cohomology.g
- Definition of $M_G$
- Let $G$ be a finite subgroup of $\mathrm{GL}(n,\mathbb{Z})$. The $G$-lattice $M_G$ of rank $n$ is defined to be the $G$-lattice with a $\mathbb{Z}$-basis $\{u_1,\ldots,u_n\}$ on which $G$ acts by $\sigma(u_i)=\sum_{j=1}^n a_{i,j}u_j$ for any $ \sigma=[a_{i,j}]\in G$.
Hminus1
Hminus1(G)
returns the Tate cohomology group $\widehat H^{-1}(G,M_G)$ for a finite subgroup $G \leq \mathrm{GL}(n,\mathbb{Z})$.
H0
H0(G)
returns the Tate cohomology group $\widehat H^0(G,M_G)$ for a finite subgroup $G \leq \mathrm{GL}(n,\mathbb{Z})$.
H1
H1(G)
returns the cohomology group $H^1(G,M_G)$ for a finite subgroup $G \leq \mathrm{GL}(n,\mathbb{Z})$.
Zminus1
Zminus1(G)
returns a $\mathbb{Z}$-basis of the group of Tate $(-1)$-cocycles $\widehat Z^{-1}(G,M_G)$ for a finite subgroup $G \leq \mathrm{GL}(n,\mathbb{Z})$.
Bminus1
Bminus1(G)
returns a $\mathbb{Z}$-basis of the group of Tate $(-1)$-coboundaries $\widehat B^{-1}(G,M_G)$ for a finite subgroup $G \leq \mathrm{GL}(n,\mathbb{Z})$.
Z0
Z0(G)
returns a $\mathbb{Z}$-basis of the group of Tate $0$-cocycles $\widehat Z^0(G,M_G)$ for a finite subgroup $G \leq \mathrm{GL}(n,\mathbb{Z})$.
B0
B0(G)
returns a $\mathbb{Z}$-basis of the group of Tate $0$-coboundaries $\widehat B^0(G,M_G)$ for a finite subgroup $G \leq \mathrm{GL}(n,\mathbb{Z})$.
Z1
Z1(G)
returns a $\mathbb{Z}$-basis of the group of $1$-cocycles $Z^1(G,M_G)$ for a finite subgroup $G \leq \mathrm{GL}(n,\mathbb{Z})$.
B1
B1(G)
returns a $\mathbb{Z}$-basis of the group of $1$-coboundaries $B^1(G,M_G)$ for a finite subgroup $G \leq \mathrm{GL}(n,\mathbb{Z})$.
IsFlabby
IsFlabby(G)
returns whether $G$-lattice $M_G$ is flabby or not.
IsCoflabby
IsCoflabby(G)
returns whether $G$-lattice $M_G$ is coflabby or not.
References
[HY17] Akinari Hoshi and Aiichi Yamasaki,
Rationality problem for algebraic tori,
Mem. Amer. Math. Soc. 248 (2017) no. 1176, v+215 pp.
AMS
Preprint version:
arXiv:1210.4525.