caratnumber.gap
- Definition of $M_G$
- Let $G$ be a finite subgroup of $\mathrm{GL}(n,\mathbb{Z})$. The $G$-lattice $M_G$ of rank $n$ is defined to be the $G$-lattice with a $\mathbb{Z}$-basis $\{u_1,\ldots,u_n\}$ on which $G$ acts by $\sigma(u_i)=\sum_{j=1}^n a_{i,j}u_j$ for any $ \sigma=[a_{i,j}]\in G$.
Hminus1
Hminus1(G)
returns the Tate cohomology group $\widehat H^{-1}(G,M_G)$ for a finite subgroup $G \leq \mathrm{GL}(n,\mathbb{Z})$.
H0
H0(G)
returns the Tate cohomology group $\widehat H^0(G,M_G)$ for a finite subgroup $G \leq \mathrm{GL}(n,\mathbb{Z})$.
H1
H1(G)
returns the cohomology group $H^1(G,M_G)$ for a finite subgroup $G \leq \mathrm{GL}(n,\mathbb{Z})$.
CaratQClass, CaratQClassNumber
CaratQClass(G)
CaratQClassNumber(G)
returns the Carat ID ($\mathbb{Q}$-class) of $G$ for a finite subgroup $G \leq \mathrm{GL}(n,\mathbb{Z})$.
For Carat ID, see [HY17, Chapter 3].
CaratZClass, CaratZClassNumber
CaratZClass(G)
CaratZClassNumber(G)
returns the Carat ID ($\mathbb{Z}$-class) of $G$ for a finite subgroup $G \leq \mathrm{GL}(n,\mathbb{Z})$.
For Carat ID, see [HY17, Chapter 3].
CaratMatGroupZClass
CaratMatGroupZClass(n,i,j)returns the group $G\leq \mathrm{GL}(n,\mathbb{Z})$ of the Carat ID $(n,i,j)$ when $1\leq n\leq 6$.
DirectSumMatrixGroup
DirectSumMatrixGroup(l)
returns the direct sum of the groups $G_1,\ldots,G_n$
for the list $l=[G_1,\ldots,G_n]$.
DirectProductMatrixGroup
DirectProductMatrixGroup(l)
returns the direct product of the groups $G_1,\ldots,G_n$
for the list $l=[G_1,\ldots,G_n]$.
Carat2CrystCat
Carat2CrystCat(l)
returns the CrystCat ID of the group $G$ of the Carat ID $l$.
For CrystCat ID and Carat ID, see [HY17, Chapter 3].
CrystCat2Carat
CrystCat2Carat(l)
returns the Carat ID of the group $G$ of the CrystCat ID $l$.
For CrystCat ID and Carat ID, see [HY17, Chapter 3].
CrystCatQClass, CrystCatQClassCatalog, CrystCatQClassNumber
CrystCatQClass(G)
CrystCatQClassCatalog(G)
CrystCatQClassNumber(G)
returns the CrystCat ID ($\mathbb{Q}$-class) of $G$ for a finite subgroup $G \leq \mathrm{GL}(n,\mathbb{Z})$.
For CrystCat ID, see [HY17, Chapter 3].
CrystCatZClass, CrystCatZClassCatalog, CrystCatZClassNumber
CrystCatZClass(G)
CrystCatZClassCatalog(G)
CrystCatZClassNumber(G)
returns the CrystCat ID ($\mathbb{Z}$-class) of $G$ for a finite subgroup $G \leq \mathrm{GL}(n,\mathbb{Z})$.
For CrystCat ID, see [HY17, Chapter 3].
NrQClasses, CaratNrQClasses
NrQClasses(n)
CaratNrQClasses(n)
returns the number of $\mathbb{Q}$-classes of dimension $n$ when $1 \leq n \leq 6$.
NrZClasses, CaratNrZClasses
NrZClasses(n,i)
CaratNrZClasses(n,i)returns the number of $\mathbb{Z}$-classes within Carat ID ($\mathbb{Q}$-class) ($n$,$i$).
References
[HY17] Akinari Hoshi and Aiichi Yamasaki,
Rationality problem for algebraic tori,
Mem. Amer. Math. Soc. 248 (2017) no. 1176, v+215 pp.
AMS
Preprint version:
arXiv:1210.4525.