
(3) the semi-direct product of groups: $Z_{2} \ltimes H^{\prime}$, where $H^{\prime} \cong D_{4}$ or $Z_{m} \times Z_{m}(m=3,4,6)$
To state case (3) more precisely, we put $Z_{2}=\langle a\rangle$ and $H^{\prime}=\langle b, c\rangle$. Then the actions of Z_{2} on H^{\prime} are as follows:
In the former case $H^{\prime} \cong D_{4}$, we have $a b a=b c^{2}, a c a=c, c^{4}=1, b^{2}=1$ and $b c b=c^{-1}$.

Theorem

Theorem

If an abelian surface A has the Galois embedding, then $H=G / G_{0}$ is isomorphic to one of the following:
(1) D_{3}
(2) D_{4}
(3) the semi-direct product of groups: $Z_{2} \ltimes H^{\prime}$, where $H^{\prime} \cong D_{4}$ or $Z_{m} \times Z_{m}(m=3,4,6)$
To state case (3) more precisely, we put $Z_{2}=\langle a\rangle$ and $H^{\prime}=\langle b, c\rangle$. Then the actions of Z_{2} on H^{\prime} are as follows:
In the former case $H^{\prime} \cong D_{4}$, we have $a b a=b c^{2}, a c a=c, c^{4}=1, b^{2}=1$ and $b c b=c^{-1}$. In the latter case $H^{\prime} \cong Z_{m} \times Z_{m}$, we have $a b a=b^{-1}, a c a=c^{-1}, b^{m}=c^{m}=1$ and $b c=c b$.

Corollary

If A has a Galois embedding, then the abelian surface $B=A / G_{0}$ is isomorphic to $E \times E$ for some elliptic curve E.

Example 1

Example

Let A be the abelian surface with the period matrix

Example 1

Example

Let A be the abelian surface with the period matrix

$$
\Omega=\left(\begin{array}{cccc}
-1 & \rho^{2} & -\tau & \tau \rho^{2} \\
1 & \rho & \tau & \tau \rho
\end{array}\right)=\left(\begin{array}{cc}
-1 & \rho^{2} \\
1 & \rho
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & \tau & 0 \\
0 & 1 & 0 & \tau
\end{array}\right)
$$

Example 1

Example

Let A be the abelian surface with the period matrix

$$
\Omega=\left(\begin{array}{cccc}
-1 & \rho^{2} & -\tau & \tau \rho^{2} \\
1 & \rho & \tau & \tau \rho
\end{array}\right)=\left(\begin{array}{cc}
-1 & \rho^{2} \\
1 & \rho
\end{array}\right)\left(\begin{array}{llll}
1 & 0 & \tau & 0 \\
0 & 1 & 0 & \tau
\end{array}\right)
$$

where $\Im \tau>0$ and $\rho=\exp (2 \pi \sqrt{-1} / 6)$. Clearly we have $A \cong E \times E$ where $E=\mathbb{C} /(1, \tau)$.

Example 1

Example

Let A be the abelian surface with the period matrix

$$
\Omega=\left(\begin{array}{cccc}
-1 & \rho^{2} & -\tau & \tau \rho^{2} \\
1 & \rho & \tau & \tau \rho
\end{array}\right)=\left(\begin{array}{cc}
-1 & \rho^{2} \\
1 & \rho
\end{array}\right)\left(\begin{array}{llll}
1 & 0 & \tau & 0 \\
0 & 1 & 0 & \tau
\end{array}\right)
$$

where $\Im \tau>0$ and $\rho=\exp (2 \pi \sqrt{-1} / 6)$. Clearly we have $A \cong E \times E$ where $E=\mathbb{C} /(1, \tau)$.
Letting $z \in \mathbb{C}^{2}$ and \boldsymbol{v}_{i} be the i-th column vector of $\Omega(1 \leq i \leq 4)$,

Example 1

Example

Let A be the abelian surface with the period matrix

$$
\Omega=\left(\begin{array}{cccc}
-1 & \rho^{2} & -\tau & \tau \rho^{2} \\
1 & \rho & \tau & \tau \rho
\end{array}\right)=\left(\begin{array}{cc}
-1 & \rho^{2} \\
1 & \rho
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & \tau & 0 \\
0 & 1 & 0 & \tau
\end{array}\right)
$$

where $\Im \tau>0$ and $\rho=\exp (2 \pi \sqrt{-1} / 6)$. Clearly we have $A \cong E \times E$ where $E=\mathbb{C} /(1, \tau)$.
Letting $z \in \mathbb{C}^{2}$ and \boldsymbol{v}_{i} be the i-th column vector of $\Omega(1 \leq i \leq 4)$, we define t_{i} to be the translation on A such that $t_{i} z=z+\boldsymbol{v}_{i} / m$, where m is an integer ≥ 2.

Example 1

Example

Let A be the abelian surface with the period matrix

$$
\Omega=\left(\begin{array}{cccc}
-1 & \rho^{2} & -\tau & \tau \rho^{2} \\
1 & \rho & \tau & \tau \rho
\end{array}\right)=\left(\begin{array}{cc}
-1 & \rho^{2} \\
1 & \rho
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & \tau & 0 \\
0 & 1 & 0 & \tau
\end{array}\right)
$$

where $\Im \tau>0$ and $\rho=\exp (2 \pi \sqrt{-1} / 6)$. Clearly we have $A \cong E \times E$ where $E=\mathbb{C} /(1, \tau)$.
Letting $z \in \mathbb{C}^{2}$ and \boldsymbol{v}_{i} be the i-th column vector of $\Omega(1 \leq i \leq 4)$, we define t_{i} to be the translation on A such that $t_{i} z=z+\boldsymbol{v}_{i} / m$, where m is an integer ≥ 2.
Let a and b be the automorphism of A such that the complex representations are

Example 1

Example

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \text { and }\left(\begin{array}{cc}
-\rho & 0 \\
0 & \rho^{2}
\end{array}\right)
$$

respectively. Put $G_{0}=\left\langle t_{1}, \ldots, t_{4}\right\rangle$ and $G=\left\langle G_{0}, a, b\right\rangle$.
Then G_{0} is a normal subgroup of G and $G / G_{0} \cong D_{3}$.

Example 1

Example

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \text { and }\left(\begin{array}{cc}
-\rho & 0 \\
0 & \rho^{2}
\end{array}\right)
$$

respectively. Put $G_{0}=\left\langle t_{1}, \ldots, t_{4}\right\rangle$ and $G=\left\langle G_{0}, a, b\right\rangle$.
Clearly we have $|G|=6 m^{4}$. Looking at the fixed loci of H, we infer that A / G is smooth.

Example 1

Example

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \text { and }\left(\begin{array}{cc}
-\rho & 0 \\
0 & \rho^{2}
\end{array}\right)
$$

respectively. Put $G_{0}=\left\langle t_{1}, \ldots, t_{4}\right\rangle$ and $G=\left\langle G_{0}, a, b\right\rangle$.
Then G_{0} is a normal subgroup of G and $G / G_{0} \cong D_{3}$.

Example 1

Example

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \text { and }\left(\begin{array}{cc}
-\rho & 0 \\
0 & \rho^{2}
\end{array}\right)
$$

respectively. Put $G_{0}=\left\langle t_{1}, \ldots, t_{4}\right\rangle$ and $G=\left\langle G_{0}, a, b\right\rangle$.
Then G_{0} is a normal subgroup of G and $G / G_{0} \cong D_{3}$.
Clearly we have $|G|=6 \mathrm{~m}^{4}$. Looking at the fixed loci of H, we infer that A / G is smooth.

Example 2

Example
Let E be the elliptic curve \mathbb{C} / Ω,

Example 2

Example

Let E be the elliptic curve \mathbb{C} / Ω, where $\Omega=(1, \tau)$ is a period matrix such that $\Im \tau>0$.

Example 2

Example

Let E be the elliptic curve \mathbb{C} / Ω, where $\Omega=(1, \tau)$ is a period matrix such that $\Im \tau>0$. Let a and b be the automorphisms of E defined by $a(z)=-z$ and $b(z)=z+1 / m$ respectively,

Example 2

Example

Let E be the elliptic curve \mathbb{C} / Ω, where $\Omega=(1, \tau)$ is a period matrix such that $\Im \tau>0$. Let a and b be the automorphisms of E defined by $a(z)=-z$ and $b(z)=z+1 / m$ respectively, where $z \in \mathbb{C}$ and m is a positive integer ≥ 2.

Example 2

Example

Let E be the elliptic curve \mathbb{C} / Ω, where $\Omega=(1, \tau)$ is a period matrix such that $\Im \tau>0$.
Let a and b be the automorphisms of E defined by $a(z)=-z$ and $b(z)=z+1 / m$ respectively, where $z \in \mathbb{C}$ and m is a positive integer ≥ 2. Let G be the subgroup of $\operatorname{Aut}(E)$ generated by a, b. Then $G=\langle a, b\rangle \cong D_{m}$; the dihedral group of order $2 m$.

Example 2

Example

Let E be the elliptic curve \mathbb{C} / Ω, where $\Omega=(1, \tau)$ is a period matrix such that $\Im \tau>0$.
Let a and b be the automorphisms of E defined by $a(z)=-z$ and $b(z)=z+1 / m$ respectively, where $z \in \mathbb{C}$ and m is a positive integer ≥ 2. Let G be the subgroup of $\operatorname{Aut}(E)$ generated by a, b. Then $G=\langle a, b\rangle \cong D_{m}$; the dihedral group of order $2 m$. Let $y^{2}=4 x^{3}+p x+q$ be the Weierstrass normal form of E and $K=\mathbb{C}(x, y)$.

Example 2

Example

Let E be the elliptic curve \mathbb{C} / Ω, where $\Omega=(1, \tau)$ is a period matrix such that $\Im \tau>0$.
Let a and b be the automorphisms of E defined by $a(z)=-z$ and $b(z)=z+1 / m$ respectively, where $z \in \mathbb{C}$ and m is a positive integer ≥ 2. Let G be the subgroup of $\operatorname{Aut}(E)$ generated by a, b. Then $G=\langle a, b\rangle \cong D_{m}$; the dihedral group of order $2 m$. Let $y^{2}=4 x^{3}+p x+q$ be the Weierstrass normal form of E and $K=\mathbb{C}(x, y)$.
Then the fixed field of K by G is rational $\mathbb{C}(t)$, where $t \in \mathbb{C}(x)$.

Example 2

Example

Let E be the elliptic curve \mathbb{C} / Ω, where $\Omega=(1, \tau)$ is a period matrix such that $\Im \tau>0$.
Let a and b be the automorphisms of E defined by $a(z)=-z$ and $b(z)=z+1 / m$ respectively, where $z \in \mathbb{C}$ and m is a positive integer ≥ 2. Let G be the subgroup of $\operatorname{Aut}(E)$ generated by a, b. Then $G=\langle a, b\rangle \cong D_{m}$; the dihedral group of order $2 m$. Let $y^{2}=4 x^{3}+p x+q$ be the Weierstrass normal form of E and $K=\mathbb{C}(x, y)$.
Then the fixed field of K by G is rational $\mathbb{C}(t)$, where $t \in \mathbb{C}(x)$. Putting $D=(t)_{\infty}$; the divisor of poles of t, we infer readily that $\operatorname{deg} D=2 m$ and (E, D) defines a Galois embedding for each m.

Continuation

Example

Let E be the elliptic curve E in the example above such that $\tau=e_{m}, m=3,4$ or 6 .

Continuation

Example

Let E be the elliptic curve E in the example above such that $\tau=e_{m}, m=3,4$ or 6 .
Let A be the abelian surface $E \times E$. We define automorphisms on A as follows:

Continuation

Example

Let E be the elliptic curve E in the example above such that $\tau=e_{m}, m=3,4$ or 6 .
Let A be the abelian surface $E \times E$. We define automorphisms on A as follows:
let a, b and c be the homomorphisms whose complex representations are

Continuation

Example

Let E be the elliptic curve E in the example above such that $\tau=e_{m}, m=3,4$ or 6 .
Let A be the abelian surface $E \times E$. We define automorphisms on A as follows:
let a, b and c be the homomorphisms whose complex representations are

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
\tau & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & \tau
\end{array}\right)
$$

Continuation

Example

Let E be the elliptic curve E in the example above such that $\tau=e_{m}, m=3,4$ or 6 .
Let A be the abelian surface $E \times E$. We define automorphisms on A as follows:
let a, b and c be the homomorphisms whose complex representations are

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
\tau & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & \tau
\end{array}\right)
$$

respectively. Let $G=\langle a, b, c\rangle$.

Continuation

Example

Clearly we have $a^{2}=b^{m}=c^{m}=1, b c=c b, c a=a b$ and $b a=a c$, and $|G|=2 m^{2}$.

Continuation

Example

Clearly we have $a^{2}=b^{m}=c^{m}=1, b c=c b, c a=a b$ and $b a=a c$, and $|G|=2 m^{2}$.
Moreover we have $G \cong Z_{2} \ltimes\left(Z_{m} \times Z_{m}\right)$.

Continuation

Example

Clearly we have $a^{2}=b^{m}=c^{m}=1, b c=c b, c a=a b$ and $b a=a c$, and $|G|=2 m^{2}$.
Moreover we have $G \cong Z_{2} \ltimes\left(Z_{m} \times Z_{m}\right)$.
Put $E_{1}=E \times\{0\}$ and $E_{2}=\{0\} \times E$, where 0 is the zero element of E,

Continuation

Example

Clearly we have $a^{2}=b^{m}=c^{m}=1, b c=c b, c a=a b$ and $b a=a c$, and $|G|=2 m^{2}$.
Moreover we have $G \cong Z_{2} \ltimes\left(Z_{m} \times Z_{m}\right)$.
Put $E_{1}=E \times\{0\}$ and $E_{2}=\{0\} \times E$, where 0 is the zero element of E, then put $D=n\left(E_{1}+E_{2}\right)$, clearly we have $D^{2}=2 n^{2}$.

Continuation

Example

Clearly we have $a^{2}=b^{m}=c^{m}=1, b c=c b, c a=a b$ and $b a=a c$, and $|G|=2 m^{2}$.
Moreover we have $G \cong Z_{2} \ltimes\left(Z_{m} \times Z_{m}\right)$.
Put $E_{1}=E \times\{0\}$ and $E_{2}=\{0\} \times E$, where 0 is the zero element of E, then put $D=n\left(E_{1}+E_{2}\right)$, clearly we have $D^{2}=2 n^{2}$. It is well known that D is very ample if $n \geq 3$.

Continuation

Example

Clearly we have $a^{2}=b^{m}=c^{m}=1, b c=c b, c a=a b$ and $b a=a c$, and $|G|=2 m^{2}$.
Moreover we have $G \cong Z_{2} \ltimes\left(Z_{m} \times Z_{m}\right)$.
Put $E_{1}=E \times\{0\}$ and $E_{2}=\{0\} \times E$, where 0 is the zero element of E, then put $D=n\left(E_{1}+E_{2}\right)$, clearly we have $D^{2}=2 n^{2}$. It is well known that D is very ample if $n \geq 3$.
We see from the criterion that (A, D) defines a Galois embedding whose Galois group is isomorphic to G.

Continuation

Example

Clearly we have $a^{2}=b^{m}=c^{m}=1, b c=c b, c a=a b$ and $b a=a c$, and $|G|=2 m^{2}$.
Moreover we have $G \cong Z_{2} \ltimes\left(Z_{m} \times Z_{m}\right)$.
Put $E_{1}=E \times\{0\}$ and $E_{2}=\{0\} \times E$, where 0 is the zero element of E, then put $D=n\left(E_{1}+E_{2}\right)$, clearly we have $D^{2}=2 n^{2}$. It is well known that D is very ample if $n \geq 3$.
We see from the criterion that (A, D) defines a Galois embedding whose Galois group is isomorphic to G. Let us examine the case $m=3$ in a different point of view.

Continuation

Example

Clearly we have $a^{2}=b^{m}=c^{m}=1, b c=c b, c a=a b$ and $b a=a c$, and $|G|=2 m^{2}$.
Moreover we have $G \cong Z_{2} \ltimes\left(Z_{m} \times Z_{m}\right)$.
Put $E_{1}=E \times\{0\}$ and $E_{2}=\{0\} \times E$, where 0 is the zero element of E, then put $D=n\left(E_{1}+E_{2}\right)$, clearly we have $D^{2}=2 n^{2}$. It is well known that D is very ample if $n \geq 3$.
We see from the criterion that (A, D) defines a Galois embedding whose Galois group is isomorphic to G. Let us examine the case $m=3$ in a different point of view. Since E is defined by the Weierstrass normal form $y^{2}=4 x^{3}+1$,

Continuation

Example

Clearly we have $a^{2}=b^{m}=c^{m}=1, b c=c b, c a=a b$ and $b a=a c$, and $|G|=2 m^{2}$.
Moreover we have $G \cong Z_{2} \ltimes\left(Z_{m} \times Z_{m}\right)$.
Put $E_{1}=E \times\{0\}$ and $E_{2}=\{0\} \times E$, where 0 is the zero element of E, then put $D=n\left(E_{1}+E_{2}\right)$, clearly we have $D^{2}=2 n^{2}$. It is well known that D is very ample if $n \geq 3$.
We see from the criterion that (A, D) defines a Galois embedding whose Galois group is isomorphic to G. Let us examine the case $m=3$ in a different point of view. Since E is defined by the Weierstrass normal form $y^{2}=4 x^{3}+1$,
we have that $\mathbb{C}(A)=\mathbb{C}\left(x, y, x^{\prime}, y^{\prime}\right)$, where $y^{\prime 2}=4 x^{\prime 3}+1$.

Continuation

Example

The automorphisms a, b and c induce the ones of $\mathbb{C}(A)$ as follows:

Continuation

Example

The automorphisms a, b and c induce the ones of $\mathbb{C}(A)$ as follows:
(1) a^{*} interchanges x and x^{\prime}, y and y^{\prime}.

Continuation

Example

The automorphisms a, b and c induce the ones of $\mathbb{C}(A)$ as follows:
(1) a^{*} interchanges x and x^{\prime}, y and y^{\prime}.
(2) $b^{*}(x)=\rho^{2} x$ and b^{*} fixes y, x^{\prime} and y^{\prime}.

Continuation

Example

The automorphisms a, b and c induce the ones of $\mathbb{C}(A)$ as follows:
(1) a^{*} interchanges x and x^{\prime}, y and y^{\prime}.
(2) $b^{*}(x)=\rho^{2} x$ and b^{*} fixes y, x^{\prime} and y^{\prime}.
(3) $c^{*}\left(x^{\prime}\right)=\rho^{2} x^{\prime}$ and c^{*} fixes x, y and y^{\prime}.

Continuation

Example

The automorphisms a, b and c induce the ones of $\mathbb{C}(A)$ as follows:
(1) a^{*} interchanges x and x^{\prime}, y and y^{\prime}.
(2) $b^{*}(x)=\rho^{2} x$ and b^{*} fixes y, x^{\prime} and y^{\prime}.
(3) $c^{*}\left(x^{\prime}\right)=\rho^{2} x^{\prime}$ and c^{*} fixes x, y and y^{\prime}.

Therefore, the fixed field $\mathbb{C}(A)^{G}$ is $\mathbb{C}\left(y+y^{\prime}, y y^{\prime}\right)$,

Continuation

Example

The automorphisms a, b and c induce the ones of $\mathbb{C}(A)$ as follows:
(1) a^{*} interchanges x and x^{\prime}, y and y^{\prime}.
(2) $b^{*}(x)=\rho^{2} x$ and b^{*} fixes y, x^{\prime} and y^{\prime}.
(3) $c^{*}\left(x^{\prime}\right)=\rho^{2} x^{\prime}$ and c^{*} fixes x, y and y^{\prime}.

Therefore, the fixed field $\mathbb{C}(A)^{G}$ is $\mathbb{C}\left(y+y^{\prime}, y y^{\prime}\right)$, and we have $\left(y+y^{\prime}\right)+D \geq 0$ and $\left(y y^{\prime}\right)+D \geq 0$.

Continuation

Example

The automorphisms a, b and c induce the ones of $\mathbb{C}(A)$ as follows:
(1) a^{*} interchanges x and x^{\prime}, y and y^{\prime}.
(2) $b^{*}(x)=\rho^{2} x$ and b^{*} fixes y, x^{\prime} and y^{\prime}.
(3) $c^{*}\left(x^{\prime}\right)=\rho^{2} x^{\prime}$ and c^{*} fixes x, y and y^{\prime}.

Therefore, the fixed field $\mathbb{C}(A)^{G}$ is $\mathbb{C}\left(y+y^{\prime}, y y^{\prime}\right)$,
and we have $\left(y+y^{\prime}\right)+D \geq 0$ and $\left(y y^{\prime}\right)+D \geq 0$.
Embedding by $3\left(E_{1}+E_{2}\right)$ is the composition of the embedding
$E \times E \hookrightarrow \mathbb{P}^{2} \times \mathbb{P}^{2}$

Continuation

Example

followed by the Segre embedding $\mathbb{P}^{2} \times \mathbb{P}^{2} \hookrightarrow \mathbb{P}^{8}$.

Continuation

Example

followed by the Segre embedding $\mathbb{P}^{2} \times \mathbb{P}^{2} \hookrightarrow \mathbb{P}^{8}$.
Using homogeneous coordinates (X, Y, Z) [resp. $\left.\left(X^{\prime}, Y^{\prime}, Z^{\prime}\right)\right]$ satisfying that $x=X / Z, y=Y / Z$ [resp.
$\left.x^{\prime}=X^{\prime} / Z^{\prime}, y^{\prime}=Y^{\prime} / Z^{\prime}\right]$,

Continuation

Example

followed by the Segre embedding $\mathbb{P}^{2} \times \mathbb{P}^{2} \hookrightarrow \mathbb{P}^{8}$. Using homogeneous coordinates (X, Y, Z) [resp. $\left.\left(X^{\prime}, Y^{\prime}, Z^{\prime}\right)\right]$ satisfying that $x=X / Z, y=Y / Z$ [resp.
$\left.x^{\prime}=X^{\prime} / Z^{\prime}, y^{\prime}=Y^{\prime} / Z^{\prime}\right]$,
we can express this embedding as

Continuation

Example

followed by the Segre embedding $\mathbb{P}^{2} \times \mathbb{P}^{2} \hookrightarrow \mathbb{P}^{8}$.
Using homogeneous coordinates (X, Y, Z) [resp. $\left.\left(X^{\prime}, Y^{\prime}, Z^{\prime}\right)\right]$ satisfying that $x=X / Z, y=Y / Z$ [resp.
$\left.x^{\prime}=X^{\prime} / Z^{\prime}, y^{\prime}=Y^{\prime} / Z^{\prime}\right]$,
we can express this embedding as

$$
f\left(X, Y, Z, X^{\prime}, Y^{\prime}, Z^{\prime}\right)=\left(X X^{\prime}, Y X^{\prime}, Z X^{\prime}, X Y^{\prime}, \ldots, Z Z^{\prime}\right)
$$

Continuation

Example

followed by the Segre embedding $\mathbb{P}^{2} \times \mathbb{P}^{2} \hookrightarrow \mathbb{P}^{8}$.
Using homogeneous coordinates (X, Y, Z) [resp. $\left(X^{\prime}, Y^{\prime}, Z^{\prime}\right)$] satisfying that $x=X / Z, y=Y / Z$ [resp.
$\left.x^{\prime}=X^{\prime} / Z^{\prime}, y^{\prime}=Y^{\prime} / Z^{\prime}\right]$,
we can express this embedding as

$$
f\left(X, Y, Z, X^{\prime}, Y^{\prime}, Z^{\prime}\right)=\left(X X^{\prime}, Y X^{\prime}, Z X^{\prime}, X Y^{\prime}, \ldots, Z Z^{\prime}\right)
$$

Letting $\left(T_{0}, \cdots, T_{8}\right)$ be a set of homogeneous coordinates of \mathbb{P}^{8},

Continuation

Example

followed by the Segre embedding $\mathbb{P}^{2} \times \mathbb{P}^{2} \hookrightarrow \mathbb{P}^{8}$.
Using homogeneous coordinates (X, Y, Z) [resp. $\left(X^{\prime}, Y^{\prime}, Z^{\prime}\right)$] satisfying that $x=X / Z, y=Y / Z$ [resp.
$\left.x^{\prime}=X^{\prime} / Z^{\prime}, y^{\prime}=Y^{\prime} / Z^{\prime}\right]$,
we can express this embedding as

$$
f\left(X, Y, Z, X^{\prime}, Y^{\prime}, Z^{\prime}\right)=\left(X X^{\prime}, Y X^{\prime}, Z X^{\prime}, X Y^{\prime}, \ldots, Z Z^{\prime}\right)
$$

Letting $\left(T_{0}, \cdots, T_{8}\right)$ be a set of homogeneous coordinates of \mathbb{P}^{8},
we can express the Galois subspace by $T_{5}+T_{7}=T_{4}=T_{8}=0$.

Remark

In case $f(V) \cap W \neq \emptyset$, H can be abelian, in fact, in the situation above

Remark

In case $f(V) \cap W \neq \emptyset$, H can be abelian, in fact, in the situation above let W be the linear subspace defined by $T_{5}=T_{7}=T_{8}=0$.

Remark

In case $f(V) \cap W \neq \emptyset, H$ can be abelian, in fact, in the situation above let W be the linear subspace defined by $T_{5}=T_{7}=T_{8}=0$. Consider the projection π_{w} with the center W.

Remark

In case $f(V) \cap W \neq \emptyset, H$ can be abelian, in fact, in the situation above let W be the linear subspace defined by $T_{5}=T_{7}=T_{8}=0$.
Consider the projection π_{w} with the center W. Then $f(A) \cap W$ consists of nine points.

Remark

In case $f(V) \cap W \neq \emptyset, H$ can be abelian, in fact, in the situation above let W be the linear subspace defined by $T_{5}=T_{7}=T_{8}=0$.
Consider the projection π_{w} with the center W.
Then $f(A) \cap W$ consists of nine points.
The projection induces the Galois extension whose Galois group is isomorphic to

Remark

In case $f(V) \cap W \neq \emptyset, H$ can be abelian, in fact, in the situation above let W be the linear subspace defined by $T_{5}=T_{7}=T_{8}=0$.
Consider the projection π_{w} with the center W.
Then $f(A) \cap W$ consists of nine points.
The projection induces the Galois extension whose Galois
group is isomorphic to
$\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}$

Minimal embedding

If an abelian surface is embedded into \mathbb{P}^{N}, then $N \geq 4$, and in case $N=4$ the abelian surface has a special structure.

Minimal embedding

If an abelian surface is embedded into \mathbb{P}^{N}, then $N \geq 4$, and in case $N=4$ the abelian surface has a special structure. Reider's Theorem

Minimal embedding

If an abelian surface is embedded into \mathbb{P}^{N}, then $N \geq 4$, and in case $N=4$ the abelian surface has a special structure. Reider's Theorem

Theorem
Suppose L is an ample line bundle of type $(1, d)$ with $d \geq 5$ and does not split.
Then the morphis $m f_{L}: A \rightarrow P^{-1-1}$ is an embedding

Minimal embedding

If an abelian surface is embedded into \mathbb{P}^{N}, then $N \geq 4$, and in case $N=4$ the abelian surface has a special structure. Reider's Theorem

Theorem

Suppose L is an ample line bundle of type $(1, d)$ with $d \geq 5$ and does not split.

Minimal embedding

If an abelian surface is embedded into \mathbb{P}^{N}, then $N \geq 4$, and in case $N=4$ the abelian surface has a special structure. Reider's Theorem

Theorem

Suppose L is an ample line bundle of type $(1, d)$ with $d \geq 5$ and does not split.
Then the morphism $f_{L}: A \longrightarrow \mathbb{P}^{d-1}$ is an embedding

Minimal embedding

If an abelian surface is embedded into \mathbb{P}^{N}, then $N \geq 4$, and in case $N=4$ the abelian surface has a special structure. Reider's Theorem

Theorem

Suppose L is an ample line bundle of type $(1, d)$ with $d \geq 5$ and does not split.
Then the morphism $f_{L}: A \longrightarrow \mathbb{P}^{d-1}$ is an embedding if and only if there is no elliptic curve E on A with $(E, L)=2$.

Minimal embedding

If an abelian surface is embedded into \mathbb{P}^{N}, then $N \geq 4$, and in case $N=4$ the abelian surface has a special structure. Reider's Theorem

Theorem

Suppose L is an ample line bundle of type $(1, d)$ with $d \geq 5$ and does not split.
Then the morphism $f_{L}: A \longrightarrow \mathbb{P}^{d-1}$ is an embedding if and only if there is no elliptic curve E on A with $(E, L)=2$.

Similarly let us find the least number N that the abelian surface A has the Galois embedding into \mathbb{P}^{N}.

Minimal embedding

If an abelian surface is embedded into \mathbb{P}^{N}, then $N \geq 4$, and in case $N=4$ the abelian surface has a special structure. Reider's Theorem

Theorem

Suppose L is an ample line bundle of type $(1, d)$ with $d \geq 5$ and does not split.
Then the morphism $f_{L}: A \longrightarrow \mathbb{P}^{d-1}$ is an embedding if and only if there is no elliptic curve E on A with $(E, L)=2$.

Similarly let us find the least number N that the abelian surface A has the Galois embedding into \mathbb{P}^{N}.
In the case of elliptic curve such a curve is unique and defined by $Y^{2} Z=4 X^{3}+Z^{3}$.

Minimal embeddig

Theorem

Suppose (A, D) defines the Galois embedding. Then the least number N is seven, i.e., A is embedded into \mathbb{P}^{7}.

Minimal embeddig

Theorem

Suppose (A, D) defines the Galois embedding. Then the least number N is seven, i.e., A is embedded into \mathbb{P}^{7}. Moreover H is isomorphic to D_{4} or $Z_{2} \ltimes D_{4}$.

Example 3

Example

$A=\mathbb{C}^{2} / \Omega, \Omega$ is the period matrix

$$
\begin{aligned}
&\left(\begin{array}{llll}
1 & 0 & \tau & 0 \\
0 & 1 & 0 & \tau
\end{array}\right), \text { where } \Im \tau>0 . \\
& \widetilde{g_{1}} \vec{z}= \vec{z}+\frac{1}{2}\binom{n_{1}+n_{3} \tau}{n_{2}+n_{4} \tau}, \\
& \widetilde{g_{2}} \vec{z}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \vec{z}+\binom{\alpha_{1}}{\alpha_{2}}, \\
& \widetilde{g_{3}} \vec{z}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \vec{z} \\
& \text { where }\left(n_{1}, n_{2}, n_{3}, n_{4}\right)=(0,0,1,1),(1,1,0,0),(1,1,1,1), \\
&\binom{\alpha_{1}+\alpha_{2}}{\alpha_{1}+\alpha_{2}} \in \mathcal{L}_{A} \text { and }\binom{2 \alpha_{1}}{0} \in \mathcal{L}_{A},
\end{aligned}
$$

Example(continuation)

Example

Then we have $g_{1}{ }^{2}=g_{2}{ }^{2}=g_{3}{ }^{4}=i d, g_{2} g_{3} g_{2}=g_{3}{ }^{-1}$ and $g_{i} g_{1}=g_{1} g_{i}(i=2,3)$ on A.

Example(continuation)

Example

Then we have $g_{1}{ }^{2}=g_{2}{ }^{2}=g_{3}{ }^{4}=i d, g_{2} g_{3} g_{2}=g_{3}{ }^{-1}$ and $g_{i} g_{1}=g_{1} g_{i}(i=2,3)$ on A.
Putting $G=\left\langle g_{1}, g_{2}, g_{3}\right\rangle$, we have $G_{1}=\left\langle g_{1}\right\rangle$ and $G=G_{1} \times G_{2}$ where $G_{2}=\left\langle g_{2}, g_{3}\right\rangle$.

Example(continuation)

Example

Then we have $g_{1}{ }^{2}=g_{2}{ }^{2}=g_{3}{ }^{4}=i d, g_{2} g_{3} g_{2}=g_{3}{ }^{-1}$ and $g_{i} g_{1}=g_{1} g_{i}(i=2,3)$ on A.
Putting $G=\left\langle g_{1}, g_{2}, g_{3}\right\rangle$, we have $G_{1}=\left\langle g_{1}\right\rangle$ and $G=G_{1} \times G_{2}$ where $G_{2}=\left\langle g_{2}, g_{3}\right\rangle$.
Clearly $G_{2} \cong D_{4}$.

Example 4

Example

$A=\mathbb{C}^{2} / \Omega, \Omega$ is the period matrix

$$
\left(\begin{array}{cccc}
1 & 0 & i & (1+i) / 2 \\
0 & 1 & 0 & (1+i) / 2
\end{array}\right), \text { where } i=\sqrt{-1}
$$

Let g_{1}, g_{2} and g_{3} be the automorphisms defined by

$$
\begin{aligned}
& \widetilde{g_{1}} \vec{z}=\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right) \vec{z}+\binom{\varepsilon_{11}}{\varepsilon_{12}}, \\
& \widetilde{g_{2}} \vec{z}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \vec{z}+\binom{\varepsilon_{21}}{\varepsilon_{22}}, \\
& \widetilde{g_{3}} \vec{z}=\left(\begin{array}{rr}
i & 0 \\
0 & -i
\end{array}\right) \vec{z} .
\end{aligned}
$$

Example(continuation)

Example

Then we have
$g_{1}^{2}=g_{2}^{2}=g_{3}^{4}=1, g_{1} g_{2} g_{1}=g_{2} g_{3}^{2}, g_{1} g_{3} g_{1}=g_{3}$ and $g_{2} g_{3} g_{2}=g_{3}{ }^{-1}$.

Example(continuation)

Example

Then we have
$g_{1}^{2}=g_{2}^{2}=g_{3}^{4}=1, g_{1} g_{2} g_{1}=g_{2} g_{3}^{2}, g_{1} g_{3} g_{1}=g_{3}$ and $g_{2} g_{3} g_{2}=g_{3}{ }^{-1}$.
Putting $G=\left\langle g_{1}, g_{2}, g_{3}\right\rangle$, we see that G is isomorphic to

Example(continuation)

Example

Then we have
$g_{1}^{2}=g_{2}^{2}=g_{3}^{4}=1, g_{1} g_{2} g_{1}=g_{2} g_{3}^{2}, g_{1} g_{3} g_{1}=g_{3}$ and $g_{2} g_{3} g_{2}=g_{3}{ }^{-1}$.
Putting $G=\left\langle g_{1}, g_{2}, g_{3}\right\rangle$, we see that G is isomorphic to the semidirect product $Z_{2} \ltimes D_{4}$

Example(continuation)

Example

Then we have
$g_{1}^{2}=g_{2}^{2}=g_{3}^{4}=1, g_{1} g_{2} g_{1}=g_{2} g_{3}^{2}, g_{1} g_{3} g_{1}=g_{3}$ and $g_{2} g_{3} g_{2}=g_{3}{ }^{-1}$.
Putting $G=\left\langle g_{1}, g_{2}, g_{3}\right\rangle$, we see that G is isomorphic to the semidirect product $Z_{2} \ltimes D_{4}$ and G becomes a subgroup of $\operatorname{Aut}(A)$ and $A / G \cong \mathbb{P}^{2}$.

